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Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1:
goto bail;
i

segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = @; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
X
X
ru->name = "Getjbbregs";

bprm_self clearl(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON

return segtable;



Related math. What is it talking
about?

Proof, Omitted. 4

Lemma 0.1. Let C be a sel of the construction.
Lel C be a gerber covering. Lel F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = Ox(L)

Proof. This is an algebraic space with the composition of sheaves F on Xz, we
have

Ox (F) = {morphy xoy (G.F)}
where G defines an isomorphism F — F of O-modules. 0
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma 77, a
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open

covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal comples.

The following lo the construction of the lemmma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: X 34Y' a3Y3¥ a3V xxY 3 X,
be a morphism of algebraic spaces over § and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(UV) which is locally of
finite type. O

This gince F € F and r € G the diugrmﬂ
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15 o limit. Then G is & finite type and assume S is o fat and F oand G is a finite
type f.. This is of Anite tvpe diagrams, and

o the composition of G is a regular sequence,

o Dy s a sheal of rings.

O

FProof. We hove see that X = Spec(H) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
colomaology of X is an open neighbourhood of [ m|

Proaf. This is clear that @ is a finite presentation, see Lemmas 77,
A redueed above we conclude that I7 s an open covering of C. The funetor F is a
“field

Ox.. = Fr -UOx,...) — O%,0x,(0%,)
is an isomorphism of covering of Qy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a digjoint union of Proposition 77 and we can Altered set of
presentations of a scheme O y-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. B

If F is a finite direct sum Oy, is & closed immersion, see Lemma 7%, This is a
seqquence of F is a simnilar morphism.




And a Wikipedia page explaining it all

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.

ctm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]



The unreasonable effectiveness of
recurrent neural networks..

* All previous examples were generated blindly
by a recurrent neural network..

* http://karpathy.github.io/2015/05/21/rnn-
effectiveness/



Modelling Series

* |n many situations one must consider a series
of inputs to produce an output

— Outputs too may be a series

 Examples: ..



What did | say?

“To be” or not “to be”??
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* Speech Recognition
— Analyze a series of spectral vectors, determine what was said

* Note: Inputs are vectors. Output is a classification result



What is he talking about?

“Football” or “basketball”?

S
3
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The Steelers, meanwhile, continue to struggle to make stops on
defense. They ve allowed, on average, 30 points a game, and have
shown no signs of improving anytime soon.

* Text analysis
— E.g. analyze document, identify topic
* Input series of words, output classification output

— E.g. read English, output French

* |Input series of words, output series of words



Should | invest..

To invest or not to invest?

s
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7/03 8/03 9/03 10/03 11/03 12/03 13/03 14/03 15/03

stocks

Stock market

— Must consider the series of stock values in the past several days to decide if it
is wise to invest today

* |deally consider all of history

Note: Inputs are vectors. Output may be scalar or vector
— Should I invest, vs. should | invest in X



Representational shortcut

A
A

* |nput at each time is a vector
* Each layer has many neurons
— OQOutput layer too may have many neurons

e But will represent everything by simple boxes

— Each box actually represents an entire layer with many units



Representational shortcut

* |nput at each time is a vector
* Each layer has many neurons
— OQOutput layer too may have many neurons

e But will represent everything by simple boxes

— Each box actually represents an entire layer with many units



Representational shortcut

* |nput at each time is a vector
* Each layer has many neurons
— OQOutput layer too may have many neurons

* But will represent everything simple boxes

— Each box actually represents an entire layer with many units



Stock
vector

The stock predictor

X(t+7)

Y(t+3)
T
X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)  X(t+6)
Time

The sliding predictor
— Look at the last few days

— This is just a convolutional neural net applied to series data

e Also called a Time-Delay neural network
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Stock
vector

The stock predictor

Y(t+4)

"

A

T

X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)

X(t+6)

X(t+7)

Time
The sliding predictor
— Look at the last few days

— This is just a convolutional neural net applied to series data

e Also called a Time-Delay neural network
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Stock
vector

The stock predictor

Y(t+5)

"

A

T

X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)

X(t+6)

X(t+7)

Time
The sliding predictor
— Look at the last few days

— This is just a convolutional neural net applied to series data

e Also called a Time-Delay neural network
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The stock predictor

Y(t+6)
Stock T
vector

X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)  X(t+6) X(t+7)

Time
* The sliding predictor

— Look at the last few days

— This is just a convolutional neural net applied to series data
e Also called a Time-Delay neural network
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The stock predictor

Y(t+6)
Stock T
vector

X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)  X(t+6) X(t+7)

Time
* The sliding predictor

— Look at the last few days

— This is just a convolutional neural net applied to series data
e Also called a Time-Delay neural network
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Finite-response model

* This is a finite response system

— Something that happens today only affects the
output of the system for N days into the future

* N is the width of the system
Yt — f(Xt; Xt—lJ ""Xt—N)



The stock predictor

Y(t+2)

"

A

’StﬁkV—T
|

vector

X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)  X(t+6) X(t+7)

Time
* Thisis a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N is the width of the system
Vi = f(Xe Xe-1) s Xen)



The stock predictor

Y(t+3)

.

