
Deep Learning - Recitation 1

What is Amazon Web Services (AWS)
Cloud Based Computational Resource

What does AWS offer?
Many many things but here are the two main things to care about for DL...

EC2 - Compute Resources S3 - Data Storage

Train the models Store training data,
models, etc

EC2 - What kinds of machines are available?
Different types and different subtypes (you can mix and match what you want)...
Here are the ones you may care about

General Purpose:

T2 - Webservices

M3/M4 - Databases,
Fileservers, etc

Compute Optimized:

C2 - Multiplayer Gaming
Servers, scientific
computing

C3/C4 - Ad serving
machines, MMO servers,
etc

GPU Optimized:

P3/P2 - Machine
Learning

G3 - Fluid dynamics,
graphics rendering, etc

Machine sizes - nano, micro, medium, large, xlarge, 2xlarge, …, 16xlarge

EC2 - What kinds of machines are available?
Different types and different subtypes (you can mix and match what you want)...

T2.nano
● 1 vCPU (Xeon)
● 0.5 GB RAM

P2.16xlarge
● 64 vCPU (Xeon)
● 16 GPU (Nvidia K80)
● 192 GB GPU-Memory
● 732 GB RAM

M4.large
● 2 vCPU (Xeon)
● 8 GB RAM

C4.8xlarge
● 36 vCPU (Xeon)
● 60 GB RAM

EC2 - So what do we put on these machines?
Amazon Machine Instances (AMIs)

● Virtual images of existing machines
○ You can create an image of your machine

■ Transfer it to a different machine
■ Save it as a backup

● Use cases
○ Software packages that are incredibly difficult to install
○ Need to create multiple different machines with the exact same data for

parameters servers
○ Load balancing - create a new machine with the same AMI to be used in a

different region depending on load

Now you know what AWS is and what you
can do with it

Create An Account:

https://aws.amazon.com

Click “Sign Up” in the top right and follow the instructions

(If you already have an account you can skip this step)

Let’s set up a basic machine

Click on “Services” in the top left

Then, under “Compute”, select “EC2”

Let’s set up a basic machine
Make sure you
are in the “US

West (Oregon)”
region

Then Click on
“Running

Instances”

Let’s set up a basic machine

Here you see your
current instances

(I have 1 that is
stopped, you shouldn’t
have any)

Here are the details of
that instance

Let’s set up a basic machine
Click “Launch
Instance”

Let’s set up a basic machine

Let’s set up a basic machine

Select the t2-micro
because it is “free
tier eligible”

Select Next

Let’s set up a basic machine

Just select next

Let’s set up a basic machine

Select next

Make sure you
choose 8 GB of
SSD Storage
Space

Let’s set up a basic machine

Select next

Let’s set up a basic machine

Select Review and
Launch

Make sure you
have an SSH rule
set (This should
be default) & a
TCP rule for 8888
so you can
connect your
Ipython Notebook

You can set
HTTP or other
rules here too if
you want

Let’s set up a basic machine

Select Launch

Take one last look to
make sure you are
happy with
everything...

Let’s set up a basic machine
This window
allows your to
create a private
key to access
your
machine…
when you ssh
you will need it

Enter a name
for your private
key

Download your
key and save it

Make sure it’s
in a place
where it won’t
get lost - this
key is the only
way to connect
to this specific
instance!

Now you have a basic AWS machine up
and running

Now let’s connect to it
Your instance is now identified by its IP address. You can ssh to your instance by
using this public IP address and your address key.

Let’s start by changing the instance type. For student accounts, t2.micro is
free-tier eligible, but let’s still start on a t2.nano instance.

Remember your instance’s IP address changes every time you restart it

Connect to launched instance
Right-click and click connect

The ssh command shown includes the currently
assigned IP address.
This will change at each launch!

Note - the ssh command will use the path to the
key associated with this instance.

Important - will need to run chmod command
every time you have a new key

Set instance type
Right-click on your
instance under the
instance tab, go to
instance settings and
change instance type
to t2.nano

Set instance type
Right-click on your
instance under the
instance tab, go to
instance settings and
change instance type
to t2.nano

Note
You can spin up a t2.micro for development (which allows access to all the packages in the AMI and
can put all your data on the instance), and then change the instance type to a p2.xlarge for GPU
access (training).

p2.xlarge is what I used for all my training, about $1 per hour, so with 3 credits of $50 that’s more than
enough hours of training for almost allcases.

Launch instance
Right-click and Start your instance.

Launch instance
Right-click and Start your instance.

