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Debugging and Visualization



Recap

Now you know :

• What Neural Networks are and what they do (lectures week 1)
• How to train networks(lectures week 2-4)

• How Pytorch helps you to define and train nets (rec 2)

• How to use Pytorch to simultaneously load data, build networks 
and train them efficiently (rec 3)

You have tried to use that knowledge in HW1P2.

It’s harder than recitations make you think.



Debugging deep learning

In Computer Science, debugging is always a big, painful part of 
the work.

In Deep Learning it’s even bigger and more painful. Very often 
you :

● Have implemented a sweet model
● The code looks fine
● Accuracy is terrible/you get a weird error
● You have no idea why



Debugging deep learning

The reason DL debugging is especially hard is that there’s a large 
number of phenomena that can make your code fail :

● Python-based error
● Pytorch-based error
● “Math” error (wrong minus somewhere)
● Modelization issue
● Training issue
● Testing issue
● ....

The hardest thing is to determine in which situation you are.



Plan for today

Today we’ll cover these cases and what you can do about 
them (both prevention and debugging)

● General tips to organize your code
● Usual Model-related errors and how to find them
● Use metrics/hyperparams visualization to help you !

Apply these before coming to Office Hours !



General coding tips

Make your code modular

Design functions/classes for each of the main subtasks 
(data loading, model definition, model training,...).

Have these functions in separate files, and use a central 
script file that you call once.

Do not use a notebook, except for the script file.



General coding tips

Centralize your hyperparameters

Instead of hardcoding the hyperparameters you use 
(learning rate, nepochs, layer size, dropout) in the different 
files, write a configuration module for that (file or command 
line)

This may contain boolean flags too (use_cuda, test_only, 
etc).



General coding tips

Start small

Use simple models/training routines at first, with few 
configuration options. When things seem to work, increase 
complexity.

Implement a sanity check



General coding tips

Let’s look at an example.



Debugging

Coding error : when your model does not do what you want it to 
do (python, pytorch, math)

Training error : when your model does what you want it to do 
but is not learning well

Testing/decoding error : when your model is learning well but 
outputs bad results
(this one should be rare in HW1 but very usual when dealing with 
language in HW3/HW4. We won’t talk too much about it.)

You should check for coding errors first, then training errors.
 



Coding errors

Signs you may have one :

● Loss does not decrease at all

● Outputs are constants

● Training stops mid-time for unclear reasons



Coding errors

How to find them : Print everything to look for the first moment 
the problem appears. Be methodical

What to check :
● Your data : Not iterating ? Instance-label misalignment ?
● Your shapes : everything consistent ?
● Your hyperparameters : when you print them, are they what 

they’re supposed to be ?
● Your parameters : are they changing during training ? Are 

they going to 0 ? (they are in my_net.parameters())
● Simpler cases (ex : with batch size 1 does it work ?)

It’s good to have a sanity check for that. Don’t use cuda/AWS.



Time issues

Specific case of coding error : when things work but are too slow.

In your epochs, use the time module to check the duration of all 
your subtasks (data loading, forward, backward,...), and find the 
aberrant one.

(In HW1P2, one epoch should last ~5 minutes with 4-5 layers of 
sizes ~1024) 



Training errors

For those errors, usually your loss does decrease, but not 
enough. If you see absurdly low performance (~random) it’s 
probably a coding error.

Note : a random classification model would have a cross-entropy 
loss of ~log(Number_of_classes).



Training errors

Different problems :

Modelization issues : your model is too small to learn patterns 
(or not well designed when the problem is complex)

Optimization issues : you cannot train your model properly

Overfitting : your model is too big/you train too long



Modelization/optimization issues

Sign that you have one : the training loss does not go down well 
enough

To make sure :
A good model will overfit if you train it too long → you can use 
that to debug
Train your model on a small subset of your data for many epochs  
: the training loss should go to 0. If it doesn’t, you have a 
problem.



Modelization issues

Is your model too weak ?

You should refer to literature/your experience to know that.
(In HW1P2 : 3 layers of size 512 are enough for 55% accuracy 
(with context))

If the model shouldn’t be weak, look for an optimization issue.



Optimization issues

 You should look for :
● Learning rate: if too small you will learn too slowly. If too 

large you will learn for a while then diverge.
Default “good” : 0.001. 
It is recommended to do learning rate decay : start large, 
then decrease (for example when loss stops improving)

● Optimizer (default “good” : Adam)
● Initialization (default “good” : xavier)
● Batching (just the batch size on simple problems). Default 

“good” : from 32 to 128 if you can afford it.

