
Deep Learning
Recurrent Networks

Part 3
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Recap:  Recurrent networks can be 
incredibly effective
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Story so far

• Iterated structures are good for analyzing time series 
data with short-time dependence on the past
– These are “Time delay” neural nets, AKA convnets

• Recurrent structures are good for analyzing time series 
data with long-term dependence on the past
– These are recurrent neural networks
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Story so far

• Iterated structures are good for analyzing time series data 
with short-time dependence on the past
– These are “Time delay” neural nets, AKA convnets

• Recurrent structures are good for analyzing time series 
data with long-term dependence on the past
– These are recurrent neural networks
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Recurrent structures can do what 
static structures cannot

• The addition problem:  Add two N-bit numbers to produce a N+1-bit number
– Input is binary
– Will require large number of training instances

• Output must be specified for every pair of inputs
• Weights that generalize will make errors

– Network trained for N-bit numbers will not work for N+1 bit numbers

• An RNN learns to do this very quickly
– With very little training data!
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Story so far

• Recurrent structures can be trained by minimizing 
the divergence between the sequence of outputs 
and the sequence of desired outputs
– Through gradient descent and backpropagation

Time
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Ydesired(t)
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Story so far

• Recurrent structures can be trained by minimizing 
the divergence between the sequence of outputs 
and the sequence of desired outputs
– Through gradient descent and backpropagation
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Story so far: stability

• Recurrent networks can be unstable
– And not very good at remembering at other times

sigmoid tanh relu 8



Vanishing gradient examples..

• Learning is difficult: gradients tend to vanish..

ELU  activation,  Batch gradients

Output layer

Input layer
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The long-term dependency problem

• Long-term dependencies are hard to learn in a 
network where memory behavior is an 
untriggered function of the network
– Need it to be a triggered response to input

PATTERN1  […………………………..] PATTERN 2

1

Jane had a quick lunch in the bistro. Then she..
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Long Short-Term Memory

• The LSTM addresses the problem of input-
dependent memory behavior
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LSTM-based architecture

• LSTM based architectures are identical to 
RNN-based architectures

Time
X(t)

Y(t)
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Bidirectional LSTM

• Bidirectional version..

X(0)

Y(0)

t

hf(-1)
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X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)
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Key Issue

• How do we define the divergence

• Also: how do we compute the outputs..

Time
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What follows in this series on 
recurrent nets

• Architectures: How to train recurrent networks of 
different architectures

• Synchrony: How to train recurrent networks when
– The target output is time-synchronous with the input
– The target output is order-synchronous, but not time 

synchronous
– Applies to only some types of nets

• How to make predictions/inference with such networks
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Variants on recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy
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Variants on recurrent nets

• Sequence classification: Classifying a full input sequence
– E.g phoneme recognition

• Order synchronous , time asynchronous sequence-to-sequence generation
– E.g. speech recognition
– Exact location of output is unknown a priori 17



Variants

• A posteriori sequence to sequence:  Generate output sequence after processing 
input
– E.g. language translation

• Single-input a posteriori sequence generation
– E.g. captioning an image

Images from
Karpathy
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Variants on recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy
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Regular MLP for processing sequences

• No recurrence in model
– Exactly as many outputs as inputs

– Every input produces a unique output

Time

X(t)

Y(t)

t=0
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Learning in a Regular MLP

• No recurrence
– Exactly as many outputs as inputs

• One to one correspondence between desired output and actual 
output

– The output at time is not a function of the output at .

