Homework 2
An Introduction to Convolutional Neural Networks

11-785: INTRODUCTION TO DEEP LEARNING (SPRING 2019)

OUT: February 17, 2019
DUE: March 10, 2019, 11:59 PM

Start Here

e Collaboration policy:
— You are expected to comply with the University Policy on Academic Integrity and Plagiarisml
— You are allowed to talk with / work with other students on homework assignments

— You can share ideas but not code, you must submit your own code. All submitted code will be
compared against all code submitted this semester and in previous semesters using MOSS.

e Overview:

— Part 1: All of the problems in Part 1 will be graded on Autolab. You can download the starter
code from Autolab as well. This assignment has 100 points total.

— Part 2: This section of the homework is an open ended competition hosted on Kaggle.com, a
popular service for hosting predictive modeling and data analytic competitions. All of the details
for completing Part 2 can be found on the competition page.

e Submission:

— Part 1: The compressed handout folder hosted on Autolab contains four python files, layers.py,
con.py, mlp.py and local _grader.py, and some folders data, autograde and weights. File
layers.py contains common layers in convolutional neural networks. File cnn. py contains outline
class of two convolutional neural networks. File mlp.py contains a basic MLP network. File
local_grader.py is foryou to evaluate your own code before submitting online. Folders contain
some data to be used for section [[L3] and [[4] of this homework.

Make sure that all class and function definitions originally specified (as well as class attributes
and methods) in the two files layers.py and cnn.py are fully implemented to the specification
provided in this write-up.

Your submission must be titled handin.tar (gzip format) and it is minimally required to
contain a directory called hw2, which contains the layers.py and cnn.py files implementing the
classes, functions, and methods specified in the write-up. Please do not import any other external
libraries other than NumPy and the default python packages, as extra packages that do not exist
in the autograder image will cause a submission failure.

— Part 2: See the [the competition page for details.

e Local autograder: To ease your life, we provide in the handout for part 1 a local autograder that you
can use on your own code. It roughly has the same behavior as the one on Autolab, but the printouts
are different. In theory, passing one means that you pass the other, but we recommend you also submit
partial solutions on Autolab from time to time while completing the homework.

To run the local autograder : run local _grader.py.


https://www.cmu.edu/student-affairs/theword/acad_standards/creative/academic_integrity.html
https://theory.stanford.edu/~aiken/moss/
https://kaggle.com
https://kaggle.com

1 NumPy Based Convolutional Neural Networks

In this section, you need to implement convolutional neural networks using the NumPy library only. Python
3, NumPy>=1.16 and PyTorch>=1.0.0 are suggested environment. First implement forward and backward
for linear layer, convolutional layer and flatten layer (Activation layers are already finished) in layers.py
file. Your implementations will be compared with PyTorch.

Note : Contrary to HW1P1, derivatives dW and db are not averaged on the batch in the network classes.
Consider that the update rule in an optimizer is W -= 1r * np.mean(dW,axis=0)

Note : Also contrary to HW1P1, you will mostly code basic blocks (one CNN layer) and then use that in
building bigger nets for which the overall structure is given.This should alleviate the ”engineering” part of
the homework so that you can focus on understanding what a CNN is.

1.1 Convolutional layer [60 points]

Implement the Conv1D class in layers.py. The class Conv1D has four arguments: in_channel, out_channel,
kernel size and stride. They are all positive integers. The detail meaning of the arguments has been
discussed in class and you can also find them in PyTorch document: https://pytorch.org/docs/stable/
nn.html#torch.nn.Convid. We do not consider other arguments such as padding.

Implement the ConviD class so that it has similar usage and functionality to torch.nn.Convid. There are
three parts to be implemented.

Note : changing the shape/name of the provided attributes is not allowed. Like in HW1P1 we will check
the value of these attributes.

1.1.1 Forward [20 points]

Finish the returned value for the forward part.

The input x is the input of the convolutional layer and the shape of x is (batch_size, in_channel, in width).
The return value is the output of the convolutional layer and the shape is (batch_size, out_channel,
out_width). Note that in_width is an arbitrary possitive integer and out_width is determined by in_width,
kernel size and stride.

