
Convolutional Networks

William Hu

What is Convolution

● Math operation applied on 2 functions, that derives a third function expressing

how the shape of one is modified by the other.

● Matrix convolution is the one that we are interested in.

● If we want to calculate A * B, we will call A the input matrix, B kernel or filter.

● Three steps calculation.
○ Element-wise product

○ Sum up

○ Slide

Convolution of two matrices

0 0 1

0 0 1

0 1 1

1 0 1

0 1 0

1 0 1

Convolution of two matrices

2222

Convolution of two matrices

Convolution of two matrix

0 1 1

0 1 1

1 1 0

1 0 1

0 1 0

1 0 1

Convolution of two matrix

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 0 1

0 1 0

1 0 1

0 0 1

0 0 1

0 1 1

Input
=

Filter =

How to compute a convolution? (3D time series)

How to compute a convolution?

How to compute a convolution?

1. Given an input, overlay a small window (known as the convolution kernel) on

the input. Find the dot product between the kernel and the segment of the

input that was covered by the kernel.

2. Slide the kernel across the input and perform the previous step for all the

different kernel locations.

3. Perform steps 1 and 2 for all output channels, each with a different kernel.

Volume Convolution

● Images has with 3 channels, which is a 3d matrix.

Volume Convolution

● We will need multiple filters and stack them together.

Volume convolution

How to compute a convolution? (Image, 3 channels)

Story so far

6 x 6 x 3 3 x 3 x 3 4 x 4

How to compute a convolution?

Good questions to ask:

● Does the kernel have to completely fit inside the input?
○ Can apply padding to the input

● Do we have to place the kernel at all possible locations? Or can we just place

them at regular intervals?
○ Can adjust the stride of the convolution

Animations of padding and striding, as well as other sometimes useful concepts

such as transposition and dilation:

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

Math Equations

● Input volume is n x n x c

● Filter volume will f x f x c

● The output image (matrix) will be m x m.

● Where s is stride size, and p is the padding on a single side.

Convolutional Neural network

● Input size (bs, n, n, c)

● Filter size (bs, f, f, c)

● The output size (bs, m, m, k)
○ Where k is the number of filters in the convolutional network

Convolutional Neural Network

4 x 4 x 2

What does convolution really do?

Sounds a little arbitrary to slide a window across an input, right?

What do we even get out of this?

1. Convolution as a way to extract local features

2. Convolution as a way to reduce model complexity

Convolution as a feature detector

How do you find the vertical edges in an image?

How do you find the horizontal edges?

How can we combine the two to find the locations of all the edges?

Convolution as a feature detector

How do you find the vertical edges in an image?

How do you find the horizontal edges?

How can we combine the two to find the locations of all the edges?

|horizontal edge intensity| + |vertical edge intensity|

√ (horizontal edge intensity 2 + vertical edge intensity 2)

-1 0 1

-2 0 2

-1 0 1

1 2 1

0 0 0

-1 -2 -1

Original Vertical edges Horizontal edges

All edges

Convolution as a feature detector

Convolution as a feature detector

Original Horizontal Vertical

5x5 boxes

edges

edges

Convolution as a feature detector

A convolution is used to extract simple features in the local neighborhood of each

position in the input.

● An image → Edges, corners, dots...

● Words → Prepositions, short phrases, compound words…

● Sound intensity waveform → Phonemes, tones, inflection...

Perform convolutions on convolutions (with a nonlinear function in between) to find

larger and more complex features in the input.

Convolution to reduce complexity

Let’s consider MLP and CNN. Input dimension of a frame is 40

Let the context size be 10. Hence, one input to the NN is (21, 40). The output

dimension is 138

Number of parameters to be learned for a 3 layer MLP with hidden layer size of 128

is

Convolution to reduce complexity

Let’s consider MLP and CNN. Input dimension of a frame is 40

Let the context size be 10. Hence, one input to the NN is (21, 40). The output

dimension is 138

Number of parameters to be learned for a 3 layer MLP with hidden layer size of 128

is

(21*40*128 + 128*128 + 128*128 + 128*138) ~ 160k

Convolution to reduce complexity

Let’s consider MLP and CNN for MFCC. Input dimension of a frame is 40

Let the context size be 10. Hence, one input to the NN is (21, 40). The output

dimension is 138

Number of parameters to learn for a 10 layer CNN with with 3 filters each of size

3x3, stride=1 and no padding

Convolution to reduce complexity

Let’s consider MLP and CNN for MFCC. Input dimension of a frame is 40

Let the context size be 10. Hence, one input to the NN is (21, 40). The output

dimension is 138

Number of parameters to learn for a 10 layer CNN with with 3 filters each of size

3x3, stride=1 and no padding. Fully connected layer in the end.

((3*3*1*3) + (9 * (3*3*3*3)) + (19*38*138)) ~ 100k

Pooling

A feature map essentially tell us:

● Whether a feature exists in the

image (high activation)

● If so, approximately where in the

image was it found

We can preserve both pieces of

information pretty well with max-pooling

Convolutional Backward

