Deep Learning
Recurrent Networks
Part 3

Recap: Recurrent networks can be
incredibly effective

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;
b

segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (1 = @; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
if (fd) {
current = blocked;

¥

rw->name = "Getjbbregs";

bprm_self_clearl(&iv->version);

regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON
return segtable;

Y(t+6)

Story so far *

A

/V——T

Stock]]
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

* [terated structures are good for analyzing time series
data with short-time dependence on the past

— These are “Time delay” neural nets, AKA convnets

Story so far

Y(t)
SEEEE.
- —a—

»
»

»
»

» »
» »

.

A A

X(t)

t=0

Time

Iterated structures are good for analyzing time series data
with short-time dependence on the past

— These are “Time delay” neural nets, AKA convnets
Recurrent structures are good for analyzing time series
data with long-term dependence on the past

— These are recurrent neural networks

Recurrent structures can do what
static structures cannot

10101011110

1

MLP

1

1000110010

1

1100101100

Previous
carry

1
1

—

RNN unit |

-

/N

1 0

* The addition problem: Add two N-bit numbers to produce a N+1-bit number

— Inputis binary

— Will require large number of training instances

* QOutput must be specified for every pair of inputs

* Weights that generalize will make errors

— Network trained for N-bit numbers will not work for N+1 bit numbers

* An RNN learns to do this very quickly
— With very little training data!

Carry
out

Story so far

Ydesired(t)

Y(t)

X(t)

t=0

Time

e Recurrent structures can be trained by minimizing
the divergence between the sequence of outputs
and the sequence of desired outputs

— Through gradient descent and backpropagation

Story SO far Primary topic

for today

Vaesre! e

Y(t)

X(t)

t=0

Time

e Recurrent structures can be trained by minimizing
the divergence between the sequence of outputs
and the sequence of desired outputs

— Through gradient descent and backpropagation

Story so far: stability

e Recurrent networks can be unstable

— And not very good at remembering at other times

sigmoid

Vanishing gradient examples..

ELU activation, Batch gradients

Input layer

Output layer

e Learning is difficult: gradients tend to vanish..

The long-term dependency problem

1

l

PATTERNL [ccoiiriiiieiiieveenieenn,] PATTERN 2

Jane had a quick lunch in the bistro. Then she..

* Long-term dependencies are hard to learn in a
network where memory behavior is an

untriggered function of the network

— Need it to be a triggered response to input

10

Long Short-Term Memory

SR P
I
© % ©

* The LSTM addresses the problem of input-
dependent memory behavior

11

LSTM-based architecture

Y(t)

» » » »
» » > »
A A A A A A A A
» » » »
» » > »

X(t)
Time

e LSTM based architectures are identical to
RNN-based architectures

12

Bidirectional LSTM

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

LN N

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

A A A A A A hb(lnf)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
» t

 Bidirectional version..

13

Key |SSUE Primary topic

for today

Vaesre! e

Y(t)

X(t)

t=0

Time

* How do we define the divergence

* Also: how do we compute the outputs..

14

What follows in this series on
recurrent nets

 Architectures: How to train recurrent networks of
different architectures

* Synchrony: How to train recurrent networks when
— The target output is time-synchronous with the input

— The target output is order-synchronous, but not time
synchronous

— Applies to only some types of nets

* How to make predictions/inference with such networks

Variants on recurrent nets

one to one many to many
! tt 1
- >
Images from
? T T ? Karpathy

e Conventional MLP

* Time-synchronous outputs
— E.g. part of speech tagging 16

Variants on recurrent nets

many to one

\ 4

Sequence classification: Classifying a full input sequence
— E.g phoneme recognition
Order synchronous , time asynchronous sequence-to-sequence generation

— E.g. speech recognition
— Exact location of output is unknown a priori

17

Variants

many to many one to many

Images from
Karpathy

* A posteriori sequence to sequence: Generate output sequence after processing
input
— E.g. language translation
* Single-input a posteriori sequence generation