Time
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Y(t)

t=0

DIVERGENCE

Ydesired(t)
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Regular MLP

• Gradient backpropagated at each time 

௒(௧) ௧௔௥௚௘௧

• Common assumption:

௧௔௥௚௘௧ ௧ ௧௔௥௚௘௧

 

௧

௒(௧) ௧௔௥௚௘௧ ௧ ௒(௧) ௧௔௥௚௘௧

– ௧ is typically set to 1.0
– This is further backpropagated to update weights etc

Y(t)
DIVERGENCE

Ytarget(t)
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Regular MLP

• Gradient backpropagated at each time 
௒(௧) ௧௔௥௚௘௧

• Common assumption:

௧௔௥௚௘௧ ௧௔௥௚௘௧

 

௧

௒(௧) ௧௔௥௚௘௧ ௒(௧) ௧௔௥௚௘௧

– This is further backpropagated to update weights etc

Y(t)
DIVERGENCE

Ytarget(t)

Typical Divergence for classification: ௧௔௥௚௘௧ ௧௔௥௚௘௧
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Variants on recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy
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Variants on recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy
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Time synchronous network

• Network produce one output for each input
– With one-to-one correspondence
– E.g. Assigning grammar tags to words

• May require a bidirectional network to consider both past 
and future words in the sentence

26
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Time-synchronous networks: 
Inference

• Process input left to right and produce output 
after each input

27
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Time-synchronous networks: 
Inference

• For bidirectional networks:
– Process input left to right using forward net
– Process it right to left using backward net
– Combine their hidden outputs to produce one output per input symbol

• Rest of the lecture(s) will not specifically consider bidirectional nets, but the 
discussion generalizes 28
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How do we train the network

• Back propagation through time (BPTT)

• Given a collection of sequence training instances comprising input 
sequences and output sequences of equal length, with one-to-one 
correspondence
– ௜ ௜ ,  where 

– ௜ ௜,଴ ௜,்

– ௜ ௜,଴ ௜,்

X(0)

Y(0)

t

h-1
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Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
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Training: Forward pass

• For each training input:
• Forward pass:  pass the entire data sequence through the network, 

generate outputs

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)
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Training: Computing gradients

• For each training input:
• Backward pass: Compute gradients via backpropagation

– Back Propagation Through Time

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

• The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs

• This is not just the sum of the divergences at individual times
 Unless we explicitly define it that way
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

First step of backprop:   Compute for all t

The rest of backprop continues from there
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Back Propagation Through Time

h-1
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𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)
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(భ)

First step of backprop:   Compute for all t

And so on!



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉
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First step of backprop:   Compute for all t

• The key component is the computation of this derivative!!
• This depends on the definition of “DIV”



Time-synchronous recurrence

• Usual assumption: Sequence divergence is the sum of the divergence at 
individual instants

௧௔௥௚௘௧ ௧௔௥௚௘௧

 

௧

௒(௧) ௧௔௥௚௘௧ ௒(௧) ௧௔௥௚௘௧

Time
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Y(t)

t=0

h-1

Y(t)
DIVERGENCE

Ytarget(t)

36



Time-synchronous recurrence

• Usual assumption: Sequence divergence is the sum of the divergence at 
individual instants

௧௔௥௚௘௧ ௧௔௥௚௘௧
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37Typical Divergence for classification: ௧௔௥௚௘௧ ௧௔௥௚௘௧



Simple recurrence example: Text 
Modelling

• Learn a model that can predict the next 
character given a sequence of characters
– Or, at a higher level, words

• After observing inputs it predicts 

h-1

଴ ଵ ଶ ଷ ସ ହ ଺

ଵ ଶ ଷ ସ ହ ଺ ଻
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Simple recurrence example: Text 
Modelling

• Input presented as one-hot vectors
– Actually “embeddings” of one-hot vectors

• Output: probability distribution over characters
– Must ideally peak at the target character

Figure from Andrej Karpathy.

Input:  Sequence of characters (presented
as one-hot vectors).

