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Markov Process

• Where you will go depends only on where you 
are



Markov Process: Information state

• The information state of a Markov process 
may be different from its physical state

This spider doesn’t like to turn back



Markov Reward Process

• Random wandering through states will 
occasionally win you a reward



The Fly Markov Reward Process

• There are, in fact, only four states, not eight
– Manhattan distance between fly and spider = 0 (s0)
– Distance between fly and spider = 1 (s1)
– Distance between fly and spider = 2 (s2)
– Distance between fly and spider = 3 (s3)

• Can, in fact, redefine the MRP entirely in terms of these 4 states
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The discounted return

• Total future reward all the way to the end



Markov Decision Process

• Markov Reward Process with following change:
– Agent has real agency
– Agent’s actions modify environment’s behavior
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The Fly Markov Decision Process
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Policy

• The policy is the agent’s choice of action in 
each state
– May be stochastic
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The Bellman Expectation Equations

• The Bellman expectation equation for state value 
function

• The Bellman expectation equation for action value 
function

ᇲ



Optimal Policies
• The optimal policy is the policy that will maximize the expected 

total discounted reward at every state:  ௧ ௧

௞
௧ା௞

ஶ

௞ୀ଴

௧

• Optimal Policy Theorem: For any MDP there exist optimal policies 
∗ that is better than or equal to every other policy:

∗

∗ గ

∗ గ

do we consider the discounted return, rather than the actual return 
௧ା௞

ஶ
௞ୀ଴ ?



The optimal value function



Bellman Optimality Equations

• Optimal value function equation

• Optimal action value equation

 



Planning with an MDP

• Problem:  
– Given: an MDP 

– Find: Optimal policy 

• Can either
– Value-based Solution: Find optimal value (or action 

value) function, and derive policy from it  OR

– Policy-based Solution: Find optimal policy directly



Value-based Planning

• “Value”-based solution

• Breakdown: 
– Prediction:  Given any policy find value function 

– Control:  Find the optimal policy



Prediction DP

• Iterate



Policy Iteration

• Start with any policy 
• Iterate ( … convergence):

– Use prediction DP to find the value function (ೖ)

– Find the greedy policy

(ೖ)



Value iteration

• Each state simply inherits the cost of its best 
neighbour state
– Cost of neighbour is the value of the neighbour

plus cost of getting there



Problem so far

• Given all details of the MDP
– Compute optimal value function
– Compute optimal action value 

function
– Compute optimal policy

• This is the problem of planning

• Problem: In real life, nobody gives 
you the MDP
– How do we plan???



Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without 
knowing the underlying MDP?
– Model-free prediction

• How do you find the optimal policy, without 
knowing the underlying MDP?
– Model-free control



Model-Free Methods
• AKA model-free reinforcement learning

• How do you find the value of a policy, without knowing the underlying 
MDP?
– Model-free prediction

• How do you find the optimal policy, without knowing the underlying MDP?
– Model-free control

• Assumption: We can identify the states, know the actions, and measure 
rewards, but have no knowledge of the system dynamics
– The key knowledge required to “solve” for the best policy
– A reasonable assumption in many discrete-state scenarios
– Can be generalized to other scenarios with infinite or unknowable state



Model-Free Assumption

• Can see the fly
• Know the distance to the fly
• Know possible actions (get closer/farther)
• But have no idea of how the fly will respond

– Will it move, and if so, to what corner



Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without 
knowing the underlying MDP?
– Model-free prediction

• How do you find the optimal policy, without 
knowing the underlying MDP?
– Model-free control



Model-Free Assumption

• Can see the fly and distance to the fly
• But have no idea of how the fly will respond to actions

– Will it move, and if so, to what corner

• But will always try to reduce distance to fly (have a known, fixed, policy)
• What is the value of being a distance D from the fly?



Methods

• Monte-Carlo Learning

• Temporal-Difference Learning
– TD(1)
– TD(K)
– TD



Monte-Carlo learning to learn the 
value of a policy 

• Just “let the system run” while following the policy and 
learn the value of different states

• Procedure: Record several episodes of the following
– Take actions according to policy 
– Note states visited and rewards obtained as a result
– Record entire sequence:

– ଵ ଵ ଶ ଶ ଶ ଷ ்

– Assumption:  Each “episode” ends at some time

• Estimate value functions based on observations by counting



Monte-Carlo Value Estimation

• Objective:  Estimate value function for every 
state ,  given recordings of the kind:

• Recall, the value function is the expected return:

• To estimate this, we replace the statistical expectation 
by the empirical average 



A bit of notation

• We actually record many episodes
–

భ

–
మ

– …
– Different episodes may be different lengths



Counting Returns

• For each episode, we count the returns at all 
times:
–

భ

• Return at time t
– భ

భ

– భ
భ

–

– భ
భ
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Counting Returns

• For each episode, we count the returns at all 
times:
–

భ

• Return at time t
– భ

భ

– భ
భ

–

– భ
భ



Estimating the Value of a State

• To estimate the value of any state, identify the 
instances of that state in the episodes:
–

భ

• Compute the average return from those 
instances

…



Estimating the Value of a State
• For every state 

– Initialize: Count ,  Total return 
– For every episode 

• For every time ௘

– Compute ௧

– If ௧

»

» గ గ ௧

–

• Can be done more efficiently..



