11-785/ Spring 2019/ Recitation 3

Efficient Deep Learning
Optimization Methods

Josh Moavenzadeh, Kai Hu,
and Cody Smith

Outline

* 1 Review of optimization
* 2 Optimization practice

*3 Training tips in PyTorch

1.1 Mini-batch gradient descent

* What 1s 1t?
* Performs update for every mini-batch of data.
* Why mini-batch?
* Batch gradient descent that uses the whole dataset for one

update: slow and intractable for large datasets to fit into
memory.

* Stochastic gradient descent that updates for each data: high
variance updates. .

"!u\uﬂwl

L‘ I

10

SGD fluctuation (Source: wiki)

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

1.1 Mini-batch gradient descent (continue)

» Update equation
* Let F' be our model, and 8 is the parameter: Y = F(x;0)
* The loss function 1s L, minimize the loss on the dataset:

1 ¢ A
§=— Z L(y; yy)
=1

* Let n be the learning rate, compute the update:

MR- : :
g=—2 Vol(3), 0=0-1-¢
=1

1.1 Mini-batch gradient descent (Continue)

*The good things of mini-batch gradient descent
* Reduces variance of updates
* Matrix multiplication 1is faster

* Have to decide mini-batch size now!
* The common mini-batch size are 32-256.

*Too small: Slow and high variance,
Batch Norm requires a suitable batch size

*Too big: Harder to escape from local minima.
Decay 1n generalization (paper link).

https://openreview.net/pdf?id=H1oyRlYgg

1.1 Mini-batch gradient descent (Continue)

The figure shows why big batch size 1s not OK:

Training Function

| I .'IL'\lingl’uncliun
£ |
| |
|
|I ||
f() / B
4NN

Flat Minimum Sharp Minimum

o —
R—‘

Y-axis: value of the loss. X-axis :the parameters.

1.2 Momentum

* SGD has trouble navigating ravine. Momentum helps SGD
accelerate.

* Adds a fraction y of the update vector of the past step V;_; to
current update vector V,. Momentum term y 1s usually set to 0.9.

 Update: V=V 0 Vel(0); 0=0-v,

 Example: find the minima of z = x% + 50y?

ey .
i | 3 - X
" o o ;;vp{ B

g - - V. # e ==

The function looks like this

1.2 Momentum (Continue)

]
|

HULLEET
| T‘y oo |
| ||| | ||
i T s J \/
\ | (| :
| || :
Il

NSRS

e | {9
| | Ly
[1Y

150 ~100 -50 0 50 100 150 ~-150 ~100 ~50 0 %0 100

Use GD GD + Momentum

*Reduces updates for dimensions whose gradients change

directions.

*Increases updates for dimensions whose gradients point in the

same directions.

150

1.3 Nesterov accelerated gradient (NAG)

* The moment uses history information for better update. NAG wants
to add some future information.

* Update:

V=YV +n VoL@ —yv._y), 0=0-y,
A picture of the Nesterov method

* First make a big jump in the direction of the previous accumulated gradient.
* Then measure the gradient where you end up and make a correction.

4

brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum

1.4 Adagrad

* The previous methods: same learning rate for all parameters.

* Adagrad adapts the learning rate to the parameters
large updates for infrequent parameters
small updates for frequent parameters

* Adagrad divides the learning rate by the square root of the sum of
squares of historic gradients.

* Update:

!
n
rtzzgiza 0=10- >X<gz
=1

Ve

g.1s the sum of the squares of the gradients.

* 1s element-wise multiplication.

1.4 Adagrad (Continue)

*Pros
1) Good when dealing with sparse data.
2) Lesser need to manually tune learning rate.

*Cons
Recall that the update 1s:

n

t
2. 8 +e
=1

*g

Accumulates squared gradients in denominator.
Causes the learning rate to shrink and become infinitesimally
small.

1.5 Adadelta

*In adagrad, the learning rate may become infinitesimally small.

