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Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [19], achieving a mask AP of 35.7 and
running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

a seemingly minor change, RoIAlign has a large impact: it
improves mask accuracy by relative 10% to 50%, showing
bigger gains under stricter localization metrics. Second, we
found it essential to decouple mask and class prediction: we
predict a binary mask for each class independently, without
competition among classes, and rely on the network’s RoI
classification branch to predict the category. In contrast,
FCNs usually perform per-pixel multi-class categorization,
which couples segmentation and classification, and based
on our experiments works poorly for instance segmentation.

Without bells and whistles, Mask R-CNN surpasses all
previous state-of-the-art single-model results on the COCO
instance segmentation task [28], including the heavily-
engineered entries from the 2016 competition winner. As
a by-product, our method also excels on the COCO object
detection task. In ablation experiments, we evaluate multi-
ple basic instantiations, which allows us to demonstrate its
robustness and analyze the effects of core factors.

Our models can run at about 200ms per frame on a GPU,
and training on COCO takes one to two days on a single
8-GPU machine. We believe the fast train and test speeds,
together with the framework’s flexibility and accuracy, will
benefit and ease future research on instance segmentation.

Finally, we showcase the generality of our framework
via the task of human pose estimation on the COCO key-
point dataset [28]. By viewing each keypoint as a one-hot
binary mask, with minimal modification Mask R-CNN can
be applied to detect instance-specific poses. Without tricks,
Mask R-CNN surpasses the winner of the 2016 COCO key-
point competition, and at the same time runs at 5 fps. Mask
R-CNN, therefore, can be seen more broadly as a flexible
framework for instance-level recognition and can be readily
extended to more complex tasks.

We will release code to facilitate future research.

2. Related Work
R-CNN: The Region-based CNN (R-CNN) approach [13]
to bounding-box object detection is to attend to a manage-
able number of candidate object regions [38, 20] and evalu-
ate convolutional networks [25, 24] independently on each
RoI. R-CNN was extended [18, 12] to allow attending to
RoIs on feature maps using RoIPool, leading to fast speed
and better accuracy. Faster R-CNN [34] advanced this
stream by learning the attention mechanism with a Region
Proposal Network (RPN). Faster R-CNN is flexible and ro-
bust to many follow-up improvements (e.g., [35, 27, 21]),
and is the current leading framework in several benchmarks.

Instance Segmentation: Driven by the effectiveness of R-
CNN, many approaches to instance segmentation are based
on segment proposals. Earlier methods [13, 15, 16, 9] re-
sorted to bottom-up segments [38, 2]. DeepMask [32] and
following works [33, 8] learn to propose segment candi-
dates, which are then classified by Fast R-CNN. In these
methods, segmentation precedes recognition, which is slow
and less accurate. Likewise, Dai et al. [10] proposed a com-
plex multiple-stage cascade that predicts segment proposals
from bounding-box proposals, followed by classification.
Instead, our method is based on parallel prediction of masks
and class labels, which is simpler and more flexible.

Most recently, Li et al. [26] combined the segment pro-
posal system in [8] and object detection system in [11] for
“fully convolutional instance segmentation” (FCIS). The
common idea in [8, 11, 26] is to predict a set of position-
sensitive output channels fully convolutionally. These
channels simultaneously address object classes, boxes, and
masks, making the system fast. But FCIS exhibits system-
atic errors on overlapping instances and creates spurious
edges (Figure 5), showing that it is challenged by the fun-
damental difficulties of segmenting instances.
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Success in Reinforcement Learning

ATARI Games

21 million games!~10-50 million interactions!

Simulation, Closed World, Known Model



Impressive Specialists



???

Task Specific

Today’s AI AI we want

Generalists



Learn to perform N  
tasks

Solve the (N+1)th task

Core Characteristic: Reuse past knowledge to solve new tasks

faster

or, 
more complex task



Success on Imagenet



Knowledge for classification

Training on N tasks —> Object classification knowledge



Knowledge for classification

Training on N tasks —> Object classification knowledge



Orange?

Apple?

Reuse knowledge by fine-tuning



Imagenet: 1000 examples/class

Orange?

Apple?

New task: ~100 examples/class



Still need hundreds of “labelled” data points!

Fine-tuning with very few data points, won’t be effective!
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What does the performance depend on??

Features might not be optimized 
for matching!



Metric Learning via Siamese Networks*

(*Hadsell et. al. 2006)

Instead of one v/s all classification
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Also look at 
Matching Networks,  
Vinyals et al. 2017
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Another perspective

Amount of fine-tuning:

 Task1: Apple v/s Orange
 Task 2: Dog v/s Cat



What if?

