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The story of Flider and Spy

• Flider the spider is at the far corner of the 
room, and Spy the fly is sleeping happily at the 
near corner



The story of Flider and Spy

• Flider only walks along edges
• She begins walking along 

one of the three edges at random
• She takes one minute to cover the distance 

from one corner to the other along any edge
• When she arrives at the new corner, she 

randomly chooses one of the three edges  and 
continues walking (she may even turn back)



The story of Flider and Spy

• What is the life expectancy of Spy?

?



Flider and Spy

• Let be the life expectancy if Flider is at the 
ith corner

?
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• ௜ is the life expectancy if Flider the Spider begins walking 
towards the ith corner
– 1 minute to get to the corner plus the time taken to get from that 

corner to Spy the fly

• 8 Equations, 8 unknowns, trivial to solve
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Flider and Spy



• What if the room has many corners?
– A Fuller’s dome?

Flider and Spy





Alpha Go

• “Learning” to play
– How?

11

Alpha Go: 2016Deep Blue: 1997



Problems?

• How do we write a program to beat Magnus 
Carlsson?

• Can’t just make a table of rules
– Too many positions, too many combinations

• How about some general principles?
– Who will enumerate them?
– How many are there in the first place?

• How do humans do it?

12



Learning from experience

• Learn by playing (or observing)
– Problem:  The tree of possible moves is 

exponentially large

• Learn to generalize
– What do we mean by “generalize”?

– If a particular board position always leads to loss, 
avoid any moves that move you into that position

13



Lets draw a diagram..

• Circles are game states
– Exponentially large number of them
– In the beginning we don’t know if they are good or bad

• Each state can move into one of N states depending on the opponent’s 
move
– Figure does not show arrows

14



Lets draw a diagram..

• Play a very large number of games
– Each time a board position leads to victory, give it a 

little green color
– Each time it leads to a loss give it a little red

15



• Sequence of game states we moved into until the winning state
– Alternates with states arrived at by moves by the opponent

• All of these are “winning” states: color them green
• But things from the distant past are less certain

– Too many possibilities; cant be certain of their “winningness”
– Fade the green with distance

16

A game we won



A game we won

• Sequence of game states we moved into until the winning state
– Alternates with states arrived at by moves by the opponent

• All of these are “winning” states: color them green
• But things from the distant past are less certain

– Too many possibilities; cant be certain of their “winningness”
– Fade the green with distance

17



A game we lost

• Sequence of game states we moved into until the losing state
– Alternates with states arrived at by moves by the opponent

• All of these are “losing” states: color them red
• But things from the distant past are less certain

– Too many possibilities; cant be certain of their “losingness”
– Fade the red with distance

18

Loss: final move is
by opponent



Continue playing games

• Play many many games

• Some of which you will lose..

19



Continue playing games

• Play many many games

• Some of which you will lose..

• And some you’ll win..
20



Continue playing games

• When multiple games visit a state, simply average the colors derived from 
all visits
– Some states will get greener
– Some will get redder
– Some, that can lead to both victory and loss will become different shades of 

yellow..
• More in the early stages of the game than during the endgame

21



Collecting more games…

• You can also learn colors from your opponent’s moves
– When you win he/she loses and vice versa

• You can learn from others’ games
– Collections of games by amateurs and experts, of which you can find millions 

in the books

• To really speed up matters, play with yourself
– A schizophrenic computer can play thousands of games with itself in the time 

that it plays with another person 22



Lets draw a diagram..

• Eventually, we’ll get many board positions with different shades of 
green (more winning than losing), red (more losing than winning) or 
various shades of yellow/green/orange (can go either way)

• We will also get many “blank” positions that were never visited in 
all our practice games
– In fact the vast majority of positions will be unvisited!

23



Lets draw a diagram..

• Eventually, we’ll get many board positions with different shades of 
green (more winning than losing), red (more losing than winning) or 
various shades of yellow/green/orange (can go either way)

• We will also get many “blank” positions that were never visited in 
all our practice games
– In fact the vast majority of positions will be unvisited!

24



Lets draw a diagram..

• Generalization:  From the coloured nodes, learn some way of colouring the 
blank nodes too
– Which will have some colour between red and green

• Different nodes will have different colours

• The magic: some function that assigns color to different board positions
– How do you describe a board position numerically
– What type of function maps a board position to a color between red and green

25



GAME TIME

• Black circle:  Current position

• Where do we move?

26



GAME TIME

• Evaluate all our possible moves
– And all of opponents responses
– Can evaluate the graph to any depth (compute and memory bound)

• Identify the move that gives the opponent the least chance to win
– The opponent’s best path leads to a least red state

27



A little terminology

• Markov Process:  Does not matter how you 
got here, only matters where you are



An interesting class of problems

• Is a move good?
– You will not know until the end of the game



An interesting class of problems

• Is an investment plan good?
– You will not know for a while



An interesting class of problems

• Do I 
– Change lane left?
– Change lane right?
– Accelerate?
– Decelerate?



Reward-based problems

• And many others

• Common theme: These are control problems where
– Your actions beget rewards

• Win the game
• Make money
• Get home sooner

– But not deterministically
• A world out there that is not predictable

• From experience of belated rewards, you must learn to 
act rationally



General cartoon of the world

• Agent operates in an environment
– Agent may be you..
– Environment is the game, the market, the road..



