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Your first Deep Learning code



Recap

You have seen :

• What numpy is for and how to use it for general-purpose 
computations and algebra

•  What a neural network is (a complicated function with 
parameters)

• What it can model (everything)

• Some basics of how to train it

Today, we start learning how to write deep learning code



Plan

● Why use deep learning frameworks/which ones
● The philosophy of pytorch
● Operations in pytorch
● Create and run a model
● Train a model
● Some common issues

Advanced data loading and optimization will be covered in 
detail next week !



Logistics

Material

On the GitHub repository you will find two notebooks.

Tutorial-pytorch : some example codes of what we will see today, 
often with more details. You can look at it in parallel or later.

MNIST-example : a complete pytorch example that we will 
walk-through at the end of this recitation.

Pytorch_example : another complete pytorch example for 
reference.

 

https://github.com/cmudeeplearning11785/Spring2019_Tutorials/tree/master/recitation-2


Logistics

Content

Unfortunately we need to take some advance on the lectures so 
that you can do the homeworks.

In HW1 part 1 : you are asked to write your own version of some 
tools we see today.

In EVERYTHING else : you will use these tools.

Conclusion : pay attention ;)



Deep Learning Frameworks

What do they provide ?

● Computation (often with some numpy 

support/encapsulation)

● GPU support for parallel computations

● Some basic neural layers to combine in your models

● Tools to train your models

● Enforce a general way to code your models

● And most importantly, automatic backpropagation.



Which one to choose

Just in python, are lots of available frameworks to use : 

Tensorflow, Pytorch, Keras, Theano, Caffe, DyNet…

They differ in philosophy, performance, user-friendliness, 

verbosity…

Some of them tackle specific problems (language, image,...) or 

contexts (Big Data…)

Let's review a few.



Tensorflow

● Developed by Google, one of the most widely used

● Provides very efficient computations

● Approach a bit surprising when you are used to python or a 

similar language

● It's kind of hard to get used to it.

It is a static framework : you first define a computational graph 

that cannot change, and later feed it with some data. 



Pytorch

● Developed by Facebook, also widely used

● Reasonably easy to use, very python-friendly : you create and 

inherit classes

● Can be a bit verbose, but provides a lot of flexibility 

Pytorch is the framework used in this course. 



Pytorch

We recommend Pytorch 0.4 or 1.0

You should all have access to an environment with it, and 

hopefully a GPU.

…...Let’s start!



Data and operations

Use the torch.Tensor class (~np.ndarray)

Looks a lot like numpy (and binded with it)



Move Tensors to the GPU

For big computations, GPUs offer huge speedups. 

Warning : you cannot use an operation on two Tensors on 

different processing units 

You cannot export a gpu tensor to numpy  

Please take a look at the provided tutorial examples and error 

cases.



Backpropagation

You haven’t seen it yet (mentioned Wednesday)

Backpropagation in a nutshell :

You have seen gradient descent, and you know that to train a 
network you need to compute gradients,  i.e. derivatives, of some 
loss (~divergence) over every parameter (weights, biases)

To compute them (with the chain rule), we first do a forward 
pass to compute the output, the loss and store all intermediate 
results.
Then in a backward pass, we compute all possible partial 
derivatives.



Backpropagation in Pytorch

Pytorch can retro-compute gradients for any succession of 
operations, when you ask for it ! Use the .backward() method.

For results, gradients are computed but not retained.



Backpropagation in Pytorch

Warning : .backward() doesn't replace, but accumulates!



Neural networks in Pytorch

As you know, a neural network :

● Is a function connecting an input to an output

● Depends on (a lot of) parameters

In Pytorch, a neural network is a class that implements the base 

class torch.nn.Module.

You are provided with some pre-implemented networks, such as 

torch.nn.Linear which is a just a single-layer perceptron.



Neural networks in Pytorch

The .forward() method applies the function

The .parameters() method gives access to all of the network parameters



Let's write an MLP

The worst way ever :

All attributes of Parameter type become network parameters.



Let's write an MLP

A better way :

You can use small networks inside big networks. Parameters of 

sub-networks will be "absorbed".



Let's write an MLP

Even better :

This is a shortcut for simple feed-forward networks (so all you 

need in HW1 part 2, but probably not in later homeworks)



Let's write an MLP

Your own classes can also be used in bigger networks !

Allows a sort of "tree structure"



Final layers and losses

You know you need a differentiable divergence (aka loss) 
between your output and the desired output. torch.nn provides a 
lot. Let's focus on Cross-Entropy

Final layer output

Softmax activation

Cross-entropy loss (d is one-hot desired output)

Popular in multi-class classification



Final layers and losses

torch.nn.CrossEntropyLoss includes both the softmax and the loss 

criterion, and is stable (uses the log-softmax).

Contrary to before, the input x is 2-dimensional : it is a batch of 
input vectors (that’s usually the case).



How to train ?

2
4

The parameters have correct gradients now, but we still have to apply 

gradient descent (or something else ! More next week).

You must use an optimizer, subclass of torch.optim.Optimizer.

For gradient descent, you can use torch.optim.SGD (stands for 

Stochastic Gradient Descent, but here we'll use it as regular gradient 

descent)



Use the optimizer

The optimizer is initialized with the parameters that you 

want to update.

The .step() method will apply gradient descent on all these 

parameters, using the gradients they contain.



Use the optimizer

Remember that backpropagation in pytorch accumulates !

If you want to apply several iterations of gradient descent, 

gradients must be set to zero before each optimization step.



Example Code

Let's apply all of this to a task !

Open the notebook pytorch_example.ipynb



Issues to pay attention to
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Tensor operations 

● GPU + CPU computations

● Size mismatch in vector multiplications

● * is not matrix multiplication



Issues to pay attention to
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Tensor operations 

.view() is not transposition



Issues to pay attention to

3
0

Pytorch optimises parameters

That means that if you want it to be optimised it needs to 

be a parameter of the module or a parameter of a 

submodule



Issues to pay attention to

3
1

Broadcasting



Issues to pay attention to
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GPU memory error



Issues to pay attention to

What’s the problem ?



Issues to pay attention to
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Type error



Issues to pay attention to
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What’s the problem ?



Issues to pay attention to
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Parameter issue

Hidden layers are not 
module parameters !

They will not be 
optimized.



Issues to pay attention to
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Solution



Pytorch debugging in one slide
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If you have an error/bug in your code, or a question about pytorch :

● Always try to figure it out by yourself, that's how you learn the 

most ! For a strange behavior in your code, try printing 

outputs/inputs/parameters/errors

● Tons of online resources : great pytorch documentation, and 

basically every error is somewhere on StackOverflow

● Use piazza ! Check if someone else had your error, if not ask us

● Come to office hours !



PyTorch Example 

Open MNIST_example.ipynb