Target output after observing “h e l l” is “o” 

39



Training

• Input:  symbols as one-hot vectors
• Dimensionality of the vector is the size of the “vocabulary” 

• Output: Probability distribution over symbols
𝑌 𝑡, 𝑖 = 𝑃(𝑉௜|𝑤଴ … 𝑤௧ିଵ)

• 𝑉௜ is the i-th symbol in the vocabulary

• Divergence

𝐷𝑖𝑣 𝑌௧௔௥௚௘௧ 1 … 𝑇 , 𝑌(1 … 𝑇) = ෍ 𝑋𝑒𝑛𝑡 𝑌௧௔௥௚௘௧ 𝑡 , 𝑌(𝑡)

 

௧

= − ෍ log 𝑌(𝑡, 𝑤௧ାଵ)

 

௧

Time

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

଴ ଵ ଶ ଷ ସ ହ ଺

ଵ ଶ ଷ ସ ହ ଺ ଻

The probability assigned 
to the correct next word
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Brief detour: Language models

• Modelling language using time-synchronous 
nets

• More generally language models and 
embeddings..

41



Which open source project?

42



Language modelling using RNNs

• Problem:  Given a sequence of words (or 
characters) predict the next one

Four score and seven years ???

A B R A H A M L I N C O L ??
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Language modelling: Representing 
words

• Represent words as one-hot vectors
– Pre-specify a vocabulary of N words in fixed (e.g. lexical) order

• E.g.  [ A  AARDVARK AARON ABACK ABACUS… ZZYP]

– Represent each word by an N-dimensional vector with N-1 zeros 
and a single 1 (in the position of the word in the ordered list of 
words)
• E.g.  “AARDVARK”  [0 1 0 0 0 …]
• E.g. “AARON”  [0 0 1 0 0 0 …]

• Characters can be similarly represented
– English will require about 100 characters, to include both cases, 

special characters such as commas, hyphens, apostrophes, etc., 
and the space character

44



Predicting words

• Given one-hot representations of … , predict 

• Dimensionality problem: All inputs … are both 
very high-dimensional and very sparse

௡ ଵ ௡ିଵ

Four score and seven years ???

Nx1 one-hot vectors

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

ଵ

ଶ

௡ିଵ

௡
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Predicting words

• Given one-hot representations of … , predict 

• Dimensionality problem: All inputs … are both 
very high-dimensional and very sparse

௡ ଵ ௡ିଵ
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The one-hot representation

• The one hot representation uses only N corners of the 2N corners of a unit 
cube
– Actual volume of space used = 0

• (1, 𝜀, 𝛿) has no meaning except for 𝜀 = 𝛿 = 0

– Density of points: ே

௥ಿ

• This is a tremendously inefficient use of dimensions

(1,0,0)

(0,1,0)

(0,0,1)
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Why one-hot representation

• The one-hot representation makes no assumptions about the relative 
importance of words
– All word vectors are the same length

• It makes no assumptions about the relationships between words
– The distance between every pair of words is the same

(1,0,0)

(0,1,0)

(0,0,1)
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Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪 ே

௥ಾ

– If properly learned, the distances between projected points will capture semantic 
relations between the words

(1,0,0)

(0,1,0)

(0,0,1)
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Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪 ே

௥ಾ

– If properly learned, the distances between projected points will capture semantic relations 
between the words

• This will also require linear transformation (stretching/shrinking/rotation) of the subspace

(1,0,0)

(0,1,0)

(0,0,1)
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The Projected word vectors

• Project the N-dimensional one-hot word vectors into a lower-dimensional space
– Replace every one-hot vector 𝑊௜ by 𝑃𝑊௜

– 𝑃 is an 𝑀 × 𝑁 matrix
– 𝑃𝑊௜ is now an 𝑀-dimensional vector
– Learn P using an appropriate objective

• Distances in the projected space will reflect relationships imposed by the objective

௡ ଵ ଶ ௡ିଵ

Four score and seven years ???
0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

ଵ

ଶ

௡ିଵ

௡

(1,0,0)

(0,1,0)

(0,0,1)
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“Projection”

