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1.1 Mini-batch gradient descent
•What is it?

•Performs update for every mini-batch of data. 
•Why mini-batch?

•Batch gradient descent that uses the whole dataset for one 
update: slow and intractable for large datasets to fit into 
memory.

•Stochastic gradient descent that updates for each data: high 
variance updates.

    SGD fluctuation (Source: wiki) 

https://en.wikipedia.org/wiki/Stochastic_gradient_descent


1.1 Mini-batch gradient descent (continue)

•  



1.1 Mini-batch gradient descent (Continue)

•The good things of mini-batch gradient descent 
•Reduces variance of updates
•Matrix multiplication is faster

•Have to decide mini-batch size now!
•The common mini-batch size are 32-256. 
•Too small: Slow and high variance, 
                  Batch Norm requires a suitable batch size

•Too big:  Harder to escape from local minima. 
                Decay in generalization (paper link).

https://openreview.net/pdf?id=H1oyRlYgg


1.1 Mini-batch gradient descent (Continue)

           Y-axis: value of the loss.       X-axis :the parameters.

The figure shows why big batch size is not OK:



1.2 Momentum
•  

                 The function looks like this



1.2 Momentum (Continue)

•Reduces updates for dimensions whose gradients change 

directions. 

• Increases updates for dimensions whose gradients point in the 

same directions. 

                      Use GD                GD + Momentum



1.3 Nesterov accelerated gradient (NAG) 
 •The moment uses history information for better update. NAG wants 

to add some future information.
•Update:

     



1.4 Adagrad 
 •The previous methods: same learning rate for all parameters.

•Adagrad adapts the learning rate to the parameters 
   large updates for infrequent parameters
   small updates for frequent parameters 

•Adagrad divides the learning rate by the square root of the sum of 
squares of historic gradients.

•Update:    

          g
t 
is the sum of the squares of the gradients. 

          * is element-wise multiplication. 



1.4 Adagrad (Continue) 
 •Pros

     1) Good when dealing with sparse data. 
      2) Lesser need to manually tune learning rate.

•Cons
  Recall that the update is:

    

    Accumulates squared gradients in denominator. 
    Causes the learning rate to shrink and become infinitesimally 
small. 

     



1.5 Adadelta  
 

     

• In adagrad, the learning rate may become infinitesimally small. 

•Adadelta was designed to solve this problem. It replaces the 
denominator 
by the running average of squared gradients:

•Preliminary Adadelta update (Also named RMSprop): 

•Compare with adagrad:

     



1.5 Adadelta (Continue)  
 

     

•Denominator is called root mean squared (RMS) error of gradient,  
we can write the update as:

•The units do not match!

•Define the running average of squared parameter updates and RMS:

•Now we can replace     with                   for the final update:

     



1.6 Adam
 •Now we have two kinds of ideas for improving SGD:

     1) Momentum and Nesterov: use more gradients
     2) Adagrad and Adadelta: different LR for different parameters.

•Combine the two ideas. Adam!
•Update. First store the mean and uncentered variance of gradients:

•mt is the running mean of gradients and v
t
 is the running uncentered 

variance of gradients 

     



1.6 Adam (Continue)
 •m
t
 and v

t
 are initializes as zero vectors. So they are biased 

estimation and we want to correct them as:

•The update rule is:

• Question: Adam looks like RMS with Momentum, what are the 
differences?

     



2.1 Parameter Initialization

•Can we start with zero initial weights?
•Can we have equal initial weights?
•Methods to initialize

•Random (typically gaussian) 
•Xavier
•He initialization with ReLU
•Pretraining



2.1 Parameter Initialization (Continue)

•Xavier: Uniform distribution from [-a, a].
• You want the variance of Input and Output to be the same:

• If you work out the math, Var(wi) = 1/n
• But you do not have only one output, you may have m outputs:

• The variance of Uniform distribution from [a, b] is

• Solve for a 



2.1 Parameter Initialization (Continue)

•He Initialization for ReLU
 Uniform distribution from [-a, a].

• About half output will return zero after ReLU

• The variance changes to Var(wi) = 2/n
• Re-solve for a



2.1 Parameter Initialization (Continue)

•He Initialization for ReLU
 Uniform distribution from [-a, a].

• About half output will return zero after ReLU

• The variance changes to Var(wi) = 2/n
• Re-solve for a

 



2.2 Annealing the learning rate
•Usually helpful to anneal the learning rate over time
•High learning rates can cause the parameter vector to bounce 
around chaotically, unable to settle down into deeper, but 
narrower parts of the loss function
•Step decay: Reduce the learning rate by some factor after some 
number of epochs (i.e. reduce by a half every 5 epochs, or by 0.1 
every 20 epochs).
•Plateau decay: Watch the validation error or loss while training 
with a fixed learning rate, and reduce the learning rate by a 
constant factor whenever the validation performance stops 
improving
•Exponential decay: It has the mathematical form lr = lr0 * 
e^(−kt), where lr0, k are hyperparameters and t is the iteration 
number



2.2 Annealing the learning rate (Continue)
• Learning rate schedulers in PyTorch

• torch.optim.lr_scheduler.<StepLR|ExponentialLR|ReduceLROnPl
ateau>

•Each type of scheduler requires hyperparameters unique to it on 
initialization – read the docs

•scheduler.step(val_loss)
• At end of each epoch – maintains history of epoch loss to determine 

when to decay the learning rate



2.3 Random Dropout 
• Implementation
      Dropout each unit with probability p
      No parameters dropped at test time
•Results
      Network is forced to learn a distributed representation
      Improves generalization by eliminating neuron 
co-dependencies within a layer
• In PyTorch
       nn.Dropout(p = _)
       Typical dropout probability is around 0.1 to 0.5



2.4 Others:

•Shuffle the dataset
   If not shuffle, the network will remember the data order!
   In hw1p2, it is a frame-level task, so you need to shuffle in    
frames.

•Weight decay:
   L2 regularization for (not) overfitting: 
   
                                          

• Early Stopping for (not) overfitting

 