A

Stock ;

vector
X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)  X(t+6) X(t+7)

Time
* Thisis a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N is the width of the system
Vi = f(Xe Xe-1) s Xen)



The stock predictor

Y(t+4)

.

A

Stock ( 1

vector
X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)  X(t+6) X(t+7)

Time
* Thisis a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N is the width of the system
Vi = f(Xe Xe-1) s Xen)



The stock predictor

Y(t+5)

+

A

Stock ./ 1

vector
X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)  X(t+6) X(t+7)

Time
* Thisis a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N is the width of the system
Vi = f(Xe Xe-1) s Xen)
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The stock predictor

Y(t+6)

.

A

Stock -/ T

vector
X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)  X(t+6) X(t+7)

Time
* Thisis a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N is the width of the system
Vi = f(Xe Xe-1) s Xen)
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The stock predictor

Y(t+7)
Stock . T
vector

X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)  X(t+6) X(t+7)

Time
* Thisis a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N is the width of the system
Vi = f(Xe Xe-1) s Xen)
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Finite-response model

Y(t+6)

Stock -/ T

vector
X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)  X(t+6) X(t+7)

Time

* This is a finite response system

— Something that happens today only affects the output of
the system for N days into the future
* N is the width of the system

Yt — f(Xt;Xt—l; '"JXt—N) 25



Finite-response

Y(t+6)
Stock T
vector

X(t) X(t+1) X(t+2)  X(t+3) X(t+4) X(t+5)  X(t+6) X(t+7)

Time
* Problem: Increasing the “history” makes the
network more complex
— No worries, we have the CPU and memory

e Or do we?

26



Systems often have long-term
dependencies

XRT SPY SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS StockC €
3 Low 0.447 Close 0453 Volume 0 Chg +0.005 (+1.02%) «

/ Typical seasonal pattern of
relative rally into Thanksgiving

o = = o o
4 & & & &
th o th o th

* Longer-term trends —
— Weekly trends in the market
— Monthly trends in the market
— Annual trends

— Though longer historic tends to affect us less than more
recent events..

27



We want infinite memory

"

Time

* Required: Infinite response systems
— What happens today can continue to affect the output

forever
e Possibly with weaker and weaker influence

Yt — f(XtiXt—li "'iXt—oo)

28



Examples of infinite response systems

Yt — f(Xt) Yt—l)
— Required: Define initial state: Y_, fort =0

— Aninput at X, at t = 0 produces Y,

— Y, produces Y; which produces Y, and so on until Y, even
if X;..X, are 0

* i.e. even if there are no further inputs!

 This is an instance of a NARX network

— “nonlinear autoregressive network with exogenous inputs”
- Y = f KXo, Yo:t-1)
* QOutput contains information about the entire past

29



A one-tap NARX network

Y(t)

X(t)

Time

* A NARX net with recursion from the output

30



A one-tap NARX network

Y(t) Y

*

X(t)

Time

* A NARX net with recursion from the output



A one-tap NARX network

*

Y(t)

X(t)

Time

* A NARX net with recursion from the output
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A one-tap NARX network

1'

Y(t)

X(t)

Time

* A NARX net with recursion from the output
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A one-tap NARX network

*

Y(t)

X(t)

Time

* A NARX net with recursion from the output
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A one-tap NARX network

*

Y(t)

X(t)

Time

* A NARX net with recursion from the output
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A one-tap NARX network

'P

Y(t)

X(t)

Time

* A NARX net with recursion from the output
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A one-tap NARX network

Y(t)

*

X(t)

Time

* A NARX net with recursion from the output

37



Y(t-1) 1

A more complete representation

"

A

X(t)

"

v

"

v

"

v

JLAEAR-

v
v
v
v
l

Time
Brown boxes show output nodes

Yellow boxes are outputs

A NARX net with recursion from the output

Showing all computations

All columns are identical

An input at t=0 affects outputs forever
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Same figure redrawn

Y(t)