* Adadelta was designed to solve this problem. It replaces the
denominator
by the running average of squared gradients:

Elg), = yElgl—1 + (1 =1
* Preliminary Adadelta update (Also named RMSprop):

n
VElg2, +e

0=0

>X<gz

* Compare with adagrad:

1.5 Adadelta (Continue)

* Denominator 1s called root mean squared (RMS) error of gradient,
we can write the update as:
81

AG, = —
= T T RMS[gl,

*The units do not match!
* Define the running average of squared parameter updates and RMS:

F[A0%], = yE[AG%],_, + (1 — y)A6;

*Now we can replace 4 with RarS[0] _, tor the tinal update:

5

8t
RMS|g],

AHt e RMS[HL_I

1.6 Adam

* Now we have two kinds of 1deas for improving SGD:
1) Momentum and Nesterov: use more gradients
2) Adagrad and Adadelta: different LR for different parameters.

* Combine the two 1deas. Adam!
* Update. First store the mean and uncentered variance of gradients:

m, = pym,_y + (1 — p))g,
v, =Py, + (1 — ﬁz)gf

*m 18 the running mean of gradients and v, is the running uncentered
variance of gradients

1.6 Adam (Continue)

*m_and v, are initializes as zero vectors. So they are biased
estimation and we want to correct them as:

m V;

Ve Vo

m;, = tta Vi =)
1 = p! 1 —p

*The update rule is:

m .

0=10 m,
Ve

* Question: Adam looks like RMS with Momentum, what are the
differences?

2.1 Parameter Initialization

* Can we start with zero 1nitial weights?
* Can we have equal 1nitial weights?

* Methods to initialize
* Random (typically gaussian)
* Xavier
* He 1nitialization with ReLU
* Pretraining

2.1 Parameter Initialization (Continue)

e Xavier: Uniform distribution from [-a, a].
* You want the variance of Input and Output to be the same:

y—wa

* [f you work out the math, Var(w) = 1/n
* But you do not have only one output, you may have m outputs:

2
* The variance of Uniformud{stribattenfrom [a, b] is

n-+m

(b - a)”
12

e Solve for a

2.1 Parameter Initialization (Continue)

* He Initialization for ReLU
Uniform distribution from [-a, a].

* About half output will return zero after ReLU

i=1

* The variance changes to Var(w) = 2/n
* Re-solve for a

2.1 Parameter Initialization (Continue)

* He Initialization for ReLU
Uniform distribution from [-a, a].

* About half output will return zero after ReLU

i=1

* The variance changes to Var(w) = 2/n
* Re-solve for a

2.2 Annealing the learning rate

* Usually helpful to anneal the learning rate over time

* High learning rates can cause the parameter vector to bounce
around chaotically, unable to settle down 1nto deeper, but
narrower parts of the loss function

*Step decay: Reduce the learning rate by some factor after some
number of epochs (1.e. reduce by a half every 5 epochs, or by 0.1
every 20 epochs).

* Plateau decay: Watch the validation error or loss while training
with a fixed learning rate, and reduce the learning rate by a
constant factor whenever the validation performance stops
improving

* Exponential decay: It has the mathematical form Ir = IrQ *
e”(—kt), where Ir0, k are hyperparameters and t 1s the iteration
number

2.2 Annealing the learning rate (Continue)

* Learning rate schedulers in PyTorch

torch.optim.Ir scheduler.<StepLR|Exponential LR|ReduceLROnPI
ateau>

*Each type of scheduler requires hyperparameters unique to 1t on
initialization — read the docs

*scheduler.step(val loss)

* At end of each epoch — maintains history of epoch loss to determine
when to decay the learning rate

2.3 Random Dropout

* Implementation
Dropout each unit with probability p

No parameters dropped at test time

a) Standard Neural Net (b) After applying dropout.

*Results
Network 1s forced to learn a distributed representation

Improves generalization by eliminating neuron
co-dependencies within a layer

*In PyTorch
nn.Dropout(p =)
Typical dropout probability 1s around 0.1 to 0.5

2.4 Others:

e Shuffle the dataset
If not shuftle, the network will remember the data order!
In hwlp2, 1t 1s a frame-level task, so you need to shuffle in
frames.

* Weight decay:

L2 regularization for (not) overfitting:

- 1
loss = Z L(y;,y,) + EWQQ

=1

A =0-A0—wb

* Early Stopping for (not) overfitting