1.1.2 Backward [40 points]

You will here write the code of the .ttbackward method. Its argument is the backpropagated delta, i.e. the
derivative of the loss w.r.t the output of the current layer. From HW1P1 you should be familiar with this.

dW and db: Finish self.dW and self.db for the backward part.

The input delta is the derivative of the loss with respect to the convolutional layer output. It has the same
shape as the convolutional layer output. self.dW and self.db represent the unaveraged gradients of the
loss w.r.t self.W and self.b. Their shapes are the same as the weight self.W and the bias self.b. We
have already initialized them for you.

dx: Finish the returned value for the backward part. It is the derivative of the loss with respect to the input
of the convolutional layer and has the same shape as the input.

Test: To test your implementation, we will compare the results of the three parts with Pytorch function
torch.nn.Convld. Details can be found in function test_cnn_correctness_once in the local_grader.py
file. Here are some brief codes to show the testing.


https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d
https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d

import torch

import torch.nn as nn

import numpy as np

from torch.autograd import Variable
from layers import Convi1D

## initialize your layer and PyTorch layer
netl = ConviD(8, 12, 3, 2)
net2 = torch.nn.Conv1ld(8, 12, 3, 2)

## initialize the inputs
x1 = np.random.rand(3, 8, 20)
x2 = Variable(torch.tensor(xl) ,requires_grad=True)

## Copy the parameters from the ConvlD class to PyTorch layer
net2.weight = nn.Parameter (torch.tensor(netl.W))
net2.bias = nn.Parameter(torch.tensor(netl.b))

## Your forward and backward
y1 = net1(x1)

b, c, w = yl.shape

delta = np.random.randn(b,c,w)
dx = netl.backward(delta)

## PyTorch forward and backward
y2 = net2(x2)

delta = torch.tensor(delta)
y2.backward(delta)

## Compare

def compare(x,y):
y = y.detach() .numpy ()
print (abs(x) .max())
return

compare(yl, y2)

compare(dx, x2.grad)

compare (net1.dW, net2.weight.grad)
compare(netl.db, net2.bias.grad)

As you can see in the codes, we check the maximum absolute error of the tensor elements. We ran our codes
for 2,000 times and the maximum absolute error (MAE) is 5e-14. If the values your implementation returns
can have an MAE smaller than le-12; then we think your implementation is right.

1.2 Flatten layer

After we finish linear layer and convolutional layer, we need one more layer to transform the output of
convolutional layers to the input of linear layers since we need to use linear layers for many tasks such as
classification. Finish the forward and backward part of the Flatten class.

In the forward part, the input x is the input of the flatten layer and its shape is (batch_size, in_channel,
in_width). Just reshape it to get the returned value with a shape of (batch_size, in_channel*in width).

In the backward part, the input delta is the derivative of the loss with respect to the flatten layer output.
You need to return the derivative of the loss with respect to the flatten layer input. For this part, we do not
provide an autograder. But you can check the correctness after you finish the convolution neural network in



Section [L.3]

1.3 CNN as a Simple Scanning MLP [20 points]

In this part you must compose a CNN that will perform the same computation as scanning a given input
with a given multi-layer perceptron.

You are given a 128 x 24 input (128 time steps, with a 24-dimensional vector at each time). You are required
to compute the result of scanning it with the given MLP. The MLP evaluates 8 contiguous input vectors at
a time (so it is effectively scanning for 8-time-instant wide patterns). The MLP “strides” forward 4 time
instants after each evaluation, during its scan. It only scans until the end of the input (so it does not pad
the end of the input with zeros).

The MLP itself has three layers, with 8 neurons in the first layer (closest to the input), 16 in the second and
4 in the third. Each neuron uses a ReLU activation, except after the final output neurons. All bias values
are 0.

Since the network has 4 neurons in the final layer and scans with a stride of 4, it produces one 4-component
output every 4 time instants. Since there are 128 time instants in the inputs and no zero-padding is done,
the network produces 31 outputs in all, one every 4 time instants. When flattened, this output will have 124
(4 x 31) values.