General cartoon of the world

• Agent takes actions which affect the 
environment

action



General cartoon of the world

• Agent takes actions which affect the environment
• Which changes in a somewhat unpredictable way

action



General cartoon of the world

• Agent takes actions which affect the environment
• Which changes in a somewhat unpredictable way
• Which affects the agent’s situation

action



General cartoon of the world

• The agent also receives rewards..
– Which may be apparent immediately
– Or not apparent for a very long time

action



Challenge

• How must the agent behave to maximize its 
rewards



What the environment “experiences”

• Responds to some action by the agent
– Changes in response

• Returns some reward (or punishment) to agent

action



What the Agent sees

• The agent may observe something about its environment
– Sensor readings,  images of a game board, stock indices..

• The agent takes actions
• The agent receives rewards

• This is the agent’s world; it must make sense of it
• Again: Agent’s objective  to take the actions that maximize 

rewards

actionObservations



Lets formalize the problem
• These can be cast as problems of reinforcement learning

• There is no supervisor, only a reward signal
– Did you get home sooner
– Did you win the game
– Did you make money?

• i.e. nobody telling the agent “you did well”

• Reward is a scalar – a single number, may be negative
– Game was won/lost (binary)
– Time taken to arrive
– Amount of money made

• Reward may be delayed
– Wait till the end of the game!

• Agents actions affect its current and future rewards
– Must optimize actions for maximum reward

௧௧

௧



To Maximize Reward

• We can represent the environment as a process
– A mathematical characterization with a true value for its 

parameters representing the actual environment

• The agent must model this environment process
– Formulate its own model for the environment, which must 

ideally match the true values as closely as possible
• Based only on what it observes

• Agent must formulate winning strategy based on model of 
environment



Lets formalize the system

• At each time the agent:
– Makes an observation of

the environment
– Receives a reward 
– Performs an action 

• At each time the environment:
– Receives an action 
– Emits a reward 
– Changes and produces an observation 

௧௧

௧

௧

௧ାଵ

௧ାଵ



Lets formalize the system

• At each time the agent:
– Makes an observation of

the environment
– Receives a reward 
– Performs an action 

• At each time the environment:
– Receives an action 
– Emits a reward 
– Changes and produces an observation 

௧௧

௧

௧

௧ାଵ

௧ାଵ



From the perspective of the Agent
• What the agent perceives..

• The following History:

•

• The total history at any time is the sequence of 
observations, rewards and actions

• We need to model this sequence such that at any time t, 
the best can be chosen 
– The Strategy that maximizes total reward 



Lets formalize the system

• At each time the agent:
– Makes an observation of

the environment
– Receives a reward 
– Performs an action 

• At each time the environment:
– Receives an action 
– Emits a reward 
– Changes and produces an observation 
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Can define a “state”

• Fully captures the “status” of the system
– E.g., in an automobile:  [position, velocity, acceleration]

– In traffic:  the position, velocity, acceleration of every 
vehicle on the road

– In Chess: the state of the board + whose turn it is next



The state of the environment

• The environment’s state!
– This is what will finally decide the rewards

• May be a complex combination of many things
• Generally assumed to be dynamic – keeps changing
• The agent’s actions can affect the way in which it responds

– But agent may not be able to observe all of it

௧



Markov property

• Markov Property: A well-defined state fully captures all 
information needed to predict the future
– No additional information from the past required

• The environment’s future only depends on its present

௧



A brief trip to Nostalgia..

• Glider, Flider’s brother, never turns around during his wanderings
– On arriving at any corner, he chooses one of the two “forward” paths 

randomly.
• The future possibilities depend on the edge he arrived from

– Is he Markovian?



Glider is a Markov dude!

• Any causal system can be viewed as Markov, with appropriately 
defined state
– The Markov state ௧ may differ from the apparent state ௧

– Defining ௧ ଵ ଶ ௧

– ௧ାଵ ଴ ଵ ௧ ௧ାଵ ௧



Markov property

• The true environment state is Markov

• The environment’s future only depends on its 
present

௧



Markov property

• To be able to maximize his reward, the agent must ideally 
know all about the environment state and its dynamics..

௧



To Maximize Reward

• We can represent the environment as a process
– A mathematical characterization with a true value for its 

parameters representing the actual environment

• The agent must model this environment process
– Formulate its own model for the environment, which must 

ideally match the true values as closely as possible
• Based only on what it observes

• Agent must formulate winning strategy based on 
model of environment



The Agent’s Side of the Story

• Agent has an internal representation of the 
environment state
– May not match the true one at all

• May be defined in any manner
– Formally the agent state is some function 

of the history
– The closer the agent’s model is to the true 

environment state, the better the agent will be able to 
strategize



Defining Agent State

• What is the outcome?