Amount of fine-tuning:

 Task1: Apple v/s Orange
 Task 2: Dog v/s Cat

fine-tuning would be faster!
can we optimize        to make fine-tuning easier? 
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How to do it?
 Task1: Apple v/s Orange

Hariharan et al. 2016, Finn et al. 2017 

(i.e. train for fast fine-tuning!)



Generalizing to N tasks
 Task1: Apple v/s Orange

Hariharan et al. 2016, Finn et al. 2017 



More Details
 Task1: Apple v/s Orange

Hariharan et al. 2016, Finn et al. 2017 

Low Shot Visual Recognition 
Hariharan et al. 2016

Model Agnostic Meta-learning 
Finn et al. 2017



Until Now

Finetuning Nearest Neighbor Matching

Siamese Network based Metric Learning

Meta-Learning: Training for fine-tuning

Better Features —> Better Transfer!



In practice, how good are these features?

Accuracy ~80%

Dog from Imagenet

Accuracy ~20%

Dog 



Consider the task of identifying cars …

Positives Negatives



???

Testing the model 



Learning Spurious Correlations

Unbiased look at Dataset bias, Torralba et al. 2011



More parameters in the network

More chances of learning spurious correlations!!

Maybe this problem will be avoided if we first learn simple 
tasks and then more complex ones??



Fine-tuning

Sequential/Continual Task Learning

Poor performance on  
Task-1 !!!

Catastrophic Forgetting!!!



Catastrophic forgetting in closely related tasks

Training on rotating MNIST Test

High 
Accuracy

Low  
Accuracy



In machine learning, we generally assume IID* data

*IID: Independently and Identically Distributed

Sample batches  
of data!

Each batch: uniform  
distribution of rotations



In machine learning, we generally assume IID* data

*IID: Independently and Identically Distributed

Sample batches  
of data!

Each batch: uniform  
distribution of rotations

In real world, data is often not batched :)



Continual	learning	is	natural	…



In the context of reinforcement learning





Inves&ga&ng	Human	Priors	for	Playing	Video	Games,		
Rachit	Dubey,	Pulkit	Agrawal,	Deepak	Pathak,	Alyosha	Efros,	Tom	Griffiths	(ICML	2018)	



Humans make use of prior knowledge for exploration

Inves&ga&ng	Human	Priors	for	Playing	Video	Games,	
Dubey	R.,	Agrawal	P.,	Deepak	P.,	Efros	A.,	Griffiths	T.		(ICML	2018)	



Humans make use of prior knowledge for exploration

Inves&ga&ng	Human	Priors	for	Playing	Video	Games,	
Dubey	R.,	Agrawal	P.,	Deepak	P.,	Efros	A.,	Griffiths	T.		(ICML	2018)	



What about Reinforcement Learning Agents?



In a simpler version of the game ..

Inves&ga&ng	Human	Priors	for	Playing	Video	Games,	
Dubey	R.,	Agrawal	P.,	Deepak	P.,	Efros	A.,	Griffiths	T.		(ICML	2018)	



For RL agents, both games are the same!

Inves&ga&ng	Human	Priors	for	Playing	Video	Games,	
Dubey	R.,	Agrawal	P.,	Deepak	P.,	Efros	A.,	Griffiths	T.		(ICML	2018)	



Equip Reinforcement Learning Agents  
with 

prior knowledge? 



Hand-design

Common-Sense/Prior Knowledge 



Hand-design Learn from Experience

Common-Sense/Prior Knowledge 

Transfer in Reinforcement Learning —> Very limited success

Good solution to continual learning required!



How to deal with catastrophic forgetting?

Just remember the weights for each task! 



Progressive Networks (Rusu et al. 2016)



Can we do something smarter than storing all the weights?



Overcoming Catastrophic Forgetting (Kirkpatrick et al. 2017)

EWC: Elastic Weight Consolidation

Don’t change 
weights that are  

informative 
of task A 

Fisher Information



Overcoming Catastrophic Forgetting (Kirkpatrick et al. 2017)



Eventually we will run out of capacity!

Is there a better way to make use of the neural network 
capacity?



(Han et. al. 2015)

Neural Networks are compressible post-training

(Slide adapted from Brian Cheung)



(Han et. al. 2015)

Neural Networks are compressible post-training

(Slide adapted from Brian Cheung)



Negligible performance change after pruning —> Neural 
Networks are over-parameterized

Can we make use of over-parameterization?

We will have to make use of “excess” capacity during training 



Superposition of many models into one (Cheung et al., 2019)

W

W(1) W(2) W(3)

W(1)

Superposition:

One Model:

Implementation:

Refer to the paper for details