For this problem you are required to implement the above scan, but you must do so using a Convolutional
neural network. You must use the implementation of your Convolutional layers in [I.1] to compose a Convo-
lution Neural Network which will behave identically to scanning the input with the given MLP as explained
above. You will be evaluated on the correctness of the output 124 values.

The Multi-layer Perceptron is composed of three layers and the architecture of the model is given in mlp.py
included in the handout. Weights of the MLP are given as the mlp_weights_part_b.npy file.

Your task is merely to understand how the architecture (and operation) of the given MLP translates to a
CNN. You will have to determine how many layers your CNN must have, how many filters in each layer, the
kernel size of the filters, and their strides and their activations. You must decide (based on the given MLP)
what the weights of each of the filters must be (i.e what are the values of each kernel). The final output
(after flattening) must have 124 components.

To test your code locally you are given a sample weights file, a sample input and the correct 124 component
output. The autograder uses those to check your implementation.

So your tasks include figuring out:

e How to initialize the given weights to your CNN module (how to construct the filters, and select their
strides)

e Designing the CNN architecture to correspond to a Scanning MLP

You should require very little additional code over what you have already written for the previous questions,
besides the portion required to read the provided weights file and convert it to the CNN, and creating a few
Conv1D instances.

1.4 CNN as a Distributed Scanning MLP [20 points]
This section of the homework is very similar to with the one difference that the MLP provided to you
is a shared-parameter network that captures a distributed representation of the input.

You must compose a CNN that will perform the same computation as scanning a given input with a given
multi-layer perceptron.



The network still has 8 first-layer neurons, 16 second-layer neurons and 4 third-layer neurons. However,
many of the neurons have identical parameters. As before, the MLP scans the input with a stride of 4 time
instants. The parameter-sharing pattern of the MLP is illustrated in Figure[l] As mentioned, the MLP is a
3 layer network with 28 neurons. Neurons with the same color in a layer share the same weights. You may
find it useful to visualize the weights matrices to see how this symmetry translate to the weights.

You are required to identify the symmetry in this MLP and use that to come up with the architecture of the
CNN (number of layers, number of filters in each layer and their kernel width and stride, and the activations
in each layer).

The aim of this task is to understand how scanning with this distributed-representation MLP (with shared
parameters) can be represented as a Convolutional Neural Network. The weights of the CNN should be
initialized using the mlp_weights_part_c.npy file. The file consists of an NumPy array containing 3 NumPy
arrays, each corresponding to a layer in the MLP. The dimensions of each layer-wise NumPy arrays are
(inchannel, outchannel) corresponding to the given MLP. Make use of the dimensions of each layer to
further understand the MLP.

Your tasks include figuring out:
e How to initialize the given weights to your CNN module
e Designing the CNN architecture to correspond to a Distributed Scanning MLP

You are provided with a sample weights file for this portion as well, as well as the sample output. You must
use the same sample input as that provided in

As in the only additional code required will be the portion needed to read the weights file and convert
it to a CNN.

The autograder will run your CNN with a different set of weights, on a different input (of the same size
as the sample input provided to you). The output of your code will be compared to a gold standard. The
MLP employed by the autograder will have the same parameter sharing structure as your sample MLP. The
weights, however, will be different. We will test the 124-component output of your CNN against a gold
standard, as before.

1.5 Submission of CNN architectures for [1.3] and [1.4]

On autolab and the local autograder, section [1.3]is called the part B of this Homework and is called
the part C. The CNN architectures should be written in the file named cnn.py in class CNN_B and CNN_C
respectively. (CNN_B for and CNN_C for . This is the file that the autograder would use for evaluating
your score for parts B and C and . Include this file in the directory hw2, and tar the directory to
create a handin.tar. Overall, your handin would include a directory called hw2 which would contain files
layers.py (for part A) and cnn.py (for parts B and C).

2 Lorem Ipsum

That’s all. As always, feel free to ask on Piazza if you have any questions.

Good luck and enjoy the challenge!



Figure 1: The MLP network architecture
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