(R R R

v
v
v
v
v
v
v
v
l

X(t) Time :
Brown boxes show output nodes
All outgoing arrows are the same output
A NARX net with recursion from the output
* Showing all computations
* All columns are identical

* Aninput at t=0 affects outputs forever
39



A more generic NARX network
Y(t)
S\ AN \!IS\!IS\!IS\j \*7 *7
. BN S S B SN =W
S BN E ES E R e |

X(t)

Time

* The output Y; at time t is computed from the
past K outputs Y;_+, ..., Y;_g and the current
and past L inputs X;, ..., X;_|

40



A “complete” NARX network

Y(t)

X(t) .
Time

* The output Y; at time t is computed from all
past outputs and all inputs until time t

— Not really a practical model

41



NARX Networks

Very popular for time-series prediction

— Weather

— Stock markets

— As alternate system models in tracking systems

Any phenomena with distinct “innovations” that
“drive” an output

Note: here the “memory” of the past is in the
output itself, and not in the network



Lets make memory more explicit

* Task is to “remember” the past

* [ntroduce an explicit memory variable whose job it is to
remember

me =1 (Ve—1, he—1, Me—q)
he = f(x, me)
ye = g(ht)

* m;isa“memory” variable
— Generally stored in a “memory” unit

— Used to “remember” the past



Jordan Network

Fixed Fixed
weights weights

Y(t) 1 Y(t+1) + 1

~l——

X(t) X(t+1)

v

Time

* Memory unit simply retains a running average of past outputs

— “Serial order: A parallel distributed processing approach”, M.l.Jordan, 1986
* Inputis constant (called a “plan”)
* Objective is to train net to produce a specific output, given an input plan

— Memory has fixed structure; does not “learn” to remember
* The running average of outputs considers entire past, rather than immediate past,



Elman Networks

Y(t) Y(t+1)

Cloned state Cloned state
1 1

> » > »
> P » L

X(t) X(t+1)

Time

v

* Separate memory state from output
— “Context” units that carry historical state

— “Finding structure in time”, Jeffrey ElIman, Cognitive Science, 1990

* For the purpose of training, this was approximated as a set of T independent 1-step
history nets

* Only the weight from the memory unit to the hidden unit is learned
— But during training no gradient is backpropagated over the “1” link



Story so far

In time series analysis, models must look at past inputs along with current
input
— Looking at a finite horizon of past inputs gives us a convolutional network

Looking into the infinite past requires recursion

NARX networks recurse by feeding back the output to the input
— May feed back a finite horizon of outputs

“Simple” recurrent networks:
— Jordon networks maintain a running average of outputs in a “memory” unit
— Elman networks store hidden unit values for one time instant in a “context” unit

— “Simple” (or partially recurrent) because during learning current error does not
actually propagate to the past
* “Blocked” at the memory units in Jordan networks
* “Blocked” at the “context” unit in ElIman networks



An alternate model for infinite response
systems: the state-space model

he = f(x¢, he—q)
Ve = g(he)

h; is the state of the network
— Model directly embeds the memory in the state

Need to define initial state h_4

This is a fully recurrent neural network
— Or simply a recurrent neural network

State summarizes information about the entire past

47



The simple state-space model

Y(t)
SEEEEEE.
. > X X > X X X > X X

X(t)

»
>

t=0

Time

* The state (green) at any time is determined by the input at
that time, and the state at the previous time

* Aninput at t=0 affects outputs forever
e Also known as a recurrent neural net

48



An alternate model for infinite response
systems: the state-space model

he = f(xe, heq)
Ve = g(he)

* h; is the state of the network
* Need to define initial state h_4

* The state an be arbitrarily complex

49



Single hidden layer RNN

Y(t)
SEEEEEE.
. > X X > X X > X > X X

X(t)

t=0

Time

e Recurrent neural network
 All columns are identical

* Aninput at t=0 affects outputs forever

50



Multiple recurrent layer RNN

B EEEE.
. > X X > X X > X > X X

X(t)

t=0

Time

e Recurrent neural network
 All columns are identical

* Aninput at t=0 affects outputs forever
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Multiple recurrent layer RNN

tESEEE

_n R R oR R om
w O A0 A0 A0 A A A
—d 8

Time

 We can also have skips..



