Using CNNs to understand the
neural basis of vision
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Different kinds of Al (in
practice)

1. Al that maximizes performance
- e.g., diagnosing disease - learns and applies knowledge humans might not
typically learn/apply — “who cares if it does it like humans or not”
2. Al that is meant to simulate (to better understand) cognitive or biological processes

- e.g., PDP - specifically constructed so as to reveal aspects of how biological
systems learn/reason/etc. - understanding at the neural or cognitive levels (or

both)
3. Althat performs well and helps understand cognitive or biological processes
- e.8., Deep learning models (cf. Yamins/DiCarlo) - “representational learning”

4. Al that is specifically designed to predict human performance/preference

- e.g., Google/Netflix/etc. - only useful if it predicts what humans actually do or
want



A Bit More on Deep Learning

 Typically relies on supervised learning - 1,000,000’s of labeled inputs

. Labels are a metric of human performance - so long as the network learns the
correct input->label mapping, it will perform “well” by this metric

. However, the network can’t do better than the labels

. Features might exist in the input that would improve performance, but
unless those features are sometimes correctly labeled, the model won'’t
learn that feature to output mapping

* The network can reduce misses, but it can’t discover new mappings unless there
existing further correlations between input->labels in the trained data

« So Deep Neural Networks tend to be very good at the kinds of Al that predicts
human performance (#4) and that maximize performance (#1), but the jury is
still out on Al that performs well and helps us understand biological intelligence
(#3); might also be used for simulation of biological intelligence (#2)




Some Numbers (ack)

Retinal input (~108 photoreceptors) undergoes a 100:1 data
compression, so that only 10° samples are transmitted by the optic
nerve to the LGN

From LGN to V1, there is almost a 400:1 data expansion, followed by
some data compression from V1 to V4

From this point onwards, along the ventral cortical stream, the
number of samples increases once again, with at least ~10° neurons
in so-called “higher-level” visual areas

Neurophysiology of V1->V4 suggests a feature hierarchy, but even V1
IS subject to the influence of feedback circuits - there are ~2x
feedback connections as feedforward connections in human visual
cortex

Entire human brain is about ~101* neurons with ~101° synapses



the problem

“T THINK. YOoU SHOWD BE MORE EXPLICIT
HERE ™ STEP TWO.™
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so how do we fill in the blanks?

e early vision (filters)
* image filtering, data reduction
* mid-level vision (unsupervised)

 multiple information channels

* cue combination, binding
* high-level vision (supervised)

e coherent objects, events, and scenes




Tanaka (2003) used an image reduction method to isolate
“critical features” (physiology)
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Figure 1 Exarmples of reductive dete. r'rmdi i U“ optimal rEdtJrLS for 12 TE cails. 'H e images to the left of the arrows represent the ariginal images of the most effective object
stimulus and those to the right of the ows, the critical features determined by the reduction




Woloszyn and Sheinberg (2012)
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Stupid CNN Tricks

 Hierarchical correspondence

 Visualization of “neurons”

[Digression - Is visualization a good
metric for evaluating models?]
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Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c) Objects (layers mixed4d & mixed4de)




HCNNSs are good candidates for models of
the ventral visual pathway

Yamins & DiCarlo




Goal-Driven Networks as
Neural Models

whatever parameters are used, a neural network will have to be
effective at solving the behavioral tasks the sensory system
supports to be a correct model of a given sensory system

So... advances in computer vision, etc. that have led to high-
performing systems - that solve behavioral tasks nearly as
effectively as we do - could be correct models of neural
mechanisms

conversely, models that are ineffective at a given task are
unlikely to ever do a good job at characterizing neural
mechanisms



Approach

 Optimize network parameters for performance on a reasonable,
ecologically—valid task

* Fix network parameters and compare the network to neural
data

 Easier than “pure neural fitting” b/c collecting millions of

human-labeled images is easier than obtaining comparable
neural data




Key Questions

* Do such top-down goals - tasks - constrain biological
structure?

 Will performance optimization be sufficient to cause
intermediate units in the network to behave like neurons?
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‘Neural-like” models via
erformance optimization

Behavioral Tasks
e.g. Trees vs non-Trees
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IT Neural Predictions
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Population-level Similarity

V1 Ilke Model

HMAX Model

V4 neuronal umts

=
O
e
>
=
_
5
E
m -
5
= 0.3 E
o 3 >
a ¢ .
o L ex SR
& peiEiL
w>T> =
0.0~
Image Obiject Catego
generalization generahzatlon generali

Pzz—%on

IT neuronal units
el

HMO model

- 1$ Animals (8)

£ " Boats (8)
4 Cars (8)

Chairs (8)
)

)
Planes (8)
& Tables (8)

Image

-

V)

.0

[0]

w

®
general

..
o
m
=
c
-
w
I

Animals (4)
. Boats (4)
Cars (4)
: Chairs (4)
Faces (4)
Fruits (4)
= Planes (4)
Tables (4)

Object
generalization

A Faces (8)
Fruits (8)

H Planes (8)
Tables (8)

Category
generalization

tion

1za

Yamins et al.



V4 Neural Predictions
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Human

Not human

Human fMRI

HCNN model

(1]

RDM voxel correlation
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The Components of Goal-
Driven Modeling

Model architecture class

Categorization

Differing
learning
dynamics

Parabeh™

Yamins & DiCarlo




Challenges

m Lake et al. articulate two challenge problems to elucidate the

role of early inductive biases and the ability to learn based on
small amounts of data

- Learning simple visual concepts
- Playing a video game
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Do deep networks and humans

perform this sort of task in the
same way?

 Two important differences:

1. People learn from fewer examples

2. People learn “richer” representations
=  Decomposable into parts

= | earn a concept that can be flexibly applied
 Generate new examples
 Parse an object into parts and their relations
 (Generalize to new instances of the overall class




“This richness and flexibility suggest that learning as model building is a better
metaphor than learning as pattern recognition. Furthermore, the human
capacity for one-shot learning suggests that these models are built upon rich
domain knowledge rather than starting from a blank slate.”

e Two (non) issues:

=  (enerative capacities
. Generative Adversarial Networks (GANs) are capable of learning and
generating new exemplars within categories
=  Few-shot learning

. There are many recent implementations of learning from a small number of
examples; moreover, the fact that humans can do this (sometimes¥*) isn’t
strong evidence for model-driven learning in and of itself

*| think they overestimate both the
amount data we learn from and how
effective humans are at this




Duh. The particular model being tested did not have general world knowledge/context -
it only was intended to perform captioning using simple object and scene labeling
(~semantics)

.
pENE
a woman riding a horse on a an airplane is parked on the a group of people standing on
dirt road tarmac at an airport top of a beach




My own work: what are the minimal assumptions
needed to give rise to high-level structure/concepts?

Three current projects:
. How does the basic spatiotopic and processing hierarchy of the primate visual
system arise?
- Arcaro: "proto-structure” present in newborn monkeys
- Testing whether this can be learned in vivo given only retinal structure
e Can deep network architectures rapidly learn new categories using only a few
examples?
- Leverage the natural “clumpiness” of almost all visual categories and
simple “nearest neighbor” visual reasoning
e (Can visual category learning be accelerated by early developmental constraints?

— Infant vision is high contrast and blurry, yielding inputs of reduced
dimensionality (relative to adult vision)




