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Tasks that use attention
How do you do any of the following tasks?

Text → Translation of that text

Image → A caption describing the image

Document, question → Answer that uses the document to answer the question.



Tasks suited for recurrent networks
● “Many to one” architecture

○ When there’s a single classification to be made at the end of sequential input

● “Many to many (streaming)” architecture
○ Each output label is associated with a small segment of the input sequence
○ Outputs generated “on the fly” even without one-to-one correspondence from input to label

● “Generative” architecture
○ The output is itself a sequence, generated from the input sequence
○ Prior belief that the output sequence can only be built after seeing the entire input 

sequence



Said more simply
Each item in the output sequence must be conditioned on:

● All the past states of the network
● The entire input sequence

In deep learning,

“The network is conditioned on X” ≈

“X, or some encoding of X, is one of the inputs to the neural network”



Being conditioned on something
The outputs of “one-to-one” architectures only depend on the input.

● Without adding noise, the same input gives the same output.

The output of an RNN also depends on all its past states.

● The history of the network is encoded in the hidden vector. Both the input 
vector and the hidden state vector are used to compute the output and the 
next hidden state vector.



Encoding of the input sequence
The typical RNN structure uses the hidden state to store meaningful information 
about the history of both inputs and outputs.

The network is trained to produce the correct output sequence. In doing so, it 
learns how to best store past information with the hidden state.



Encoding of the input sequence
If we removed the output segment of the RNN, then the hidden state only encodes 
information about the history of inputs. The last hidden state is an encoding of the 
entire input sequence!

Note that we have no way to train or use this architecture in isolation.

The network can be trained such that the final hidden state vector is maximally 
“useful” to a downstream network, which uses that vector to produce outputs.



Using the sequence encoding
In a generative RNN architecture, the output network is also recurrent.

There are many ways to pass in the input sequence. Examples:

1. Pass in an encoding of the input sequence at every time step.
2. Pass an encoding of the input sequence at the first time step, and some 

placeholder vector (like all zeros) for the remaining time steps.
3. Initialize the hidden vector of the output RNN with an encoded input sequence
4. Pass an encoded input sequence through a feed-forward network, and use 

the output of that to initialize the hidden vector of the output RNN

Let’s use the first approach for now.



Network Prototype 1
Produce an encoding of the entire input.

Repeatedly pass the encoding to the output network.



Problems?
We’re using one vector to encode an entire sequence! We’re making a very 
compressed representation of the input.

That’s fine if we knew exactly what aspects of the input sequence were important 
(so the vector stores only the important bits and throws out the rest).

But we’re using the same encoding for all output time steps. Odds are, all parts of 
the input sequence will be useful at some point.
        E.g. You can’t make a good translation of a sentence if you can’t see some of its words.

The encoder can’t simply focus on a specific part of the input in this architecture. It 
must try to describe the entire sequence.



Network Prototype 2
Encode the entire input, conditioned on the hidden state of the output network.

Pass that encoding to the output network to produce the next hidden state & an 
output. Repeat the above procedure for all time steps.



What this approach gives us
The encoding of the input sequence can be different for each time step. The 
encoding is still lossy, but only needs to contain enough information for a single 
time step of the output network.
        E.g. If you’re translating a sentence and are about to write a noun, you only need to collect 
information about the nouns in the input to figure out what word to output.

But the network is now really complicated. We need to pass through the input 
sequence for every item in the output sequence, which can also get very 
computationally expensive.



Going simpler
We don’t need complete information about the full input sequence to generate 
each item of the output sequence. But is it enough if we just passed a single 
element of the input at each time step of the output?

Let’s suppose that this actually works. How do we figure out which input item to 
choose at each time step?

In[5] In[2] In[8] In[3]



Network Prototype 3
Assign a “key” to each element of the input sequence.

At each time step, generate a “query”. Then pick the input element whose key 
matches most closely to the query. Pass this as an input to the output network.

For example, similarity can be computed with the dot product.

In[5] In[2] In[8] In[3]

42 78 15 43

In[1] In[2] In[3] In[4]
1 2 3 4 ...



Hard Attention
Prototype 3 is a hard attention mechanism. Instead of computing some kind of 
encoding, we compute an attention from the query to the sequence of inputs, 
and choose an actual item in the input sequence to pass in.