A more complex state

Y(t)

L * R

X(t)

Time

 All columns are identical

* An input at t=0 affects outputs forever
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Or the network may be even more

complicated

Y(t)

X(t) _
Time

e Shades of NARX

e All columns are identical

* Aninput at t=0 affects outputs forever
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Generalization with other recurrences

.gucgfﬂfﬁf;{ >
A A A A A A A
. > > > > —>
» » Ll »
A A A A A A A

X(t)

t=0

Time

e All columns (including incoming edges) are
identical
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The simplest structures are most
popular

B EEEE.
. > X X > X X > X > X X

X(t)

t=0

Time

e Recurrent neural network
 All columns are identical

* Aninput at t=0 affects outputs forever
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A Recurrent Neural Network

- 2
= » 5@

e Simplified models often drawn

* The loops imply recurrence
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The detailed version of the simplified

representation

;

D

Y(t)
SEEEEEE
. > : > . > X X > X > X » .

X(t)

t=0

Time
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Multiple recurrent layer RNN

!

A
>
LN E-
. i “ 0 “ . i “
. > > > >
X(t)

Time
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Multiple recurrent layer RNN

»
g PR RRRRR
o g A& A A A A
AN N A G

Time



Equations

(1) —
* Y h;”’(—=1) = part of network paW
o KO0 = f, (Z wOx,0)+ Y WiV (e - 1) + bgl>>
* j j

X

Y(©) = f; (Z wiORP () + bk = 1. M)
J

Note superscript in indexing, which indicates layer of
network from which inputs are obtained

Assuming vector function at output, e.g. softmax
The state node activation, f; () is typically tanh()
Every neuron also has a bias input



Equations

* Y hgl)(—l) = part of network parameters

hgz)(—l) = part of network parameters

- hV(©) = £ (Z WX+ ) witPhP(e = 1) + bf”)
J J

WD® = £ (z wPhO ) + Y wihP(E - 1) + b§2>>
J J

Y(©) = f3 (2 wORP () + b3k = 1. M)
j

* Assuming vector function at output, e.g. softmax f3()
* The state node activations, f;. () are typically tanh()

* Every neuron also has a bias input
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Equations

hgl)(—l) = part of network parameters

hgz)(—l) = part of network parameters

hP () = (2 wVX () + 2 wiPRP (e - 1) + bf”)
[

D rPw =1, (2 w2 @ g +2 ODx0)+ ) wFhP (e - 1)+b§2)>

Y(t) = fy ( wiPh{P () + z wie PR (O + b k=1 M)
j
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Variants on recurrent nets

one to one one to many many to one

Images from
Karpathy

 1: Conventional MLP
* 2:Sequence generation, e.g.image to caption
* 3:Sequence based prediction or classification, e.g. Speech recognition,

text classification o



Variants

many to many many to many

Images from
Karpathy

 1: Delayed sequence to sequence
 2: Sequence to sequence, e.g. stock problem, label prediction
* Etc...
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Story so far

Time series analysis must consider past inputs along with current input
Looking into the infinite past requires recursion

NARX networks achieve this by feeding back the output to the input

“Simple” recurrent networks maintain separate “memory” or “context”
units to retain some information about the past

— But during learning the current error does not influence the past

State-space models retain information about the past through recurrent
hidden states

— These are “fully recurrent” networks
— The initial values of the hidden states are generally learnable parameters as well

State-space models enable current error to update parameters in the past



How do we train the network

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

\ 4

—> 000 —>»

\ 4
\4

X(0) X(1) X(2) X(T-2) X(T-1) X(T)
t >

Back propagation through time (BPTT)

Given a collection of sequence inputs

— (X;,D;), where

— X; =X, Xyt

— Dy =Dig,....Dir
Train network parameters to minimize the error between the output of the
networkY; =Y}, ..., ¥; r and the desired outputs

— This is the most generic setting. In other settings we just “remove” some of the input or
output entries
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Training: Forward pass

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

SEENREE

[
»

> —> 000 —» >
A A A

A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

»

t

* For each training input:

Forward pass: pass the entire data sequence through the network,
generate outputs
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Recurrent Neural Net
Assuming time-synchronous output

Assuming h(-1,*) is known

Assuming L hidden-state layers and an output layer
W.(*) and W_(*) are matrics, b(*) are vectors

W_. are weights for inputs from current time

W. is recurrent weight applied to the previous time

H H H H F I

W, are output layre weights

for t = 0:T-1 # Including both ends of the index
h(t,0) = x(t) # Vectors. Initialize h(0) to input
for 1 = 1:L # hidden layers operate at time t
z(t,1) = W_(1)h(t,1-1) + W, (1)h(t-1,1) + b(1)
h(t,1l) = tanh(z(t,1l)) # Assuming tanh activ.
z,(t) = Wh(t,L) + b,
Y(t) = softmax( z (t) )
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SEENREE

Training: Computing gradients

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

[
»

> —> 000 —» >
A A A

A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)
. ;

<

For each training input:

Backward pass: Compute gradients via backpropagation
— Back Propagation Through Time
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Back Propagation Through Time

Y (0) Y(1) Y(2) Y(T-2) Y({T-1) Y
h-l * o000 *

/ N Wl | N N

X(0) X(1) X(2) X(T-2) X(T-1) X

Will only focus on one training instance

All subscripts represent components and not training instance index
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Back Propagation Through Time

DIV
D(1..T)

Y (0) Y(1) Y(2) Y(T—2) Y(T-1) YT

h-l * o000 *
i\/ N N i Yl N

X(0) X(1) X(2) X(T-2) X(T-1) X

* The divergence computed is between the sequence of outputs

by the network and the desired sequence of outputs
* DIVis ascalar function of a series of vectors!

* This is not just the sum of the divergences at individual times
= Unless we explicitly define it that way 72



Notation

DIV
D(1..T)
Y (0) Y (1) Y(2) Y(T—2) YT-1) Y
. " oo
h(T)
/‘ /T A 1 /T Z\Z(O) (T)
X0  X(1) X(2) X(T-2) XT-1) X(T)

Y(t) is the output at time ¢t
— Y;(¢t) is the ith output
ZW(t) is the pre-activation value of the neurons at the output layer at time t

h(t) is the output of the hidden layer at time t
— Assuming only one hidden layer in this example

Z©)(t) is the pre-activation value of the hidden layer at time ¢ .



Back Propagation Through Time

DIV
D(1..T)
Y (0) Y(1) Y(2) Y(T=2) Y(T-1) Y(T)
* *
J N N { Wl N
X(0) X(1) X(2) X(T-2) X(T-1) X
First step of backprop: Compute ddYD_Z) for all i

Note: DIV is a function of all outputs Y(0) ... Y(T)

dDIV
ay;(t)
be a source of significant difficulty in many scenarios. 4

In general we will be required to compute for all i and t as we will see. This can



T

Div(0) Div(1) Div(2)

f

T

H H B
1 1 1

Y (0) Y (1)
Y N
X(0) X(1)

Y(2)

"

A

X(2)

DIV

f f f

Div(T — 2)Div(T — 1) Div(T)
’ | Fﬂ)m

Y(T—-2) Y(T-1) Y()
"
N

X(T-2) X(T-1) X

f N

Special case, when the overall divergence is a simple combination of local
divergences at each time:

Must compute

dDIV
day;(t)

foralliforall T

Will usually get

dDIV__ dDiv(¢)
dy;(t)  dY;(t)
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Back Propagation Through Time

DIV
D(1..T)
Y(0) YD) Y(;) Y(T—2) YT-1) Y(T)
y M N o f N i
X(0)  X(1) X2 X(T-2) X(T-1) X(T)
First step of backprop: Compute ddYDi EZ) for all i

V,@ (T)DIV = Wy DIVV, ) s Y(T)

Vector output activation

dDIV _ dDIV _dY,(T) dDIV dDIV _dY;(T)

dzP(r (M azM(T) dz;(T) ~ £1dY(T) dz (1)
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Back Propagation Through Time

DIV
D(1..T)
Y (0) Y(1) Y(2) Y(T=2) Y(T-1) Y(T)
h-l * o000 L
Y N Wl | A N
X(0) X(1) X(2) X(T-2) X(T-1) X()

dDIV 2 dp1v  dz;7(T) z 1y dDIV
= w
]

dhi(T)  £aaz® (1) dhi(T) 7 azM ()

VnyDIV = V) DIV w@
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Back Propagation Through Time

DIV
D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

Y N Wl | A N

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

Vww DIV = h(T)Vy 1y DIV -
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Back Propagation Through Time

DIV
D(1..T)
Y (0) Y(1) Y(2) Y(T=2) Y(T-1) Y(T)
h-l * o000 *
y A A f A Lt
X(0) X(1) X(2) X(T-2) X(T-1) X

dDIV_ dDIV dhy(T)
az ) (M) az® (1)

V3@ (yDIV = VyryDIV Vo pyh(T)
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Back Propagation Through Time

DIV
D(1..T)

Y (0) Y(1) Y(2) Y(T—-2) Y(T-1 Y(T)

Y N Wl | A N

X(0) X(1) X(2) X(T-2) X(T-1) X

VDIV = X(T)V 0 7y DIV _
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Back Propagation Through Time

DIV
D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

Y N Wl | A N

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

ViyanDIV = h(T — 1)VZ(0)(T)DIV
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Back Propagation Through Time

DIV

Vector output activation

Y(T-1) Y(T)
N N
X(T-1) X

D(1..T)