• P is a simple linear transform
• A single transform can be implemented as a layer of M neurons with linear activation
• The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with 

tied weights

௡ ଵ ଶ ௡ିଵ

(1,0,0)

(0,1,0)

(0,0,1)

0
1
⋮
0
0

௡

0
0
⋮
1
0

0
0
1
⋮
0

1
0
⋮
0
0

ଵ

ଶ

௡ିଵ

52



Predicting words: The TDNN model

• Predict each word based on the past N words
– “A neural probabilistic language model”, Bengio et al. 2003
– Hidden layer has Tanh() activation, output is softmax

• One of the outcomes of learning this model is that we also learn low-dimensional 
representations of words

ଵ ଶ ଷ ସ ହ ଺ ଻ ଼ ଽ

ହ ଺ ଻ ଼ ଽ ଵ଴
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Alternative models to learn 
projections

• Soft bag of words: Predict word based on words in 
immediate context
– Without considering specific position

• Skip-grams:  Predict adjacent words based on current 
word

• More on these in a future recitation?

𝑃

Mean pooling

𝑊ଵ

𝑃

𝑊ଶ

𝑃

𝑊ଷ

𝑃

𝑊ହ

𝑃

𝑊଺

𝑃

𝑊଻

𝑊ସ

𝑃

𝑊଻

𝑊ହ 𝑊଺ 𝑊଼ 𝑊ଽ 𝑊ଵ଴𝑊ସ

Color indicates
shared parameters
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Embeddings: Examples

• From Mikolov et al., 2013, “Distributed Representations of Words 
and Phrases and their Compositionality” 55



Generating Language: The model

• The hidden units are (one or more layers of) LSTM units
• Trained via backpropagation from a lot of text

ଵ ଶ ଷ ସ ହ ଺ ଻ ଼ ଽ

ହ ଺ ଻ ଼ ଽ ଵ଴ଶ ଷ ସ
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Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution 
over words
– Outputs an N-valued probability distribution rather than a one-hot vector

ଵ ଶ ଷ

57



Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution over words
– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution
– And set it as the next word in the series

ଵ ଶ ଷ

ସ

58



Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ହସ
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Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ହ ଺ ଻ ଼ ଽ ଵ଴ସ
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Which open source project?

Trained on linux source code

Actually uses a character-level
model (predicts character sequences)
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Composing music with RNN

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/62



Returning to our problem

• Divergences are harder to define in other 
scenarios..

63



Variants on recurrent nets

• Sequence classification: Classifying a full input sequence
– E.g phoneme recognition

• Order synchronous , time asynchronous sequence-to-sequence generation
– E.g. speech recognition
– Exact location of output is unknown a priori 64



Example..

• Question answering

• Input : Sequence of words

• Output:  Answer at the end of the question
65

Blue



Example..

• Speech recognition
• Input : Sequence of feature vectors (e.g. Mel spectra)
• Output:  Phoneme ID at the end of the sequence

– Represented as an N-dimensional output probability vector, 
where N is the number of phonemes

଴ ଵ ଶ

/AH/

66



Inference:  Forward pass

• Exact input sequence provided
– Output generated when the last vector is processed

• Output is a probability distribution over phonemes

• But what about at intermediate stages?

଴ ଵ ଶ

/AH/

67



Forward pass

• Exact input sequence provided
– Output generated when the last vector is processed

• Output is a probability distribution over phonemes

• Outputs are actually produced for every input
– We only read it at the end of the sequence

଴ ଵ ଶ

/AH/

68



Training

• The Divergence is only defined at the final input
–

• This divergence must propagate through the net 
to update all parameters 

଴ ଵ ଶ

/AH/

Div

Y(2)
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Training

• The Divergence is only defined at the final input
–

• This divergence must propagate through the net 
to update all parameters 

଴ ଵ ଶ

/AH/

Div

Y(2)

Shortcoming: Pretends there’s no useful
information in these
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Training

• Exploiting the untagged inputs: assume the same output for the 
entire input

• Define the divergence everywhere

௧௔௥௚௘௧ ௧

 

௧

଴ ଵ ଶ

/AH/

Div

Y(2)

Fix: Use these 
outputs too.