Image lifted from David Silver



Defining Agent State

• Different definitions of state result in different 
predictions

• True environment state not really known
– Would greatly improve prediction if known



Markov property and observability

• Environment state is Markov
– An assumption that is generally valid for a properly defined  true 

environment state

௧ାଵ ଴ ଵ ௧ ௧ାଵ ௧

• In theory, if the agent doesn’t observe the environment’s internals, 
he cannot model what he observes of the environment as Markov!
– Amazing, but trivial result
– E.g. the observations generated by an HMM are not Markov

• In practice, the agent may assume anything
– The agent may only have a local model of the true state of the system

• But can still assume that the states in its model behave in the same Markovian 
way that the environment’s actual states do



Markov property and observability

• Observability
– The agent’s observations inform it about the environment state
– The agent may observe the entire environment state

• Now the agents state is isomorphic to the environment state

• Note – observing the state is not the same as knowing the state’s true dynamics 𝑃൫𝑆௧ାଵ =

𝑠௝|𝑆௧ = 𝑠௜൯

– Markov Decision Process

– Or only part of it 
• E.g. only seeing some stock prices,  or only the traffic immediately in front of you
• Partially Observable Markov Decision Process

Chess: environment state
fully observable to agent Poker: environment state only partially and indirectly 

observable to agent



Markov property and observability

• Observability
– The agent’s observations inform it about the environment state
– The agent may observe the entire environment state

• Now the agents state is isomorphic to the environment state

• Note – observing the state is not the same as knowing the state’s true dynamics 𝑃൫𝑆௧ାଵ =

𝑠௝|𝑆௧ = 𝑠௜൯

– Markov Decision Process

– Or only part of it 
• E.g. only seeing some stock prices,  or only the traffic immediately in front of you
• Partially Observable Markov Decision Process

Chess: environment state
fully observable to agent Poker: environment state only partially and indirectly 

observable to agent

We focus on this in our lectures



The World as we model It

• Definition of Markov property:
– The state of the system has a Markov property if the 

future only depends on the present

• States can be defined to have this property

Where the spider can go next
only depends on where she is



A Markov Process

• A Markov process is a random process where the future is 
only determined by the present
– Memoryless

• Is fully defined by the set of states , and the state 
transition probabilities 
– Formally, the tuple 
– is the (possibly finite) set of states
– is the complete set of transition probabilities 
– Note stands for at any time 
– Will use the shorthand 



The transition probability

• For processes with a discrete, finite set of states, is 
generally arranged as transition probability matrix

భ భ మ భ ಿ భ

భ మ మ మ ಿ మ

భ ಿ మ ಿ ಿ ಿ

• More generally (for continuous-state processes, e.g. the 
state of an automobile), it is modelled as a parametric 
distribution



State Transition Probabilities

• What is the transition probability matrix?

Where the spider can go next
only depends on where she is

From any corner, she is equally
likely to wander off in any
direction



The World as we model It

This spider does not like to
turn back

Is this a Markov process?



The World as we model It

This spider does not like to
turn back

Is this a Markov process?

How many states?
What is the transition matrix?



A Markov Reward Process

• A Markov Reward Process (MRP) is a Markov 
Process where states give you rewards

• At each state , upon arriving at that state, 
you obtain a reward , drawn from a 
distribution 



Markov Reward Process

• Flider and the Markov reward process!

Reward: Upon arriving at any corner, 
the spider may catch a fly from the 
swarm hovering there

Rewards are corner specific and 
probabilistic: Different corners have 
different sized swarms with flies of 
different sizes.  The spider only has a 
probability of catching a fly, but may 
not always catch one.



Is This an MRP?

• Is this a Markov Reward Process?



Markov Reward Process

• Formally, a Markov Reward Process is the tuple 

– is the (possibly finite) set of states

– is the complete set of transition probabilities 

– is a reward function, consisting of the distributions 

• Or alternately, the expected value  ௦

– is a discount factor



Markov Reward Process

• Formally, a Markov Reward Process is the tuple 

– is the (possibly finite) set of states

– is the complete set of transition probabilities 

– is a reward function, consisting of the distributions 

• Or alternately, the expected value  ௦

– is a discount factor What on earth is this?



Rewards and Expected rewards

• One step expected reward: 
– Will this be greater if the spider heads to corner 2 or to corner 3?

1
2

3 4

5

6
7

8

No route to corner 4
except from corner 3



Rewards and Expected Rewards

• One step expected reward: 
– Will this greater if the spider heads to corner 2 or to corner 3?

1
2

3 4

5

6
7

8

No route to corner 4
except from corner 3

Note:  Distinction between expected reward and sample reward
Sample reward is what we actually get.  Will represent by 
Expected reward is what we may expect to get.  Will represent by 



Where should the spider be?

• Flider has the option of landing on corner 1, 2 or 3 before 
she begins wandering the room
– Which is the better corner to land on?

1 2

3 4

5

6
7

8



Where should the spider be?

• Flider has the option of landing on corner 1, 2 or 3 before 
she begins wandering the room
– Which is the better corner to land on?

1 2

3 4

5

6
7

8

Need to know
the long-term
consequences
of landing in the
two corners

Where can she
expect to get
more food in
the long term?



Where should the spider be?

• Assume she is allowed to “practice” once from each 
corner
– To plan her future strategy

1 2

3 4

5

6
7

8
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3 4
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3 4
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6
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Practice



Where should the spider be?

• Must use her “practice” turn to assign a “value” to 
each of the corners
– Guess how much food she would get in the long term 

from that corner

1 2

3 4

5

6
7

8
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Practice



Flider practices

• Starting from 3, she gets r1, r2, r3….

• Is r1 + r2 +r3 …  a realistic representation of what 
she’d get if she did it again?