— E.g. captioning an image 18

Variants on recurrent nets

one to one many to many

Images from

? T T ? Karpathy

e Conventional MLP

* Time-synchronous outputs
— E.g. part of speech tagging 19

Regular MLP for processing sequences

A EEERE:

X(t)

t=0

Time

e No recurrence in model
— Exactly as many outputs as inputs

— Every input produces a unique output

20

Learning in a Regular MLP
Ydesired(t)

AN 2NN 2N 2 S S

Y(t)

Time
No recurrence
— Exactly as many outputs as inputs

* One to one correspondence between desired output and actual
output

— The output at time t is not a function of the output at t’ # t.

21

Regular MLP

Yta rget(t)

2 A

Gradient backpropagated at each time

VyyDiv(Yrarger(1 ... T),Y(1...T))
Common assumption:

Div(Yrarget(1..T),Y(1..T)) = Z weDiv(Yegrger (8), Y (1))
t

‘7Y(t)Div(Ytarget(1 T); Y(l T)) = Wt VY(t)Div(Ytarget(t): Y(t))

— W is typically set to 1.0
— This is further backpropagated to update weights etc

22

Regular MLP
Ytarget(t)
v Y v

Y(t)

* Gradient backpropagated at each time

Py yDiv(Yearger(1 .. T), Y (1 ...T))
* Common assumption:

Div(Yiarger(1..T),Y(1..T)) = Z Div(Yiarge: (), Y (1))

t
VY(t)Div(Ytarget(l T)» Y(l T)) - VY(t)Div(Ytarget(t); Y(t))

— This is further backpropagated to update weights etc

Typical Divergence for classification: Div(Ytarget(t), Y(t)) = Xent(Yigrget, Y)

Variants on recurrent nets

one to one any to man
! tt 1
- >
Images from
? T T ? Karpathy
N, y
\/

e Conventional MLP

* Time-synchronous outputs
— E.g. part of speech tagging 2

Variants on recurrent nets

one to one any to man
! Pt
B -
Images from
? T T T Karpathy
N, y
\/

With a brief defour into modelling language

* Time-synchronous outputs
— E.g. part of speech tagging 25

Time synchronous network
CD NNS VBD IN DT J) NN
S EEEEEE

two roads diverged in a yellow wood

\ 4

»
»

 Network produce one output for each input
— With one-to-one correspondence
— E.g. Assigning grammar tags to words

* May require a bidirectional network to consider both past
and future words in the sentence

26

Time-synchronous networks:

Inference
Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
. " " E NoEw
. > > —> 0000 —» >

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

* Process input left to right and produce output
after each input

Time-synchronous networks:
Inference

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

000 —» >

. -
\ 4
v

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

+— 000 <«——

A
A

7 P

A A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

* For bidirectional networks:
— Process input left to right using forward net
— Process it right to left using backward net
— Combine their hidden outputs to produce one output per input symbol

e Rest of the lecture(s) will not specifically consider bidirectional nets, but the
discussion generalizes

How do we train the network

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

SEENEEE

> > —> 000 —>» > »

A A A A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)
t >

Back propagation through time (BPTT)

Given a collection of sequence training instances comprising input
sequences and output sequences of equal length, with one-to-one
correspondence

— (X;,D;), where

- Xi = Xl',O' "'JXi,T

— Di - Di,O' ""Di,T

Training: Forward pass

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

SEENREE

[
»

> —> 000 —» >
A A A

A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

»

t

* For each training input:

Forward pass: pass the entire data sequence through the network,
generate outputs

30

SEENREE

Training: Computing gradients

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

[
»

> —> 000 —» >
A A A

A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)
. ;

<

For each training input:

Backward pass: Compute gradients via backpropagation
— Back Propagation Through Time