Y (0) Y (1) Y (2) Y (T - 2)
h-]_ * o000
/ i N f
X(0) X(1) X(2) X(T - 2)
VZ(l)(T_l)DIV = Vy(T_l)DIV VZ(l)(T)Y(T — 1)
dDIV dDIV _ dY,(T — 1) dDIV

Az -1) AT —Daz®(r - 1)

OR

dplv  dY,(T —1)

(1) B (T — (1)
dz; (T — 1) de,(T Ddz (T -1)
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Back Propagation Through Time

DIV
D(1..T)
Y (0) Y(1) Y(2) Y(T=2) Y(T-1) Y(T)
h-l * o000
Y N Wl | N
X(0) X(1) X(2) X(T-2) X(T-1) X()

dhi(T—-1) &Y dz:V(T - 1) —~ dz®(T)

Vnr—0DPIV = Ve p_yy DIV WD + U0y DIV WD
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Back Propagation Through Time

DIV
D(1..T)
Y (0) Y(1) Y(2) Y(T=2) Y(T-1) Y(T)
h-l * o000
y i N f N i
X(0) X(1) X(2) X(T-2) X({T-1) X(T)
dDlv. @  dDIV 11 dDIV
dh;(T—1) 2 i dz:V(T - 1) +z "ij dz®(T)

W(l)DIV += h(T (1)(T 1) 84




Back Propagation Through Time

DIV
D(1..T)
Y (0) Y(1) Y(2) Y(T—-2) Y(T-1 Y(T)
h-l * o000 *
Y N Wil |
X(0) X(1) X(2) X(T-2) X(T-1) X
dDIV dDIV  dhy(T — 1)

dzOr-1) 4T —1DazOr - 1)

V0 r—1yDIV = Vpr—1yDIV Vyoy gy (T — 1)
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Back Propagation Through Time

Y(0)

N

X(0)

Y(1)

M

X(1)

Y(2)

"

A

X(2)

DIV

D(1..T)

Y(T—2) Y(T-1) Y()

"

X(T-2) X(T-1 X

Note the addition

Vw

©DIV += X(T — 1)V, 1, DIV
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Back Propagation Through Time

DIV
D(1..T)
Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
h-l * o000
Y N Wil |
X(0) X(1) X(2) X(T-2) X(T-1) X(T)

Vyyany DIV += h(T — 2)V 7O (T 1)




Back Propagation Through Time

DIV
Y(0) Y(1) Y(2) Y(T-2) Y({T-1) YT
Y N N | N N
X(0) X(1) X(2) X(T-2) X(T-1 X
Continue computing derivatives dDIv a1 dDIV

going backward through time until..

dh_;

Dow

J

7 az™M(0)

Vi_, DIV = V) ) DIVIW (1D

D(1..T)
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Back Propagation Through Time

DIV
D(L..T)

v) Y1) Y@ Y(T—2) Y(T-1) Y(T)
h-l * o000 *

/ Vi W i N Wi

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

dDIV dDIV dDIV
0 (k)
dhi(t) Z " dz* (1) Z " dz(t + 1)

Not showing derivatives
at output neurons

dDIV_ dDIV
©p  gp®
dzt) dh(t)

i (21®)
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Back Propagation Through Time

DIV
D(1..T)
Y (0) Y(1) Y(2) Y(T—-2) Y(T-1) Y()
y N N | N N
X(0) X(1) X(2) X(T-2) X(T-1) X
dDIV a1 dDIV
=/ Wi )
dh_, Z dz;”(0)
dDIV dDIV dDIV dDIV
= Xi t = N —
dWi(jO) Z de(o) (t) ® dwi(jll) Z de(o) () hi(t —1) )




BPTT

# Assuming forward pass has been completed

# Jacobian(x,y) is the jacobian of x w.r.t. y

# Assuming dY(t) = gradient(div,¥(t)) available for all t
# Assuming all dz, dh, dW and db are initialized to O

for t = T-1l:downto:0 # Backward through time
dz_(t) = dY(t)Jacobian(Y(t),z (t))
dw, += h(t,L)dz_(t)
db (L) += dz_(t)
dh(t,L) += dz_(t)W,

for 1 = L:1 # Reverse through layers
dz(t,1l) = dh(t,1l)Jacobian(h(t,1l),z(t,1))
dh(t,1-1) += dz(t,1) W_(1)
dh(t-1,1) += dz(t,1) W_(1)

dw_ (1) += h(t,1-1)dz(t,1)
dw_(1l) += h(t-1,1)dz(t,1)
db(l) += dz(t,1)
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BPTT

* Can be generalized to any architecture
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Extensions to the RNN: Bidirectional
RNN

Bidirectional RNN (BRNN)

Dutput Layer
wh

Backward Layer

Must learn weights w2,
w3, w4 & w5; in addition to
wil & wb.