1
2

3 4

5

6

7

8

r1

r2

r7

r8 r9

r10

r11

r12

r3 r4

r5

r6

r13

r14

r15

r16



Flider practices

• Starting from 3, she gets r1, r2, r3….

• Is r1 + r2 +r3 …  a realistic representation of what 
she’d get if she did it again?

1
2

3 4

5

6

7

8

r1

r1 is somewhat realistic – it is obtained from corner 3

r2: she had a choice of 3 corners for her next stop and chose one randomly during 
practice. Unlikely she’ll go to the same corner  in the next run (less representative)

r3:  she had 9 possible corners to choose from in 2 steps. r3 is even less representative of 
future runs

And so on…
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• Starting from 3, she gets r1, r2, r3….

• Is r1 + r2 +r3 …  a realistic representation of what 
she’d get if she did it again?

1
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8

r1

A better guess for how good it is to land at “3”:
𝟏 𝟏 𝟐 𝟐 𝟑 𝟑 𝟒

Where  𝒊

(you “trust” the readings from farther in the future less)

r1 is somewhat realistic – it is obtained from corner 3

r2: she had a choice of 3 corners for her next stop and chose one randomly during 
practice. Unlikely she’ll go to the same corner  in the next run (less representative)

r3:  she had 9 possible corners to choose from in 2 steps. r3 is even less representative of 
future runs

And so on…



Flider practices

• Starting from 3, she gets r1, r2, r3….

• Is r1 + r2 +r3 …  a realistic representation of what 
she’d get if she did it again?

1
2

3 4

5

6

7

8

r1

A better guess for how good it is to land at “3”:
𝟏 𝟏 𝟐 𝟐 𝟑 𝟑 𝟒

Where  𝒊

(you “trust” the readings from farther in the future less)

A “mathematically good” choice:  where 

r1 is somewhat realistic – it is obtained from corner 3

r2: she had a choice of 3 corners for her next stop and chose one randomly during 
practice. Unlikely she’ll go to the same corner  in the next run (less representative)

r3:  she had 9 possible corners to choose from in 2 steps. r3 is even less representative of 
future runs

And so on…



The discounted return

௧ ௧ାଵ ௧ାଶ
ଶ

௧ାଷ
௞

௧ା௞ାଵ

ஶ

௞ୀ଴

• The return is the total future reward all the way to the end
• But each future step is slightly less “believable” and is hence 

discounted
– We trust our own observations of the future less and less

• The future is a fuzzy place

• The discount factor is our belief in the predictability of the future
– :  The future is totally unpredictable, only trust what you see 

immediately ahead of you  (myopic)
– :  The future is clear; consider all of it  (far sighted)

• Part of the Markov Reward Process model



The discounted return

௧ ௧ାଵ ௧ାଶ
ଶ

௧ାଷ
௞

௧ା௞ାଵ

ஶ

௞ୀ଴

• The return is the total future reward all the way to the end
• But each future step is slightly less “believable” and is hence 

discounted
– We trust our own observations of the future less and less

• The future is a fuzzy place

• The discount factor is our belief in the predictability of the future
– :  The future is totally unpredictable, only trust what you see 

immediately ahead of you  (myopic)
– :  The future is clear; consider all of it  (far sighted)

• Part of the Markov Reward Process model

Caveat:  Weird notation.  rt+1 is actually associated with 
the state at time t



Rewards

• Our spider goes wandering..

• Are these sample rewards or expected 
rewards?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1



Rewards

• Our spider goes wandering..

• Are these sample rewards or expected rewards?
• What are the expected rewards at t=1,2,…

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1



Rewards

• Our spider goes wandering..

• Are these sample rewards or expected rewards?
• What are the expected rewards at t=1,2,…
• Under what condition would both be the same?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1



Returns

• Our spider goes wandering..
ଵ ଶ ଷ ସ ହ

• We decide the discounting factor 
– Really trusting the future

• What is the return ௧ at ?
• What is the return at t=7?
• Are these sample returns or expected returns?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1



Returns

• Our spider goes wandering..
ଵ ଶ ଷ ସ ହ

• We decide the discounting factor 
– Really trusting the future

• What is the return ௧ at ?
• What is the return ௧ at ?
• Are these sample returns or expected returns?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1



Returns

• Our spider goes wandering..
ଵ ଶ ଷ ସ ହ

• We decide the discounting factor 
– Really trusting the future

• What is the return ௧ at ?
• What is the return ௧ at ?
• Are these sample returns or expected returns?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1



Returns

• Our spider goes wandering..

• What is the return at with 

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1



Returns

• Discounted sample returns by themselves 
carry a fuzzy meaning
– Why should we discount  something we already 

observed?

• However, they make sense as samples of the 
possible future when you are at any state
– If you are at any state, what is the expected return 



Introducing the “Value” function

• The “Value” of a state is the expected total discounted 
return, when the process begins in that state

• Or, since the process is Markov and the future only 
depends on the present and not the past

• Or more generally



The spider again

• The spider gains a reward of value 1 if she consumes the fly
• The spider has infinite patience
• What is the value of starting at each corner?