These too must 
ideally point to the
correct phoneme

/AH/

Div

/AH/

Div
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Training

• Define the divergence everywhere

௧௔௥௚௘௧ ௧

 

௧

• Typical weighting scheme for speech: all are equally important
• Problem like question answering: answer only expected after the question ends

– Only ் is high, other weights are 0 or low

଴ ଵ ଶ

/AH/

Div

Y(2)

Fix: Use these 
outputs too.

These too must 
ideally point to the
correct phoneme

/AH/

Div

/AH/

Div

72
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Variants on recurrent nets

• Sequence classification: Classifying a full input sequence
– E.g phoneme recognition

• Order synchronous , time asynchronous sequence-to-sequence generation
– E.g. speech recognition
– Exact location of output is unknown a priori 73



A more complex problem

• Objective: Given a sequence of inputs, asynchronously 
output a sequence of symbols
– This is just a simple concatenation of many copies of the simple 

“output at the end of the input sequence” model we just saw

• But this simple extension complicates matters..

଴ ଵ ଶ

/B/

ସ ହ ଺

/AH/

଻ ଼ ଽ

/T/

ଷ
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The sequence-to-sequence problem

• How do we know when to output symbols
– In fact, the network produces outputs at every time
– Which of these are the real outputs

• Outputs that represent the definitive occurrence of a symbol

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/B/ /AH/ /T/
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The actual output of the network

• At each time the network outputs a probability 
for each output symbol

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ
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ଵ
ସ

ଵ
ହ

ଵ
଺

ଵ
଻

ଶ
ଵ

ଶ
ଶ

ଶ
ଷ

ଶ
ସ

ଶ
ହ

ଶ
଺

ଶ
଻

ଷ
ଵ

ଷ
ଶ

ଷ
ଷ

ଷ
ସ

ଷ
ହ

ଷ
଺

ଷ
଻

ସ
ଵ

ସ
ଶ

ସ
ଷ

ସ
ସ

ସ
ହ

ସ
଺

ସ
଻

ହ
ଵ

ହ
ଶ

ହ
ଷ

ହ
ସ

ହ
ହ

ହ
଺

ହ
଻

଺
ଵ

଺
ଶ

଺
ଷ

଺
ସ

଺
ହ

଺
଺

଺
଻

଻
ଵ

଻
ଶ

଻
ଷ

଻
ସ

଻
ହ

଻
଺

଻
଻

଼
ଵ

଼
ଶ

଼
ଷ

଼
ସ

଼
ହ

଼
଺

଼
଻
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The actual output of the network

• Option 1: Simply select the most probable 
symbol at each time

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
ଵ

଴
ଶ

଴
ଷ

଴
ସ

଴
ହ

଴
଺

଴
଻

ଵ
ଵ

ଵ
ଶ

ଵ
ଷ

ଵ
ସ

ଵ
ହ

ଵ
଺

ଵ
଻

ଶ
ଵ

ଶ
ଶ

ଶ
ଷ

ଶ
ସ

ଶ
ହ

ଶ
଺

ଶ
଻

ଷ
ଵ

ଷ
ଶ

ଷ
ଷ

ଷ
ସ

ଷ
ହ

ଷ
଺

ଷ
଻

ସ
ଵ

ସ
ଶ

ସ
ଷ

ସ
ସ

ସ
ହ

ସ
଺

ସ
଻

ହ
ଵ

ହ
ଶ

ହ
ଷ

ହ
ସ

ହ
ହ

ହ
଺

ହ
଻

଺
ଵ

଺
ଶ

଺
ଷ

଺
ସ

଺
ହ

଺
଺

଺
଻

଻
ଵ

଻
ଶ

଻
ଷ

଻
ସ

଻
ହ

଻
଺

଻
଻

଼
ଵ

଼
ଶ

଼
ଷ

଼
ସ

଼
ହ

଼
଺

଼
଻
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The actual output of the network