Online Version
• For all Initialize: Count ,  Total return 

• For every episode 
– For every time 

• Compute ௧

• ௧ ௧

• tot గ ௧ గ ௧ ௧

– For every state : 

• Updating values at the end of each episode
• Can be done more efficiently..



Monte Carlo estimation

• Learning from experience explicitly

• After a sufficiently large number of episodes, in 
which all states have been visited a sufficiently 
large number of times, we will obtain good 
estimates of the value functions of all states

• Easily extended to evaluating action value 
functions



Estimating the Action Value function

• To estimate the value of any state-action pair, 
identify the instances of that state-action pair 
in the episodes:
–

• Compute the average return from those 
instances

…



Online Version
• For all Initialize: Count ,  Total value 

• For every episode 
– For every time 

• Compute ௧

• ௧ ௧ ௧ ௧

• tot గ ௧ ௧ గ ௧ ௧ ௧

– For every : 

• Updating values at the end of each episode



Monte Carlo: Good and Bad

• Good: 
– Will eventually get to the right answer
– Unbiased estimate

• Bad:
– Cannot update anything until the end of an episode

• Which may last for ever

– High variance!  Each return adds many random values
– Slow to converge



Online methods for estimating the 
value of a policy:  Temporal 

Difference Leaning (TD)

• Idea: Update your value estimates after every 
observation

– Do not actually wait until the end of the episode

Update for S1 Update for S2 Update for S3



Incremental Update of Averages

• Given a sequence a running estimate of 
their average can be computed as

• This can be rewritten as:

• And further refined to



Incremental Update of Averages
• Given a sequence a running estimate of their 

average can be computed as

• Or more generally as

• The latter is particularly useful for non-stationary 
environments

• For stationary environments must shrink with iterations, 
but not too fast
– ௞

ଶ 
௞ ௞

 
௞ ௞



Incremental Updates

• Example of running average of a uniform 
random variable

௞ ௞ିଵ ௞ ௞ିଵ

௞ ௞ିଵ ௞ ௞ିଵ



Incremental Updates

• Correct equation is unbiased and converges to true value
• Equation with is biased (early estimates can be expected 

to be wrong) but converges to true value

௞ ௞ିଵ ௞ ௞ିଵ

௞ ௞ିଵ ௞ ௞ିଵ



Updating Value Function 
Incrementally

• Actual update

• is the total number of visits to state s across all 
episodes

• is the discounted return at the time instant of the i-th
visit to state 



Online update
• Given any episode

• Update the value of each state visited

• Incremental version

• Still an unrealistic rule
• Requires the entire track until the end of the episode to compute Gt



Online update
• Given any episode

• Update the value of each state visited

• Incremental version

• Still an unrealistic rule
• Requires the entire track until the end of the episode to compute Gt

Problem



TD solution

• But

• We can approximate by the expected 
return at the next state 

Problem



Counting Returns
• For each episode, we count the returns at all times:

– ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Return at time t
– ଵ ଶ ଷ

்ିଶ
்

– ଶ ଷ ସ
்ିଷ

்

–

– ௧ ௧ାଵ ௧ାଶ
்ି௧ିଶ

்

• Can rewrite as
– ଵ ଶ ଶ

• Or
– ଵ ଶ ଷ

ଶ
ଷ

–

– ௧ ௧ାଵ
௜

௧ାଵା௜
ே
௜ୀଵ

ேାଵ
௧ାଵାே



TD solution

• But

• We can approximate by the expected return at 
the next state 

• We don’t know the real value of but we can 
“bootstrap” it by its current estimate

Problem



TD(1) true online update

• Where

• Giving us
–



TD(1) true online update

• Where

• is the TD error
– The error between an (estimated) observation of  

and the current estimate 



TD(1) true online update
• For all Initialize: 

• For every episode 
– For every time 

• గ ௧ గ ௧ ௧ାଵ గ ௧ାଵ గ ௧

• There’s a “lookahead” of one state, to know 
which state the process arrives at at the next time

• But is otherwise online, with continuous updates



TD(1)
• Updates continuously – improve estimates as soon as you 

observe a state (and its successor)

• Can work even with infinitely long processes that never 
terminate

• Guaranteed to converge to the true values eventually
– Although initial values will be biased as seen before
– Is actually lower variance than MC!!