The spider again

• Regardless of which corner the spider starts at, she will 
eventually, randomly, nab the fly

• The expected return from any corner is 1!

c1 c2

c3

c4

c5
c6

c7

c8



The spider

• The value of being at any corner is 1 for all 
corners
– She can expect to get a fly from anywhere

c1 c2

c3

c4

c5
c6

c7

c8



The hungry spider

• The spider is hungry
• She gets a negative reward of -1 for every minute spent finding food
• What is the expected return if she starts at c1

c1 c2

c3

c4

c5
c6

c7

c8



The hungry spider

• Posing the problem:  There is a total reward/penalty associated with each 
corner
– if the corner has no fly

• Will definitely spend at least one more minute hunting

– 1 at the corner that has the fly (satisfied!)

• Thus  ௖ೣ
for ଵ ଻

• ௖ఴ

• Note: We could also assign costs/rewards to edges in addition to nodes, if 
we want more detail, but wont do so for our lectures

c1

c2

c3

c4

c5 c6

c7

c8



The hungry spider
c1 c2

c3

c4

c5
c6

c7

c8

• A familiar solution
• Assuming 

– A natural fit in this problem

௖భ ௖మ ௖య ௖ర

௖మ ௖భ ௖ళ ௖ఴ

௖ఴ



The gluttonous spider
• There are flies at every corner
• The expected reward after

arriving at any corner is 
ೣ

– The average size of the fly there 
minus the travel penalty

• Immediate rewards matter
– Ideally  
– Give more importance to 

immediate rewards than future 
ones



The gluttonous spider

• A familiar solution
• What happens if ?

௖భ ௖భ ௖మ ௖య ௖ర

௖మ ௖మ ௖భ ௖ళ ௖ఴ

௖ఴ ௖ఴ ௖మ ௖య ௖ల

c1 c2

c3

c4

c5
c6

c7

c8



The Bellman Expectation Equation

• The value function of a state is the expected discounted 
return, when the process begins at that state

• The Bellman Expectation Equation:

ᇲ



Why discounted return?

• In processes with infinite horizon, which can go on for ever, 
the total undiscounted return will be infinite for every path 

will be infinite for every path
– For finite horizon processes, a discount factor is good.  It 

lets us talk in terms of actual total return
– For infinite horizon processes, discounting is required for 

meaningful mathematical analysis :  ௞
௧ା௞ାଵ

ஶ
௞ୀ଴



The Bellman Expectation Equation

• Bellman expectation equation in matrix form

௦ ௦ ௦ᇱ,௦ ௦ᇱ
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The Bellman Expectation Equation

• Given the MRP 
• I.e. the expected rewards at every state, and the transition probability matrix, 

– the value functions for all states can be easily computed through matrix 
inversion

ିଵ

• Finding the values of states is a key problem in planning and 
reinforcement learning

• Unfortunately, for very large state spaces, the above matrix inversion is 
not tractable
– Also not invertible for small state spaces if 

• Inversion cannot be used to find 𝒱 even when it is finite (e.g. our fly problem), if 𝛾 = 1

• Much of what we will deal with is how to tackle this problem



Moving on..

• Up next … Markov Decision Processes



MDP

• We have assumed so far that the agent behaves randomly
– The agent has no agency
– Lets make the agent more intelligent..

c1 c2
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A more realistic problem
• The spider actively chooses 

which way to move
– The agent takes action
– Ideally, it would move in the 

general direction of the fly

• However, each time the 
spider moves, the fly jumps 
up and settles at another 
corner
– The agent’s action changes 

the environment!

c2

c3

c4

c5
c6

c7

c8

Full set of possible actions



A more realistic problem
• The spider actively chooses 

which way to move
– The agent takes action
– Ideally, it would move in the 

general direction of the fly

• However, each time the 
spider moves, the fly jumps 
up and settles at another 
corner
– The agent’s action changes 

the environment!
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c3

c4

c5
c6

c7

c8

How do we model this
system?



Redefining the problem

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..

– The state it arrives in depends on where the fly jumped
– Which depends on which direction the Spider moved

• The spider’s action modifies the state transition probabilities!!

Full set of possible actions



What is 

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..

– The state it arrives in depends on where the fly jumped
– Which depends on which direction the Spider moved

• The spider’s action modifies the state transition probabilities!!

Full set of possible actions
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What is 

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..

– The state it arrives in depends on where the fly jumped
– Which depends on which direction the Spider moved

• The spider’s action modifies the state transition probabilities!!

Full set of possible actions

ଵ

ଶ

ଷ଺

ସ
ହ

Trick question.
Must modify our notion of states and actions, 
and define the behavior of the fly, to characterize.



Trick Question: Redefining the States

• There are, in fact, only four states, not eight
– Manhattan distance between fly and spider = 0 (s0)
– Distance between fly and spider = 1 (s1)
– Distance between fly and spider = 2 (s2)
– Distance between fly and spider = 3 (s3)

• Can, in fact, redefine the MRP entirely in terms of these 4 states
• There are two actions a+ and a-
• Need an idea of the behavior of the fly



The Fly Markov Reward Process

• There are, in fact, only four states, not eight
– Manhattan distance between fly and spider = 0 (s0)
– Distance between fly and spider = 1 (s1)
– Distance between fly and spider = 2 (s2)
– Distance between fly and spider = 3 (s3)

• Can, in fact, redefine the MRP entirely in terms of these 4 states

s3 s2 s1 s0

1.0

1.0

1/3 2/3

1/3
2/3

R=0R=-1R=-1R=-1



The Markov Decision Process:
Defining Actions

• Two types of actions:
– :  Increases distance to fly by 1

– : Decreases distance to fly by 1



The Fly Markov Decision Process

• The behavior of the fly:
– If the spider is moving away from it, it does nothing
– If the spider is moving towards it, it randomly hops to a 

different adjacent corner
• 2/3 of the time, it increases the distance to the fly by 1
• 1/3 of the time, it decreases the distance to the fly by 1



The Fly Markov Decision Process
s0

Process 
ends

s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

1.0



Redefining the problem

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..