Here we just picked the item with the most similar key. It’s also common to use 
Gumbal noise or random sampling to choose the input item probabilistically.

Pros: We don’t need to train an encoder. The vectors that we pass into the output 
RNN are already known to be meaningful.

Cons: Not differentiable!  Also, a single input item might not contain enough 
information even for a single time step (e.g. one image pixel)



Soft Attention
We’ve already computed the attention from the query to the keys of the input 
sequence. Instead of taking the most similar element, why not be non-committal 
and make a “soft” selection?

To be specific, we compute the softmax of the similarity scores to get a sequence 
of attention values. The attention values will form a probability distribution, a.k.a. 
the values are positive and sum to 1.

We then find the dot product of the attention values and the input sequence. The 
result is a (convex) weighted average of the input elements.



Soft Attention
We need to be careful when using soft attention. A weighted average of input 
items might be nonsensical:

We need to produce an encoding of each individual item. This encoding is 
designed / learned such that a weighted combination is still meaningful.

latecostlysadlyannoylate costly annoy sadly



Network Prototype 4
Encode each element of the input sequence.

For each time step, compute an attention on this sequence. Fuse the input items 
using the computed attention values. Pass this value to the output RNN.

42 78 15 43

1 2 3 4 ...



Simplifications
The query can just be the hidden state of the output RNN.
The keys can just be the encoded input items themselves.

This works because you can store a large amount of information in a vector 
without affecting its behavior under the similarity metric very much.



Mathematical representation
We have n inputs of k-dimensional items. Our hidden states are d-dimensional.
V: Input sequence (n x k matrix)
E: Encoded input sequence (n x d matrix)
ht: Output RNN hidden state at time t (d-vector)
at: Attention values at output t (n-vector)

E = fencoder(V)

at = softmax(Eht)

ht+1 = foutput(E
Tat, ht)



Hard Attention Revisited
Soft attention is not human attention. Human perception does not process an 
entire scene and then attend to what is important for a given task.

We focus our attention selectively and acquire information that may help direct our 
attention further and eventually solve the task at hand.



Hard Attention Revisited
We stated before that hard attention is desirable because we can directly access 
the most useful piece of information at a given time step (in theory)

We threw our hands up because it was non-differentiable.

Can we formulate hard attention as a sequential decision problem?

Can we introduce a new method that attends based on past information and the 
direct demands of the task?



RNN-based Attention is great.. but
● Sequential nature of RNNs make them impossible to fully parallelize

○ Step-by-step computation relies on the output of the previous time-step
○ Cannot leverage those hard-core GPUs

● They struggle with long-term dependencies
○ What about LSTMS? Still can’t hold information across very long sequences..
○ In NLP tasks, the same word can mean very different things based on context



Maybe Attention is All You Need

https://arxiv.org/pdf/1706.03762.pdf


Transformer Nets 
● Revolutionary machine-translation 

(sequence to sequence) architecture 
from Google

● Forget about RNNs, capture 
dependencies across the sequences 
using attention

● This lets the encoder and decoder see 
the entire sequence at once



Multi-Head Attention
● Attention can be interpreted as a way of computing 

the relevance of a set of values, based on some 
keys and queries.

● Often, the keys and values are the encoder’s 
hidden state values, while the query is the 
decoder’s hidden state

● Attention is applied multiple times to capture more 
complex input dependencies

● Each attention ‘head’ has unique weights



Encoder
● Contains multiple ‘blocks’ (~6 blocks)
● Residual connections between the multi-head attention 

blocks 
● Positional encodings explicitly encode the relative 

and absolute positions of the inputs as vectors
● These encodings are then added to the input 

embeddings
● Without them the output for “I like 11-785 more than 

10-707” would be identical to the output for “I like 10-707 
more than 11-785”



Decoder
● Very similar to the encoder
● ‘Masked’ Multi-Head Attention block to hide 

future output values during training
● The query from the decoder is used with the 

keys/values from the encoder
● Final output probabilities are computed using 

a projection layer followed by a softmax



Big Picture
● Input sequence is used to compute the 

keys and values in the encoder
● Masked-attention blocks in the decoder 

transform the output sequence until the 
current time-step into the queries

● Multi-head attention in the decoder 
combines the keys, queries and values

● The result is projected into output 
probabilities for the current time step



More detailed explanation

http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/


Simple Attention Example
Here’s a simple example of an attention network