• Only incorporates one RV at any time

• TD can give correct answers when MC goes wrong
– Particularly when TD is allowed to loop over all learning 

episodes



TD vs MC

• What are and 
– Using MC
– Using TD(1), where you are allowed to repeatedly go over 

the data



TD – look ahead further?

• TD(1) has a look ahead of 1 time step

• But we can look ahead further out
–

–

–



TD(N) with lookahead

• Where

• is the TD error with N step lookahead

•



Lookahead is good

• Good: The further you look ahead, the better your 
estimates get

• Problems:
– But you also get more variance
– At infinite lookahead, you’re back at MC

• Also, you have to wait to update your estimates
– A lag between observation and estimate

• So how much lookahead must you use



Looking Into The Future

• How much various TDs look into the future
• Which do we use?



Solution: Why choose?

• Each lookahead provides an estimate of Gt

• Why not just combine the lot with discounting?



TD(l)

• Combine the predictions from all lookaheads
with an exponentially falling weight
– Weights sum to 1.0



Something magical just happened

• TD(l) looks into the 
infinite future
– I.e. we must have all 

the rewards of the 
future to compute our 
updates

– How does that help?



The contribution of future rewards to 
the present update

• All future rewards contribute to the update of 
the value of the current state

TIME

2 2

3 3

4 4

5 5

6 6

Rt+1

Rt+2

Rt+3

Rt+4

Rt+5

Rt+6

Rt+7

St

is from the discounting
is from the look-ahead weight



St+1

St+2

St+3

St+4

St+5

St+6

St+7

The contribution of current reward to 
past states

• All current reward contributes to the update 
of the value of all past states!

TIME

2 2

3 3

4 4

5 5

6 6

Rt



TD(l) backward view

• The Eligibility trace:
– Keeps track of total weight for any state

• Which may have occurred at multiple times in the past

TIME

Rt

Add these weights to compute contribution
to red state..

2 2

3 3

4 4

5 5

6 6



TD(l)

• Maintain an eligibility trace for every state

• Computes total weight for the state until the 
present time



TD(l)

• At every time, update the value of every state 
according to its eligibility trace

• Any state that was visited will be updated
– Those that were not will not be, though



The magic of TD(l)

• Managed to get the effect of inifinite lookahead, by 
performing infinite lookbehind
– Or at least look behind to the beginning

• Every reward updates the value of all states leading to the 
reward!
– E.g., in a chess game, if we win, we want to increase the value of 

all game states we visited, not just the final move
– But early states/moves must gain much less than later moves

• When this is exactly equivalent to MC



Story so far

• Want to compute the values of all states, 
given a policy, but no knowledge of dynamics

• Have seen monte-carlo and temporal 
difference solutions
– TD is quicker to update, and in many situations 

the better solution
– TD(l) actually emulates an infinite lookahead

• But we must choose good values of a and l



Optimal Policy: Control

• We learned how to estimate the state value 
functions for an MDP whose transition 
probabilities are unknown for a given policy

• How do we find the optimal policy?



Value vs. Action Value

• The solution we saw so far only computes the value functions of 
states

• Not sufficient – to compute the optimal policy from value functions 
alone, we will need extra information, namely transition 
probabilities
– Which we do not have

• Instead, we can use the same method to compute action value 
functions
– Optimal policy in any state : Choose the action that has the largest 

optimal action value



Value vs. Action value

• Given only value functions, the optimal policy must be 
estimated as:

ᇲ

– Needs knowledge of transition probabilities

• Given action value functions, we can find it as:

• This is model free (no need for knowledge of model 
parameters)



Problem of optimal control

• From a series of episodes of the kind:

• Find the optimal action value function 
– The optimal policy can be found from it

• Ideally do this online
– So that we can continuously improve our policy 

from ongoing experience



Exploration vs. Exploitation
• Optimal policy search happens while gathering experience while 

following a policy

• For fastest learning, we will follow an estimate of the optimal policy

• Risk:  We run the risk of positive feedback
– Only learn to evaluate our current policy
– Will never learn about alternate policies that may turn out to be 

better

• Solution: We will follow our current optimal policy of the time
– But choose a random action of the time
– The “epsilon-greedy” policy



GLIE Monte Carlo
• Greedy in the limit with infinite exploration
• Start with some random initial policy 
• Start the process at the initial state, and follow an action according to initial policy 

• Produce the episode

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Process the episode using the following online update rules:

• Compute the -greedy policy for each state

௔ᇱ

ᇱ

௔

• Repeat



GLIE Monte Carlo
• Greedy in the limit with infinite exploration
• Start with some random initial policy 
• Start the process at the initial state, and follow an action according to initial policy 

• Produce the episode

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Process the episode using the following online update rules:

• Compute the -greedy policy for each state

௔ᇱ

ᇱ

௔

• Repeat



On-line version of GLIE: SARSA

• Replace with an estimate
• TD(1) or TD(l)

– Just as in the prediction problem

• TD(1)  SARSA



SARSA
• Initialize for all 
• Start at initial state 
• Select an initial action 
• For t = 1.. Terminate

– Get reward ௧

– Let system transition to new state ௧ାଵ

– Draw ௧ାଵ according to -greedy policy

௔ᇱ

ᇱ

௔

– Update 

௧ ௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ ௧



SARSA(l)

• Again, the TD(1) estimate can be replaced by a TD(l) estimate 
• Maintain an eligibility trace for every state-action pair:

଴

௧ ௧ିଵ ௧ ௧

• Update every state-action pair visited so far

௧ ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

௧ ௧



SARSA(l)

• For all initialize 
• For each episode 

– For all initialize 
– Initialize ଵ ଵ

– For 
• Observe ௧ାଵ ௧ାଵ

• Choose action ௧ାଵ using policy obtained from 

• ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• ௧ ௧

• For all 
– 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼𝛿𝐸(𝑠, 𝑎)

– 𝐸 𝑠, 𝑎 = 𝛾𝜆𝐸(𝑠, 𝑎)



On-policy vs. Off-policy
• SARSA assumes you’re following the same policy that you’re 

learning
• Its possible to follow one policy, while learning from others

– E.g. learning by observation

• The policy for learning is the whatif policy

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

ଶ ଷ

• Modifies learning rule

௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• to

௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• Q will actually represent the action value function of the 
hypothetical policy

hypothetical



SARSA: Suboptimality
• SARSA:  From any state-action , accept 

reward , transition to next state , 
choose next action 

• Use TD rules to update:

• Problem: which policy do we use to choose 



SARSA: Suboptimality
• SARSA:  From any state-action , accept 

reward , transition to next state , choose 
next action 

• Problem: which policy do we use to choose 
• If we choose the current judgment of the best 

action at S’ we will become too greedy
– Never explore

• If we choose a sub-optimal policy to follow, we 
will never find the best policy



Solution: Off-policy learning
• The policy for learning is the whatif policy

• Use the best action for St+1 as your hypothetical 
off-policy action

• But actually follow an epsilon-greedy action
– The hypothetical action is guaranteed to be better 

than the one you actually took

– But you still explore (non-greedy)

hypothetical



Q-Learning

• From any state-action pair 
– Accept reward 
– Transition to 
– Find the best action for 
– Use it to update 
– But then actually perform an epsilon-greedy 

action from 



Q-Learning (TD(1) version)

• For all initialize 
• For each episode 

– Initialize 
– For 

• Observe ௧ାଵ ௧ାଵ

• Choose action ௧ାଵ at ௧ାଵ using epsilon-greedy policy 
obtained from 

• Choose action ௧ାଵ at ௧ାଵ as ௧ାଵ
௔

௧ାଵ

• ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• ௧ ௧ ௧ ௧



Q-Learning (TD(l) version)

• For all initialize 
• For each episode 

– For all initialize 
– Initialize ଵ ଵ

– For 
• Observe 𝑅௧ାଵ, 𝑆௧ାଵ

• Choose action 𝐴௧ାଵ at 𝑆௧ାଵ using epsilon-greedy policy obtained from 𝑄

• Choose action 𝐴መ௧ାଵ at 𝑆௧ାଵ as 𝐴መ௧ାଵ = 𝑎𝑟𝑔max
௔

𝑄(𝑆௧ାଵ, 𝑎)

• 𝛿 = 𝑅௧ାଵ + 𝛾𝑄 𝑆௧ାଵ, 𝐴መ௧ାଵ − 𝑄(𝑆௧, 𝐴௧)

• 𝐸 𝑆௧, 𝐴௧ += 1

• For all 𝑠, 𝑎 

– 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼𝛿𝐸(𝑠, 𝑎)

– 𝐸 𝑠, 𝑎 = 𝛾𝜆𝐸(𝑠, 𝑎)



What about the actual policy?

• Optimal greedy policy:

• Exploration policy

• Ideally should decrease with time



Q-Learning

• Currently most-popular RL algorithm
• Topics not covered:

– Value function approximation
– Continuous state spaces
– Deep-Q learning
– Action replay
– Application to real problem..