– The state it arrives in depends on where the fly jumped
– Which depends on which direction the spider moved

• The spider’s action modifies the state transition probabilities!!

Note: This is a simile for many problems in life, e.g. driving, stock market, 
advertising, etc.
The agents actions modifies how the environment behaves

Full set of possible actions



The Markov Decision Process

• A Markov Decision Process is a Markov Reward 
Process, where the agent has the ability to decide its 
actions!
– We will represent individual actions as 
– We will represent the action at time t as 

• The agent’s actions affect the environment’s behavior
– The transitions made by the environment are functions of 

the action
– The rewards returned are functions of the action



The Markov Decision Process
• Formally, a Markov Decision Process is the tuple 

– is a (possibly finite) set of states : 

– is a (possibly finite) set of actions : 

– is the set of action conditioned transition 
probabilities 

– is an action conditioned reward function 

– is a discount factor



Introducing: Policy
• The policy is the probability 

distribution over actions that 
the agent may take at any state

– What are the preferred actions of the spider at 
any state

• The policy may be deterministic, i.e. 

– where is the preferred action in state 



An example of a policy

• Assuming the fly does not move
– This example is not a particularly good policy for 

the spider
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An example of a policy

• What are the (action dependent) transition 
probabilities of the states here?
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c1

Full set of possible actions



An example of a policy

• What are the (action dependent) transition 
probabilities of the states here?
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c1

Full set of possible actions

The transition probabilities depend on actions, but not on policy



An example of a policy

• Assuming the fly does not move
– This is a different optimal policy
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An example of a policy

• Assuming the fly does not move
– This is a different optimal policy
– What are the transition probabilities here?
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The value function of an MDP
• The expected return from any state depends 

on the policy you follow



The Fly MDP:  Policy 1
s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

௦భ ௦భ ௦భ

1.0
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The Fly MDP:  Policy 2 (optimal)
s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
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s1 s3

2/3

1/3

1.0
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The Fly MDP:  Stochastic Policy
s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
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s1 s3
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1/3
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The Fly MDP:  Stochastic Policy
s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

1.0

௦య ௦య ௦భ ௦య௦మ ௦మ ௦య ௦మ ௦బ ௦మ

௦భ ௦భ ௦మ
 ௦భ ௦భ
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The state value function of an MDP
• The expected return from any state depends 

on the policy you follow

• We will index the value of any state by the 
policy to indicate this

Bellman Expectation Equation for State Value Functions of an MDP

Note: Although reward was not dependent on action for the fly example,
more generally it will be



The action value function of an MDP

• There are different value equations associated with different 
actions

• So we can actually associate value to state action pairs
• Note: The LHS in the equation is the action-specific value at the 

source state, but the RHS is the overall value of the target states

s1

s2 s11

a+

s1

a-

1.0

௦భ ௦భ ௦మ ௦భ ௦భ ௦భ



The action value function of an MDP
• The expected return from any state under a 

given policy, when you follow a specific action

Bellman Expectation Equation for Action Value Functions of an MDP



All together now
• The Bellman expectation equation for state value function
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The Bellman Expectation Equations

• The Bellman expectation equation for state value 
function

• The Bellman expectation equation for action value 
function



“Computing” the MDP

• Finding the state and/or action value functions for the MDP:
– Given complete MDP (all transition probabilities , expected 

rewards , and discount ) 

– and a policy 

– find all value terms and/or 

• The Bellman expectation equations are  simultaneous 
equations that can be solved for the value functions
– Although this will be computationally intractable for very large 

state spaces



Computing the MDP

• Given the expected rewards at every state, the 
transition probability matrix, the discount 
factor and the policy:

• Matrix inversion O(N3); intractable for large 
state spaces



Optimal Policies
• Different policies can result in different value functions
• What is the optimal policy?

• The optimal policy is the policy that will maximize the 
expected total discounted reward at every state:  

• Why do we consider the discounted return, rather than 
the actual return ?



Optimal Policies
• Different policies can result in different value functions

• What is the optimal policy?

• The optimal policy is the policy that will maximize the 
expected total discounted reward at every state:  

– Recall: why do we consider the discounted return, rather 
than the actual return ?