• Option 1: Simply select the most probable symbol at each 
time
– Merge adjacent repeated symbols, and place the actual emission 

of the symbol in the final instant

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
ଵ

଴
ଶ

଴
ଷ

଴
ସ

଴
ହ

଴
଺

଴
଻

ଵ
ଵ

ଵ
ଶ

ଵ
ଷ

ଵ
ସ

ଵ
ହ

ଵ
଺

ଵ
଻

ଶ
ଵ

ଶ
ଶ

ଶ
ଷ

ଶ
ସ

ଶ
ହ

ଶ
଺

ଶ
଻

ଷ
ଵ

ଷ
ଶ

ଷ
ଷ

ଷ
ସ

ଷ
ହ

ଷ
଺

ଷ
଻

ସ
ଵ

ସ
ଶ

ସ
ଷ

ସ
ସ

ସ
ହ

ସ
଺

ସ
଻

ହ
ଵ

ହ
ଶ

ହ
ଷ

ହ
ସ

ହ
ହ

ହ
଺

ହ
଻

଺
ଵ

଺
ଶ

଺
ଷ

଺
ସ

଺
ହ

଺
଺

଺
଻

଻
ଵ

଻
ଶ

଻
ଷ

଻
ସ

଻
ହ

଻
଺

଻
଻

଼
ଵ

଼
ଶ

଼
ଷ

଼
ସ

଼
ହ

଼
଺

଼
଻/G/

/F/

/IY/

/D/
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The actual output of the network

• Option 1: Simply select the most probable symbol at each 
time
– Merge adjacent repeated symbols, and place the actual emission 

of the symbol in the final instant

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
ଵ

଴
ଶ

଴
ଷ

଴
ସ

଴
ହ

଴
଺

଴
଻

ଵ
ଵ

ଵ
ଶ

ଵ
ଷ

ଵ
ସ

ଵ
ହ

ଵ
଺

ଵ
଻

ଶ
ଵ

ଶ
ଶ

ଶ
ଷ

ଶ
ସ

ଶ
ହ

ଶ
଺

ଶ
଻

ଷ
ଵ

ଷ
ଶ

ଷ
ଷ

ଷ
ସ

ଷ
ହ

ଷ
଺

ଷ
଻

ସ
ଵ

ସ
ଶ

ସ
ଷ

ସ
ସ

ସ
ହ

ସ
଺

ସ
଻

ହ
ଵ

ହ
ଶ

ହ
ଷ

ହ
ସ

ହ
ହ

ହ
଺

ହ
଻

଺
ଵ

଺
ଶ

଺
ଷ

଺
ସ

଺
ହ

଺
଺

଺
଻

଻
ଵ

଻
ଶ

଻
ଷ

଻
ସ

଻
ହ

଻
଺

଻
଻

଼
ଵ

଼
ଶ

଼
ଷ

଼
ସ

଼
ହ

଼
଺

଼
଻/G/

/F/

/IY/

/D/

Cannot distinguish between an extended symbol and
repetitions of the symbol

/F/
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The actual output of the network

• Option 1: Simply select the most probable symbol at each 
time
– Merge adjacent repeated symbols, and place the actual emission 