This will start the process of allocating resources
to your instance. Once this is completed, your
instance will be running and you can connect to
it.

Stopping this instance removes the compute
associated with the current session.

Do NOT terminate! This will wipe the slate
clean. Terminate ONLY when you are sure of
‘throwing away’ the data.

Now you have a running AWS machine
and you can connect

Now you know how to use machines on
EC2

Let’s run a trivial little problem

A Toy Problem to Test your AWS Instance
Will Test:

- Working instance
- Good Python installation
- Working PyTorch installed
- GPU / CUDA support
- Your ability to login and execute code on

AWS

import torch

def main():
 GPU = torch.cuda.is_available()
 mat_size = (100, 100)
 cpu_mat_0 = torch.zeros(size = mat_size)
 cpu_mat_1 = torch.ones(size = mat_size)
 gpu_mat_0 = torch.zeros(size = mat_size)
 gpu_mat_1 = torch.ones(size = mat_size)

 if GPU:
 gpu_mat_0 = gpu_mat_0.cuda()
 gpu_mat_1 = gpu_mat_1.cuda()
 print("Using GPU")

 cpu_res = cpu_mat_0 + cpu_mat_1
 gpu_res = gpu_mat_0 + gpu_mat_1

 try:
 print(bool(torch.all(cpu_res == gpu_res)))
 return 0
 except:
 print("If using GPU, should be here")
 gpu_res = gpu_res.detach().cpu() # detach is for gradient computations
 print(bool(torch.all(cpu_res == gpu_res)))
 return 0

main()

And let’s shut it down so you don’t get billed
If you stop the instance you can just
start the instance and resume
whenever you want.

If you are done, terminate.

Now lets redeem some AWS credits

Now lets redeem some AWS credits

Now lets redeem some AWS credits

Now you know how to use machines on
EC2 and you can afford to use the

expensive ones

Finally, some useful tidbits
Remember to refer back here later in the semester, likely

won’t remember all this right now

Editing Volume
If you run out of space, you can adjust your volume without shutting off the
instance, happened to me on hw2p2

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-modify-volume.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/console-modify.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-modify-volume.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/console-modify.html

Here’s How to Connect to Jupyter Notebook
Call ssh -N -L localhost:8888:localhost:8887 -i ~/path/to/key ubuntu@ip

Create new terminal window, ssh into instance

In ssh window, source activate pytorch_p36

Call jupyter notebook --no-browser --port=8887

Go to browser, enter localhost:8888

Parting wisdom

● Remember to shut down your machines
○ Just because you don’t have an open ssh connection doesn’t mean your machine is off
○ When you’re not running code, Stop; when you can get rid of the data, Terminate

● Use PyTorch on the previously given AMI
○ After you ssh into the instance, run command ‘source activate pytorch_p36’
○ Without this you cannot import torch
○ Unless you are already very comfortable with tensorflow, it is much easier to get help from TAs

on PyTorch

Parting wisdom
● You need permission to launch a GPU instance

○ You will need to create a support ticket to launch GPU Machines
○ If you attempt to launch on you will be guided through the process
○ You are typically only allowed to launch 1 GPU machine at a time

● Only launch an expensive instance when it is time to train, not develop
○ Launch a basic instance with everything you need to develop and test your code
○ When it comes time to train your system for real, then launch a decked out instance
○ Saves you money

Parting wisdom
If you want to use a local IDE instead of VIM on your ssh window, you can develop
locally and run an scp to transfer the file to the aws instance

scp -i ~/path/to/key ~/path/to/file/ ubuntu@ec2…

If you use jupyter notebook connected to aws, no need to worry about this.

While writing code, I kept a note with common commands that I could just change
the IP address on, such as an ssh command, and scp of my local code

Requesting Instances
Must request access to instances from AWS in the Support Center section of
AWS. Check the latest status on AWS, as they may have changed something or
upgraded offerings. Currently, should request EC2 instance limit increase, but be
sure that it has not changed.

How to Request
Instructions to apply for GPU access on AWS

Starting from aws.amazon.com
Top right corner, “My Account” -> “Account Settings”
At top right corner click “Support” -> Support Center
Click “Create case”
Click “Service Limit increase”
Limit type -> EC2 Instance
If Pitt, select Region US East (Ohio). If SV, select Region US West (Oregon)
New limit value -> 1 Instance type -> p2.xlarge (can also request other instance types)
Use case description -> Describe that you are in this class at CMU and you need a GPU to train deep learning models for the homeworks
Specify your contact method

http://aws.amazon.com/