31

Back Propagation Through Time

DIV
D(1..T)
Y (0) Y(1) Y(2) Y(T-2) Y({T-1) YT
h-1 ‘\ * o000 *
J N N { N N
X(0) X(1) X(2) X(T-2) X(T-1 X

* The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs

* This is not just the sum of the divergences at individual times

= Unless we explicitly define it that way
32

Back Propagation Through Time

DIV
D(1..T)
Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y
* *
h-l XXX
/ N Wl | N N
X(0) X(1) X(2) X(T-2) X(T-1) X

First step of backprop: Compute Vy DIV for all t

The rest of backprop continues from there

33

Back Propagation Through Time

DIV

D(1..T)
Y (0) Y(1) Y(2) Y(T=2) Y(T-1) Y(T)
h-l * o000
Y N Wl | A N
X(0) X(1) X(2) X(T-2) X(T-1) X()

First step of backprop: Compute Vy DIV for all t
VZ(l)(t)DIV = VyyDIV VY (t)

And so on!

34

Back Propagation Through Time

DIV
D(1..T)
Y (0) Y(1) Y(2) Y(T=2) Y(T-1) Y(T)
h-l * o000
Y N Wl | A N
X(0) X(1) X(2) X(T-2) X(T-1) X()

First step of backprop: Compute Vy DIV for all t
/

 The key component is the computation of this derivative!!
* This depends on the definition of “DIV”

35

. -
v

Time-synchronous recurrence
Ytarget(t)
v Y v

Time
Usual assumption: Sequence divergence is the sum of the divergence at
individual instants

Div(Yiarget(1...T),Y(1..T)) = Z Div(Yarge: (), Y (1))
t

VY(t)Div(Ytarget(l T); Y(]- T)) — VY(t)Div(Ytarget(t)r Y(t))

36

Time-synchronous recurrence
Ytarget(t)
v Y v

. -
v

Time
* Usual assumption: Sequence divergence is the sum of the divergence at
individual instants

Div(Yiarget(1...T),Y(1..T)) = Z Div(Yarge: (), Y (1))
t

VY(t)Div(Ytarget(l T); Y(l T)) — VY(t)Div(Ytarget(t)r Y(t))

Typical Divergence for classification: Div(Ytarget(t), Y(t)) = Xent(Yearget, ¥)

Simple recurrence example: Text

h,

Modelling

Wy

* Learn a model that can predict the next
character given a sequence of characters

— Or, at a higher level, words

Wo

Wq

W»

W3

Wq W» W3 Wy Ws Weg
A A A A A A

Wy

Ws

y

* After observing inputs wy ... wy it predicts

Wk+1

38

Simple recurrence example: Text
Modelling

target chars: ‘e’ i “1" ‘0"
Figure from Andrej Karpathy. . o o -
outputlayer | % 1.0 1.9 0.1
4.1 1=2 -1.1 2.2
Input: Sequence of characters (presented T T T Tw_hy
as one-hot vectors). 03 0 . . [
hidden layer | -0.1 0.3 05 — 0.9
.) 0.9 0.1 -0.3 0.7
Target output after observing “h e | I” is “0” T T T T
W_xh
1 0 0 0
input layer 8 [1) (1) ?
0 0 0 0
input chars: “p” “e@” A “I”

* |nput presented as one-hot vectors

— Actually “embeddings” of one-hot vectors

* Qutput: probability distribution over characters
— Must ideally peak at the target character

39

Training

w1 Wo Wsg We w5
\ \ \ ¥ ¥ \ \
i]
Y(t)
"RRRE
X > X > X X > X > X X
Wy wq w, w3 Wy Ws We
t=0 Time

* Input: symbols as one-hot vectors
* Dimensionality of the vector is the size of the “vocabulary”

e Output: Probability distribution over symbols
Y(t, l) == P(VL|WO ...Wt_l)
* V;isthei-th symbol in the vocabulary

* Divergence

Div(Yarge:(1..T),Y(1..T)) = Z Xent(Yrarger (0, Y (1)) = — Z log Y (t, Weiq)

The probability assigned
to the correct next word

40

Brief detour: Language models

* Modelling language using time-synchronous
nets

* More generally language models and
embeddings..

Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1:
goto bail;
i

segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = @; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
X
X
ru->name = "Getjbbregs";

bprm_self clearl(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON

return segtable;

Language modelling using RNNs

Four score and seven years ???

ABRAHAMLINCOL??

* Problem: Given a sequence of words (or
characters) predict the next one

43

Language modelling: Representing
words

* Represent words as one-hot vectors

— Pre-specify a vocabulary of N words in fixed (e.g. lexical) order
* E.g. [A AARDVARK AARON ABACK ABACUS... ZZYP]

— Represent each word by an N-dimensional vector with N-1 zeros
and a single 1 (in the position of the word in the ordered list of
words)

 E.g. “AARDVARK” 2> [01000...]
 E.g. “AARON” > [001000..]

e Characters can be similarly represented

— English will require about 100 characters, to include both cases,
special characters such as commas, hyphens, apostrophes, etc.,
and the space character

Predicting words

Four score and seven years ??? W1

Wy =fWy, .., Wp_4)

~/ L

Nx1 one-hot vectors

S roa38- o3

,S

co o R
L —

* Given one-hot representations of W,..W,,_4, predict W,

45

Predicting words

Four score and seven years ??? W1

W, = f(er ey Wn—l)

~/ L

Nx1 one-hot vectors

:C;...HO(D::O,_\...Oo:

S

co o R
L —

* Given one-hot representations of W,..W,,_4, predict W,

* Dimensionality problem: All inputs W;...W,,_; are both
very high-dimensional and very sparse

46

The one-hot representation

(1,0,0)

(0,1,0)

v

(0,0,1)

The one hot representation uses only N corners of the 2N corners of a unit
cube

— Actual volume of space used =0

* (1,&8) has no meaning except fore =6 =0
. . N
— Density of points: O (r_N)

This is a tremendously inefficient use of dimensions

47

Why one-hot representation

(1,0,0)

(0T

v

(0,0,1)

The one-hot representation makes no assumptions about the relative

importance of words
— All word vectors are the same length

It makes no assumptions about the relationships between words
— The distance between every pair of words is the same

48

Solution to dimensionality problem

v

Project the points onto a lower-dimensional subspace
— The volume used is still 0, but density can go up by many orders of magnitude

* Density of points: O (riM)

49

Solution to dimensionality problem

v

Project the points onto a lower-dimensional subspace
— The volume used is still 0, but density can go up by many orders of magnitude
* Density of points: O (rlM)

— If properly learned, the distances between projected points will capture semantic relations
between the words

* This will also require linear transformation (stretching/shrinking/rotation) of the subspace

50

The Projected word vectors

o
Four score and seven years ??? w, |- p
1
W, = f(PW,, PW,, ...,PW,_4) 9
W, |1 P)
2 —P]
H O [—||W
. 0
1
0
Wh-1|i[™ P

v

* Project the N-dimensional one-hot word vectors into a lower-dimensional space
— Replace every one-hot vector W; by PW;
— Pisan M X N matrix
— PW; is now an M-dimensional vector

— Learn P using an appropriate objective

* Distances in the projected space will reflect relationships imposed by the objective
51

“Projection”

W, = f(PWy, PW,, ...,PW,_;) o

FO [wa

v

M
N

* Pisasimple linear transform
* Asingle transform can be implemented as a layer of M neurons with linear activation

* The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with

tied weights
52

Predicting words: The TDNN model

v

Predict each word based on the past N words
— “A neural probabilistic language model”, Bengio et al. 2003
— Hidden layer has Tanh() activation, output is softmax

One of the outcomes of learning this model is that we also learn low-dimensional
representations PW of words

53

Alternative models to learn

projections
We| (Wo| (Wil

*

‘ Mean pooling

Color indicates
shared parameters

TARANTA Ws| We| (W]

* Soft bag of words: Predict word based on words in
immediate context

— Without considering specific position
e Skip-grams: Predict adjacent words based on current
word

e More on these in a future recitation?

54

Embeddings: Examples

Country and Capital Vectors Projected by PCA

] !]