Policy Ordering Definition

• A policy is “better” than a policy if the value 
function under is greater than or equal to the 
value function under at all states

• Under the better policy, you will expect better 
overall outcome no matter what the current state



The optimal policy theorem

• Theorem: For any MDP there exists an optimal policy 
that is better than or equal to every other policy:

• Corollary: If there are multiple optimal  policies 
all of them achieve the same value function

೚೛೟೔

• All optimal policies achieve the same action value function

೚೛೟೔



How to find the optimal policy

• For the optimal policy:

• Easy to prove
– For any other policy ,   

• Knowing the optimal action value function 
is sufficient to find the optimal policy



The optimal value function

• Which gives us



Pictorially

• Blank circles are states, filled dots are state-
action pairs

Figures from Sutton

∗ 1 ∗ 2 ∗ 3

Backup Diagram



The optimal value function

• Which gives us

• But, for the optimal policy we also have



Backup Diagram

Figures from Sutton
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Backup Diagram
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Backup Diagram

Figures from Sutton
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Bellman Optimality Equations

• Optimal value function equation

• Optimal action value equation

 



Optimality Relationships
• Given the MDP:  
• Given the optimal action value functions, the optimal value function can 

be found

∗
௔

∗

• Given the optimal value function, the optimal action value function can be 
found

∗ ௦
௔

௦,௦ᇱ
௔

∗

 

௦ᇱ

• Given the optimal action value function, the optimal policy can be found

∗ ௔ᇱ
∗



“Solving” the MDP

• Solving the MDP equates to finding the optimal policy 

• Which is equivalent to finding the optimal value function  

• Or finding the optimal action value function 

• Various solutions will estimate one or the other
– Value based solutions solve for and and derive 

the optimal policy from them
– Policy based solutions directly estimate 



Solving the Bellman Optimality 
Equation

• No closed form solutions

• Solutions are iterative
• Given the MDP (Planning):

– Value iterations
– Policy iterations

• Not given the MDP (Reinforcement Learning):
– Q-learning
– SARSA..



QUESTIONS before we dive?



Planning with an MDP

• Problem:  
– Given: an MDP 

– Find: Optimal policy 

• Can either
– Value-based Solution: Find optimal value (or action 

value) function, and derive policy from it  OR

– Policy-based Solution: Find optimal policy directly



Value-based Planning

• “Value”-based solution

• Breakdown: 
– Prediction:  Given any policy find value function 

– Control:  Find the optimal policy



Value-based Planning

• “Value”-based solution

• Breakdown: 
– Prediction:  Given any policy find value function 

– Control:  Find the optimal policy



Preliminaries
• How do we represent the value function?
• Table:

– Value function
• గ

• For a process with discrete states, must store/compute 
unique values

– Action value functions
• గ

• For a process with discrete states and discrete actions, must 
store/compute unique values

• Later we will see how to represent these when the 
number of states/actions is too large or continuous



The Bellman Expectation Equation for 
the value function
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• In vector form
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The Bellman Expectation Equation for 
the value function
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• In vector form
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గ ଶ
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Solving the MDP

• Given the expected rewards at every state, the 
transition probability matrix, the discount factor 
and the policy:

• Easy for processes with a small number of states

• Matrix inversion O(N3); intractable for large state 
spaces



What about the action value 
function?

• The Bellman expectation equation for action 
value function

Even worse!!



So how do we solve these

• The equations are too large, how do we solve 
them?

• First, a little lesson – from middle school…



What they never taught you in school

• Consider the following equation:

• Where 

• Trivial solution:   

• But my CPU does not permit division.. 
– How do I solve this?



What they never taught you in school

• Must solve the following without division

– where 

• Rewrite as follows

• The following iteration solves the problem:

• Can start with any 
• Proof??



What they never taught you in school

• Must solve the following without division

– where 

• Rewrite as follows

• The following iteration solves the problem:

• Can start with any 
• Proof?? Hint: 



What they never taught you in school

• Consider any vector equation

– Where all Eigen values 
• And some extra criteria…

– The square submatrix of corresponding to non-zero 
entries of is full rank

– The square submatrix of corresponding to zero entries of 
is an identity matrix

• The following iteration solves the problem:



Eigen values of a probability matrix

• For any Markov transition probability matrix 
, all Eigenvalues have magnitude less than or 

equal to 1



Solving for the value function

• This can be solved by following iteration starting from 
any initial vector



Solving for the value function

• This can be solved by following iteration starting from 
any initial vector

• But how did that help if we need infinite iterations to 
converge?
– Solution: Stop when the changes becomes small

గ
(௞ାଵ)

గ
(௞ାଵ)



Solving for the value function

• This can be solved by following iteration starting from 
any initial vector

• But how did that help if we need infinite iterations to 
converge?
– Solution: Stop when the changes becomes small

గ
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గ
(௞ାଵ)



Actual Implementation
• Initialize గ

(଴) for all states

• Update

గ
(௞ାଵ)
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• Update may be in batch mode
– Keep sweep through all states to compute గ

(௞ାଵ)

– Update 
• Or incremental

– Sweep through all the states performing
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Actual Implementation
• Initialize గ

(଴) for all states

• Update
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• Update may be in batch mode
– Keep sweep through all states to compute గ

(௞ାଵ)

– Update 
• Or incremental

– Sweep through all the states performing
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This is an instance of dynamic programming:

dynamic programming (also known as dynamic optimization) is a method 
for solving a complex problem by breaking it down into a collection of 
simpler subproblems, solving each of those subproblems just once, and 
storing their solutions. The next time the same subproblem occurs, instead 
of recomputing its solution, one simply looks up the previously computed 
solution, thereby saving computation time at the expense of a (hopefully) 
modest expenditure in storage space. (Each of the subproblem solutions is 
indexed in some way, typically based on the values of its input parameters, 
so as to facilitate its lookup.) (from wikipedia)



An Example

• All squares, except shaded square have reward -1,  
shaded square has reward 0

• Policy:  Random – can step in any of the four directions 
with equal probability
– If you run into a wall, you just return to the square

• Find the value of being in each square

Example from Sutton



The Gridworld Example

• Actual iterations use random policy
• Right column shows greedy policy according to current value function



The Gridworld Example

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random 

policy converges!