Forward Layer

L
Proposed by Schuster and Paliwal
Imput Layer . 1997

Alex Graves, “Supervised Sequence Labeling with Becurrent Meural Networks’

e RNN with both forward and backward recursion

— Explicitly models the fact that just as the future can be predicted

from the past, the past can be deduced from the future o



Bidirectional RNN

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

- 5 % womon

T T T T
. > > —> o000 > >

A A A A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

+— 000 <—

A

A
A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

A forward net process the data from t=0 to t=T
A backward net processes it backward from t=T down to t=0
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Bidirectional RNN: Processing an
input string

. > > —> 000 —»

A A A A A A
he(-1)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

> t

 The forward net process the data from t=0 to t=T
— Only computing the hidden states, initially




Bidirectional RNN: Processing an
input string

< < — 000 <— < <

X(0) X(1) X(2) X(T-2) X(T-1)

—

 The backward nets processes the input data in reverse time, end to beginning

— Initially only the hidden state values are computed
* Clearly, this is not an online process and requires the entire input data

— Note: This is not the backward pass of backprop. 96



Bidirectional RNN: Processing an
input string

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

LN N

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

— eeee «— L . <
A A A A

h,(inf)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

»

* The computed states of both networks are
used to compute the final output at each time



Bidirectional RNN
Assuming time-synchronous output

# Subscript f represents forward net, b is backward net
# Assuming h.(-1,*) and h, (inf,*) are known

#forward pass
for t = 0:T-1 # Going forward in time
h.(t,0) = x(t) # Vectors. Initialize h(0) to input
for 1 = 1:L; # L; is depth of forward network hidden layers
ze(t,1) = Weo(1)h,(t,1-1) + W (1) he(t-1,1) + be(1)
h.(t,1) = tanh(z:(t,1)) # Assuming tanh activ.

#backward
h(T,:,:) = h(inf,:,:) # Just the initial value
for t = T-1:downto:0 # Going backward in time
h (t,0) = x(t) # Vectors. Initialize h(0) to input
for 1 = 1:L, # L, is depth of backward network hidden layers
z,(t,1) = W .(1)h,(t,1-1) + W (1)h(t+1l,1) + b, (1)
h (t,1) = tanh(z,(t,1)) # Assuming tanh activ.

for t = 0:T-1 # The output combines forward and backward
z, (t) = W he(t,Lg) + W, h (t,L,) + b,
Y(t) = softmax( z,(t) )
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Bidirectional RNN: Simplified code

* Code can be made modular and simplified for
better interpretability...



First: Define basic RNN with only
| hidden units

L : Number of hidden layers
W.,W,.,b: current weights, recurrent weights, biases
hinit: initial wvalue of h(representing h(-1,%*))
X: input vector sequence
T: Length of input vector sequence
Output:

h, z: sequence of pre-and post activation hidden
representations from all layers of the RNN

HH H H H H H H H

function [h,z] = RNN forward(L, W,, W., b, hinit, x, T)
h(-1,:) = hinit # hinit is the initial value for all layers

r/

for t = 0:T-1 # Going forward in time
h(t,0) = x(t) # Vectors. Initialize h(0) to input
for 1 = 1:L
z(t,1) = W, (1)h(t,1-1) + W, (1)h(t-1,1) + b(1)
h(t,1) = tanh(z(t,1)) # Assuming tanh activ.

return h,z

100



Bidirectional RNN
Assuming time-synchronous output

# Subscript f represents forward net, b is backward net
# Assuming h.(-1,*) and h, (inf,*) are known

#forward pass
[hg, z¢] = RNN forward(L;, Wg, W., bg, h(-1,:), x, T)

#backward pass
X, = fliplr(x) # Flip it in time

[(hy,evr Zprev) = RNN_forward(Lb, W, W,., by, h(inf,:), x
h, = fliplr(h,,.,) # Flip back to straighten time

T)

c/ rev/

z, = fliplr(z,..,)

#combine the two for the output

for t = 0:T-1 # The output combines forward and backward
z,(t) = W he(t, L) + W h (t,L,) + b,
Y(t) = softmax( z,(t) )
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Backpropagation in BRNNs

Y(0)

Y(1)

Y(2)

L

Y(T-2)

Y(T-1)

Y(T)

"

he(-1)
X(0)

:

A

X(1)

<=

A

X(2)

:

<X(T2) <X(T1) <

:

X(T)

X(0)

X(1)

X(2)

+— 000 <— <

X(T-2)

X(T-1)

—

h,(inf)

X(T)

backward networks and final output

» 1
* Forward pass: Compute both forward and
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Backpropagation in BRNNs

Y(0) Y(1# Y(Z* Y(T-2 Y(T-1 Y(T*
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
A A A A A A hb(lnf)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
»

Backward pass: Define a divergence from the desired output
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Backpropagation in BRNNs

Y(oﬁ Y(1ﬁ Y(Zﬁ

Y(T-ﬂ Y(T-1ﬁ Y(Tﬁ

[ [
» »

X(0) X(1) X(2)

—

000 —»

X(T-2)

[
»

X(T-1)

X(T)

* Backward pass: Define a divergence from the desired output

* Separately perform back propagation on both nets

— From t=T down to t=0 for the forward net
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Backpropagation in BRNNs

Y(O) Y(1) Y(2) Y(T 2

Y(T 1

Y(T

edidad

A
A

+— 000 <—

A

h,(inf)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
»
* Backward pass: Define a divergence from the desired output
* Separately perform back propagation on both nets
— From t=T down to t=0 for the forward net
— From t=0 up to t=T for the backward net 105




Backpropagation: Pseudocode

* As before we will use a 2-step code:
— A basic backprop routine that we will call

— Two calls to the routine within a higher-level
wrapper



First: backprop through a recurrent net

# Inputs:

# (In addition to inputs used by L : Number of hidden layers
# dhum: derivatives ddiv/dh,(t,L) at each time (* may be f or b)
# h, z: h and z values returned by the forward pass

# T: Length of input vector sequence

# Output:

it dw_., dw,, db dh derivatives w.r.t current and recurrent weights,
# biases, and initial h.

#

Assuming all dz, dh, dW_,, dW, and db are initialized to 0

init-

function [dW.,dW.,db,dh; ;,] = RNN bptt(L, W, W
dh = zeros

for t = T-1:downto:0 # Backward through time
dh(t,L) += dh.(t)
for 1 = L:1 # Reverse through layers
dz(t,l) = dh(t,1l)Jacobian(h(t,1),z(t,1))
dh(t,1-1) += dz(t,1) W_(1)
dh(t-1,1) += dz(t,1) W_(1)

b, hinit, x, T, dh h, z)

r/ top’

dw_(l) += h(t,1-1)dz(t,1)
dw,.(1l) += h(t-1,1)dz(t,1)
db(l) += dz(t,1)

return dWc, dWr, db, dh(-1) # dh(-1) is actually dh(-1,1:L,:)
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Bi-RNN gradient computatoin
Assuming time-synchronous output

# Subscript f represents forward net, b is backward net
# First compute derivatives that directly relate to dY(t) for all t,
# then pass the derivatives into RNN bptt to compute forward and backward

# parameter derivatives

for t = 0:T-1 # The output combines forward and backward
dz_ (t) = d¥(t)Jacobian(Y(t),z, (t))
dh. (t) = dz_ (t)W.,
dh, (t) = dz (t)W,,
db, += dz_(t)
dW.,, += h.(t,L)dz_ (t)
dw,, += h, (t,L)dz_(t)

#forward net

[dW¢.,dWs, ,dbs, dhe (-1) ] = RNN bptt(L, Wg, We., be, hs(-1), x, T, dhg,, he, 2z)
#backward net

X = fliplr(x) # Flip it in time

[dW,., dW,,,db,,dh, (inf) ] RNN bptt(L, W,., W,., b, h (inf), x ., T, dh,, hy, z)
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Story so far

Time series analysis must consider past inputs along with current input

Recurrent networks look into the infinite past through a state-space framework
— Hidden states that recurse on themselves

Training recurrent networks requires
— Defining a divergence between the actual and desired output sequences

— Backpropagating gradients over the entire chain of recursion
* Backpropagation through time

— Pooling gradients with respect to individual parameters over time

Bidirectional networks analyze data both ways, begin—=>end and
end—>beginning to make predictions

— In these networks, backprop must follow the chain of recursion (and gradient
pooling) separately in the forward and reverse nets



RNNs..

* Excellent models for time-series analysis tasks
— Time-series prediction
— Time-series classification

— Sequence prediction..



So how did this happen

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.

ctm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]
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So how did this happen

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.

ctm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

More on this later..
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RNNs..

* Excellent models for time-series analysis tasks
— Time-series prediction
— Time-series classification
— Sequence prediction..

— They can even simplify some problems that are
difficult for MLPs

* Next class..