" Chinax
Beijing
15 Russias s
Japan«
Al AMoscow |
Turkey- snkara Tokyo
05 F -
Polandk
0 Germany o
France Warsaw
» »Berlin
05 | Italy Paris .
Greece: w - WAthens
-1} Spain Rome -
-1.5 | Portugal Fifie ::adnd |
_2 | 1 | ! 1 Il 1
-2 1.5 1 0.5 0 0.5 1 1.5 2

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

From Mikolov et al., 2013, “Distributed Representations of Words

and Phrases and their Compositionality” >

Generating Language: The model

Wio

AR ARARARARZARIARA
THIILE

P P P P P P P P P

AR AR AR AR AR AR ARIARIZ

 The hidden units are (one or more layers of) LSTM units
* Trained via backpropagation from a lot of text

Generating Language: Synthesis

i

e On trained model : Provide the first few words
— One-hot vectors

» After the last input word, the network generates a probability distribution
over words

— Outputs an N-valued probability distribution rather than a one-hot vector
57

Generating Language: Synthesis

i

v

On trained model : Provide the first few words
— One-hot vectors

After the last input word, the network generates a probability distribution over words
— Outputs an N-valued probability distribution rather than a one-hot vector

Draw a word from the distribution
— And set it as the next word in the series

58

Generating Language: Synthesis

AR
EE N B
t =T__»T =T

Feed the drawn word as the next word in the series
— And draw the next word from the output probability distribution

59

Generating Language: Synthesis

Wyl [Ws| [We| (W] [Ws| [Wo| [Wig

\ 4
v
v
\ 4
\ 4
v

Feed the drawn word as the next word in the series
— And draw the next word from the output probability distribution
Continue this process until we terminate generation
— In some cases, e.g. generating programs, there may be a natural termination

60

Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

Trained on linux source code

Actually uses a character-level
model (predicts character sequences)

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1:
goto bail;

I
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = @; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
X
X
ru->name = "Getjbbregs";

bprm_self clearl(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON
t table;
return segtable; 61

Composing music with RNN

p) |/| |

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neu ral—netwc%gks/

Returning to our problem

* Divergences are harder to define in other
scenarios..

Variants on recurrent nets

Sequence on: Classifying a full input sequence
— E.g phoneme recognition
Order synchronous , time asynchronous sequence-to-sequence generation

— E.g. speech recognition
— Exact location of output is unknown a priori

64

Example..

Blue

T

Color of sky

* Question answering
* |[nput : Sequence of words

* QOutput: Answer at the end of the question

65

Example..

/AH/
T
R |
Xo X1 | X2

* Speech recognition
* Input : Sequence of feature vectors (e.g. Mel spectra)
 Qutput: Phoneme ID at the end of the sequence

— Represented as an N-dimensional output probability vector,
where N is the number of phonemes

66

Inference: Forward pass

/AH/
T
R |

* Exact input sequence provided
— QOutput generated when the last vector is processed

e Output is a probability distribution over phonemes

 But what about at intermediate stages?

Forward pass

/AH/

t t+ 1

Xo| | X1| |42

e Exact input sequence provided

— Output generated when the last vector is processed
e Qutput is a probability distribution over phonemes

e Qutputs are actually produced for every input
— We only read it at the end of the sequence

Training

/AH/

B

T

\ Y(2)
I
5 \. T 4 1
X | | x| |x,

* The Divergence is only defined at the final input
— DIV(Ytarget, Y) = Xent(Y(T), Phoneme)

* This divergence must propagate through the net
to update all parameters

Training

Shortcoming: Pretends there's no useful ||/AH/

information in these T
|lvel
[_‘)7—.? T
L
X, | | X,

1
X,

* The Divergence is only defined at the final input
— DIV(Ytarget, Y) = Xent(Y(T), Phoneme)