of the symbol in the final instant

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
ଵ

଴
ଶ

଴
ଷ

଴
ସ

଴
ହ

଴
଺

଴
଻

ଵ
ଵ

ଵ
ଶ

ଵ
ଷ

ଵ
ସ

ଵ
ହ

ଵ
଺

ଵ
଻

ଶ
ଵ

ଶ
ଶ

ଶ
ଷ

ଶ
ସ

ଶ
ହ

ଶ
଺

ଶ
଻

ଷ
ଵ

ଷ
ଶ

ଷ
ଷ

ଷ
ସ

ଷ
ହ

ଷ
଺

ଷ
଻

ସ
ଵ

ସ
ଶ

ସ
ଷ

ସ
ସ

ସ
ହ

ସ
଺

ସ
଻

ହ
ଵ

ହ
ଶ

ହ
ଷ

ହ
ସ

ହ
ହ

ହ
଺

ହ
଻

଺
ଵ

଺
ଶ

଺
ଷ

଺
ସ

଺
ହ

଺
଺

଺
଻

଻
ଵ

଻
ଶ

଻
ଷ

଻
ସ

଻
ହ

଻
଺

଻
଻

଼
ଵ

଼
ଶ

଼
ଷ

଼
ସ

଼
ହ

଼
଺

଼
଻/G/

/F/

/IY/

/D/

Cannot distinguish between an extended symbol and
repetitions of the symbol

/F/

Resulting sequence may be meaningless (what word is “GFIYD”?)
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The actual output of the network

• Option 2: Impose external constraints on what sequences are 
allowed
– E.g. only allow sequences corresponding to dictionary words
– E.g. Sub-symbol units (like in HW1 – what were they?)

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
ଵ

଴
ଶ

଴
ଷ

଴
ସ

଴
ହ

଴
଺

଴
଻

ଵ
ଵ

ଵ
ଶ

ଵ
ଷ

ଵ
ସ

ଵ
ହ

ଵ
଺

ଵ
଻

ଶ
ଵ

ଶ
ଶ

ଶ
ଷ

ଶ
ସ

ଶ
ହ

ଶ
଺

ଶ
଻

ଷ
ଵ

ଷ
ଶ

ଷ
ଷ

ଷ
ସ

ଷ
ହ

ଷ
଺

ଷ
଻

ସ
ଵ

ସ
ଶ

ସ
ଷ

ସ
ସ

ସ
ହ

ସ
଺

ସ
଻

ହ
ଵ

ହ
ଶ

ହ
ଷ

ହ
ସ

ହ
ହ

ହ
଺

ହ
଻

଺
ଵ

଺
ଶ

଺
ଷ

଺
ସ

଺
ହ

଺
଺

଺
଻

଻
ଵ

଻
ଶ

଻
ଷ

଻
ସ

଻
ହ

଻
଺

଻
଻

଼
ଵ

଼
ଶ

଼
ଷ

଼
ସ

଼
ହ

଼
଺

଼
଻
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The sequence-to-sequence problem

• How do we know when to output symbols
– In fact, the network produces outputs at every time
– Which of these are the real outputs

• How do we train these models?

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/B/ /AH/ /T/
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Training

• Given output symbols at the right locations
– The phoneme /B/ ends at X2,  /AH/ at X6, /T/ at X9

଴ ଵ ଶ

/B/

ସ ହ ଺

/AH/

଻ ଼ ଽ

/T/

ଷ

83



Training

• Either just define Divergence as:

• Or..

଴ ଵ ଶ

/B/

ସ ହ ଺ ଻ ଼ ଽଷ

Div Div Div

/AH/ /T/

ଶ ଺ ଽ
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• Either just define Divergence as:

• Or repeat the symbols over their duration

଴ ଵ ଶ

/B/

ସ ହ ଺ ଻ ଼ ଽଷ

Div Div Div

/AH/ /T/

ଶ ଺ ଽ

DivDivDivDivDivDivDiv
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଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

Problem: No timing information provided

• Only the sequence of output symbols is 
provided for the training data
– But no indication of which one occurs where

• How do we compute the divergence?
– And how do we compute its gradient w.r.t. 

/B/ /AH/ /T/

? ? ? ? ? ? ? ? ? ?
଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ
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Next Class

• Training without aligned truth..
– Connectionist Temporal Classification
– Separating repeated symbols

• The CTC decoder..
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