Too deep models can create optimization problems too 
(vanishing gradients). They also lead to...



Overfitting issues

Overfitting symptom : Training loss decreases but validation loss 
doesn’t.

You should always have a small validation set to look at every 
epoch.

Things to do there :
● Verify that you shuffle your training data
● Decrease your model size/depth
● Use some of the tricks you know that help generalization : 

dropout, batchnorm, early stopping, validation-driven rate 
decay

Note : adaptative optimizers (Adam,...) overfit more.



Overfitting issues

It’s also possible to overfit on the validation set.
This happens when you try a very large amount of 
architectures/hyperparameters with the same validation set : you 
may find one that works “by chance” and won’t generalize.

(In HW1P2 : if you do 200 attempts a day on kaggle, you may 
overfit on the public leaderboard and be disappointed by your 
results on the private leaderboard).

If you plan to look for many architectures, consider a better 
validation method like K-fold.



Testing/decoding issues

When your model learns, training and validation loss decrease, 
but accuracy is low.

Recall that losses (ex:cross-entropy) are differentiable surrogates 
for the metric you want (ex:accuracy). It’s always possible to have 
a gap between the two.

On a simple classification problem like HW1P2 this shouldn’t 
happen too much (unless bug in the prediction function). 
However, to be safe you should look at your validation accuracy 
along with your loss.



Visualize your metrics

We repeated many times that you should look at your metrics, 
compare training/validation loss,etc.

But, just printing them in the terminal is dirty and hard to read.

That’s why you should visualize them

→ Second part of this recitation



Installation of TensorBoard(X)

● TensorFlow Users
○ TensorBoard comes pre-installed with TensorFlow when you 

use the conda installation
○ If you installed TensorFlow with pip, then you can install 

TensorBoard
pip install -U pip
pip install tensorboard

● PyTorch Users
○ TensorFlow has come out with the TensorBoardX package for 

PyTorch users
○ You can install the package using pip as follows

pip install tensorboardX

https://github.com/lanpa/tensorboardX


Need for Visualization

● Answers the question “Why am I learning?”
● To see how your weight matrix and gradients change over time 

during training of your model, which can help determine whether 
you need to 
○ Remove extra layers when there is a redundancy in matrices
○ Add new layers to see if they learn something unique

● To predict the right time to stop training the model
○ It’s better to use tools to predict when to stop rather than logging loss 

and accuracies at each step of training



Need for Visualization

● Weight Initialization
○ To better understand which weight initialization method performs 

better for the given problem
○ We get to see why initializing with zeroes is not preferred

● How well are the Activation functions performing?
● Is the Dropout rate too high?
● In general, Visualization helps to fine tune the network for better or 

optimal performance



TensorBoard

● A Visual Logger
● To better understand, debug and optimize the problem at hand
● Among many, tf.summary()

○ It’s a public API available for use in multiple deep learning 
frameworks

○ Permits the logging of data to user defined directories
○ Allows logging of operands (similar to nodes in the TF data flow 

graph)
● Support for logging scalars, images, figures, histograms, audios, 

text, graphs and video summaries



TensorBoard

● “scalars” tf.summary.scalar()
○ As the name suggests, plots 1-D operands on a 2-D space where x-axis 

is time (num epochs/steps) and y-axis is the operand value
○ Used to keep track of scalars like “loss”, “prediction_accuracy”, 

“learning_rate”, etc..



● “histograms” tf.summary.histogram()
○ In general, all weights and biases are 2-D matrices which are then 

easily visualized using a histogram in 3-D space
○ In this case, the z-axis corresponds to the time/num-epochs, x-axis is 

operand value and y-axis is the frequency of the operand value

TensorBoard



● “images” tf.summary.images()
○ Generally used to log training images and and visualize which image is 

harder for the model to learn by looking at the loss function
○ Also used to plot weight matrices, CNN kernels or filters as a heat 

map and sometimes even a confusion matrix.
○ It normalizes the values provided between [0-255]

TensorBoard



● TensorBoard should be pre-installed on both tensorflow_p36 
and pytorch_p36 environments

● You however might want to install TensorBoardX into your PyTorch 
environment

● Use the Local Port Forwarding argument (-L) when you “ssh” into 
your instance

● Default port for TensorBoard(X) is 6006
● ssh -i key.pem -L your_machine_port:127.0.0.1:6006 

ubuntu@ec2-xyz.amazonaws.com

Training on AWS?
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