* This divergence must propagate through the net
to update all parameters

Training

Fix: Use these ad/| Lanys| 1/any
outputs too. I T

These too must - - -

v
T

ideally point to the ! I

correct phoneme Y(2)
T T 1
t t t
X | | x| | X

* Exploiting the untagged inputs: assume the same output for the
entire input

* Define the divergence everywhere

DIV (Yiarger,Y) = z w,Xent(Y (t), Phoneme)
t

71

Training

Fix: Use these /aH/| /by /ARy Blue
outputs foo. T T 7
These too must F F F

o0
ideally point to the I
?

correct phoneme
7 H t

e B e B

t T T t T T
Xo Xi| [X2

Color of sky

* Define the divergence everywhere
DI V(Ytarget, Y) = Z wiXent(Y(t), Phoneme)
t

* Typical weighting scheme for speech: all are equally important

* Problem like question answering: answer only expected after the question ends
— Only wr is high, other weights are 0 or low .

Variants on recurrent nets

many to one

e Sequence classification: Classifying a full ire
— E.g phoneme recognition

* Order synchronous, time asynchronous sequence-to-sequence generation
— E.g. speech recognition
— Exact location of output is unknown a priori 73

A more complex problem

/B/

T

/AH/

T

/T/

T

T

T

T

T

Xo

X1

Xz

X3

X4

Xe

* Objective: Given a sequence of inputs, asynchronously

output a sequence of symbols

— This is just a simple concatenation of many copies of the simple

“output at the end of the input sequence” model we just saw

But this simple extension complicates matters..

74

The sequence-to-sequence problem

/B/ /AH/ [T/
r ¢+ tr t+ 1+ ¢+ 1 1 ¢
e e T e e
Xo| | X | [X% | | Xs| [x| | Xs| | X| [X,] | Xs| | Xo

* How do we know when to output symbols
— In fact, the network produces outputs at every time
— Which of these are the real outputs

e Outputs that represent the definitive occurrence of a symbol

75

The actual output of the network

/AH/ | Yo yi Y2 3 Ya Vs Vs y7 Y8
/B/ | ¥§ yi 5 5 Vi ys Yé s Vs
/o/ | Yo i 3 V3 Vi ys Ve s g
/EH/ | v§ i s V3 Vi Vs Vs y7 Vs
/| ve %1 V3 y3 Vi ys ve 7 Y8
K| Y6 y1 Y3 y3 Vs Y5 Ye Y7 Ys
/G] | Y6 y{ y3 3 Vi ye Yé y7 Y4
I I 1 1 1 1 [I I
X, X, X, X, X, X X, X, Xq

* At each time the network outputs a probability
for each output symbol

76

The actual output of the network

/AH/ | Yo yi Y2 3 Ya Vs Vs y7 Y8
/B/ | ¥§ yi 5 5 Vi ys YVé s s
/D) | Yo Vi Vs V3 Vi s Ve 3
/EH/ | v§ i s V3 Vi Vs Y6 7 Vs
no| v y3 y3 y3 y3 yg ys
K| Y6 y1 Ye Y7 Ys
/6) [0] [03] [[9] [52] [V] [93
I I 1 | ! 1 I I 1
X, X4 X, X, X, X X, X, Xq

* Option 1: Simply select the most probable
symbol at each time

77

The actual output of the network

/AH/ | Yo yi Y2 3 Ya Vs Vs y7 Vs
/B/ | ¥§ yi 5 5 Vi ys YVé s Vs
/o/ | Yo i 3 V3 Vi ys Ve s /D]
/EH/ | v§ i s V3 Vi Vs V6 7 Vs
/| ve %1 V3 y3 Vi ys Y/ Y8
K| Y8 V1 [F] vé Y7 v§
/G/ /G/ Vs 3 V4 Vs Ve y7 Vs
I I I 1 1 1 I I I
X, X, X, X, X, X X, X, Xq

* Option 1: Simply select the most probable symbol at each
time
— Merge adjacent repeated symbols, and place the actual emission
of the symbol in the final instant 78