Value-based Planning

• “Value”-based solution

• Breakdown: 
– Prediction:  Given any policy find value function 

– Control:  Find the optimal policy



Revisit the gridworld

Example from Sutton



Revisit the gridworld

• Actual iterations use random policy
• Right column shows greedy policy according to current value function



Revisit the gridworld

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random 

policy converges!



Finding an optimal policy

• Start with any policy, e.g. random policy 
• Iterate ( … convergence):

– Use prediction DP to find the value function (ೖ)

– Compute action value function :

(ೖ) (ೖ)

– Find the greedy policy

(ೖ)



Finding an optimal policy: Compact

• Start with any policy 
• Iterate ( … convergence):

– Use prediction DP to find the value function (ೖ)

– Find the greedy policy

(ೖ)



Finding an optimal policy: Shorthand

• Start with any policy 
• Iterate ( … convergence):

– Use prediction DP to find the value function (ೖ)

– Find the greedy policy

(ೖ)

THIS IS KNOWN AS POLICY ITERATION
In each iteration, we find a policy, and then find its value



Policy Iteration
• Start with any policy 

• Iterate ( … convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
௞ାଵ

గ(ೖ)

• This will provably converge to the optimal policy 
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes



Generalized Policy Iteration
• Start with any policy 

• Iterate ( … convergence):
– Use any algorithm to find the value function (ೖ)

– Use any algorithm to find an update policy

(ೖ)

Such that 

• Guaranteed to converge to the optimal policy



Generalized Policy Iteration

• Start with any policy 

• Guaranteed to converge to the optimal policy

Evaluation (anyhow)

Improvement (anyhow)



Optimality theorem

• All states will hit their optimal value together

• Theorem:
A policy has optimal value

in any state if and only if for every state 
reachable from ,  



Policy Iteration
• Start with any policy 

• Iterate ( … convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
௞ାଵ

గ(ೖ)

• This will provably converge to the optimal policy 
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes



Policy Iteration
• Start with any policy 

• Iterate ( … convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
௞ାଵ

గ(ೖ)

• This will provably converge to the optimal policy 
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes

In the gridworld example we didn’t even need to run this to convergence

The optimal policy was found long before the actual value function converged
even in the first upper iteration



Revisit the gridworld

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random 

policy converges!



Policy Iteration
• Start with any policy 

• Iterate ( … convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
௞ାଵ

గ(ೖ)

• This will provably converge to the optimal policy 
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes

In the gridworld example we didn’t even need to run this to convergence

The optimal policy was found long before the actual value function converged
even in the first upper iteration

Do we even need the prediction DP to converge?



Optimal policy estimation
• Start with any policy 

• Iterate ( … convergence):
– Use iterations of prediction DP to find the value function 

(ೖ)

– Find the greedy policy

(ೖ)

• This will provably converge to the optimal policy 



Optimal policy estimation

• Start with any policy 

• Iterate ( … convergence):
– Use iterations of prediction DP to find the value 

function (ೖ)

– Find the greedy policy

(ೖ)



Optimal policy estimation
• Start with any policy 

• Iterate ( … convergence):
– Use iterations of prediction DP to find the value function 
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– Find the greedy policy
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Optimal policy estimation
• Start with any policy 

• Iterate ( … convergence):
– Use iterations of prediction DP to find the value function 
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– Find the greedy policy

௞ାଵ

௔
௦
௔

௦,௦ᇱ
௔

గ(ೖ)

 

௦ᇱ

BUG



Reordering and writing carefully
• Start with any initial value function గ బ

• Iterate ( … convergence):
– Find the greedy policy
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– Use iterations of prediction DP to find the value function గ(ೖ)
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Merging
• Start with any initial value function గ బ

• Iterate ( … convergence):
– Update the value function
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• Note: no explicit policy estimation
– Directly learns value
– The subscript is a misnomer



Value Iteration
• Start with any initial value function ∗

(଴)

• Iterate ( … convergence):
– Update the value function
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• Note: no explicit policy estimation
• Directly learning optimal value function
• Guaranteed to give you optimal value function at convergence

– But intermediate value function estimates may not represent any 
policy



Value iteration

• Each state simply inherits the cost of its best 
neighbour state
– Cost of neighbor is the value of the neighbour plus 

cost of getting there



Value Iteration Example

• Target: Find the shortest path
• Every step costs -1



Practical Issues

• Updates can be batch mode

– Explicitly compute from for all states
– Set k = k+1

• Or asynchronous
– Compute in place while we sweep over states
–



Recap

• Learned about prediction 
– Estimating value function given MDP and policy

• Learned Policy iteration
– Iterate prediction and policy estimation

• Learned about Value iteration
– Directly estimate optimal value function



Alternate strategy

• Worked with Value function
– For N states, estimates N terms

• Could alternately work with action-value 
function
– For M actions, must estimate MN terms

• Much more expensive
• But more useful in some scenarios



Next Up

• We’ve worked so far with planning
– Someone gave us the MDP

• Next:  Reinforcement Learning
– MDP unknown..