/AR/
/B/
/D/
/E

/|
/F/
/G/

The actual output of the network

Yo yi V2 3 Ya Vs Vs y7 Vs
Y6 yi 5 5 Vi y§ Yé s Vs
8 i % 3 vi % e y; | | /of
anne guish be extended symbol Ve y7 Vs
2pe : - ye // Y8
Yo T Y2 [Fl Vi [¥] e Y7 Vs
yg /G/ 3 3 V4 ye Ve y7 Vs
{ 1 1 1 1 1 1 1 1
X, X4 X, X, X, X X, X, Xq

* Option 1: Simply select the most probable symbol at each

time

— Merge adjacent repeated symbols, and place the actual emission

of the symbol in the final instant

79

The actual output of the network

/AH/ | Yo Vi) V3 Vi Vs Vo V7 Vs
/B / 2 2 2 2 2 2 2 y g
/D - O Sequeé aVv be 2a Oro /ﬂ?
/ E 0 OT C g DE ge % ded DOl anda yg yé yg
iy "epetiiions o 2 Bz /v Vs
F/ | Yo % v: | | /7¢ Vi [Fl v Y7 Vs
6/ | Vo /G/ V3 V3 Vi ye Ve y7 Vé
| | | | | | | | |
X, X4 X, X, X, X X, X, Xq

* Option 1: Simply select the most probable symbol at each

time

— Merge adjacent repeated symbols, and place the actual emission

of the symbol in the final instant

80

The actual output of the network

/AH/ | Yo Vi) V3 Vi Vs Vo V7 Vs

/Bl | 3 yi Y3 Vi Vs Y6 Y7 Vs
/o/ | Yo yi Y3 y3 Vi Ys Ve

/EH/ | Yo yi Y3 Y3 Vi Ys Yé Y7 Vs

no| ve | |y | | ¥ v | | »s

K| Y8 V1 V3 y3 7 Vs vé Y7 v§

/G | ¥¢ 1 Vs 3 V4 Vs Ve y7 Vs
I I I I I I I I I

X, X, X, Xs X, X X X, X

* Option 2: Impose external constraints on what sequences are
allowed

— E.g. only allow sequences corresponding to dictionary words
— E.g. Sub-symbol units (like in HW1 — what were they?)

81

The sequence-to-sequence problem

/AH/

Xo

X1

X3

e How do we train t\ﬁse models?

82

Training

/B/ /AR //
t t t
t ¢+ ¢+ 1 ¢+ ¢+ ¢t ¢+ t ¢

Xo| | X | [X% | | Xs| [x| | Xs| | X| [X,] | Xs| | Xo

* Given output symbols at the right locations
— The phoneme /B/ ends at X,, /AH/ at X, /T/ at X,

/AH/

& Training¢

6 Y9
t t t
t ¢+ ¢+ 1 t+t ¢t t ¢+ t 1

Xo| | X | [X% | | Xs| [x| | Xs| | X| [X,] | Xs| | Xo

* Either just define Divergence as:
DIV = Xent(Y,,B) + Xent(Yy, AH) + Xent(Y,, T)

e Or.

T Tt

Y, Ye Yy
I .+ + 1T 1 ¢
IO | R T T T
Xy Xq X, X3| | Xa4 Xs Xg X Xg Xo

* Either just define Divergence as:
DIV = Xent(Y,,B) + Xent(Y,, AH) + Xent(Yy, T)

* Or repeat the symbols over their duration

DIV = ZXent(Yt, symbol;) = — z log Y (t,symbol,)
t t

85

Problem: No timing information provided
/B/ [AH/ [T/
P PP 2 22 2 27?27

Y, | || |v |l |va | 1| || vl |l X

Xo | 1 X | 1% | [x| x| x| |X | [X, | [Xs| | Xo

* Only the sequence of output symbols is
provided for the training data

— But no indication of which one occurs where
* How do we compute the divergence?
— And how do we compute its gradient w.r.t. Y;

86

Next Class

* Training without aligned truth..
— Connectionist Temporal Classification
— Separating repeated symbols

e The CTC decoder..

