Neural Networks Learning the network: Backprop

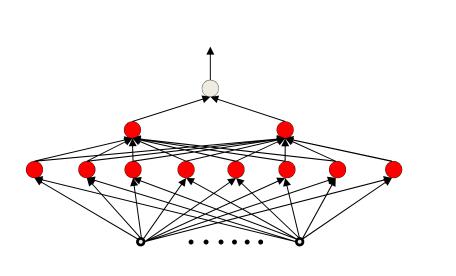
11-785, Spring 2018 Lecture 4

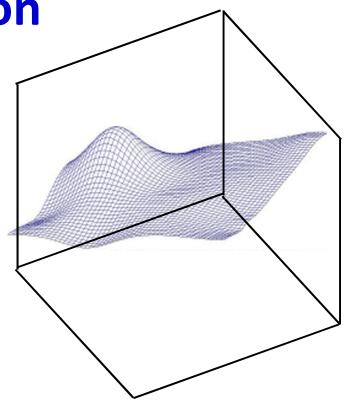
Design exercise

- Input: Binary coded number
- Output: One-hot vector

- Input units?
- Output units?
- Architecture?
- Activations?

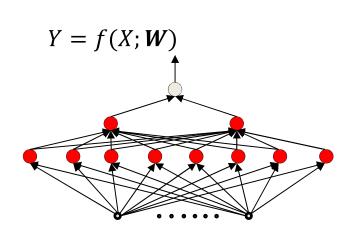
Recap: The MLP *can* represent any function

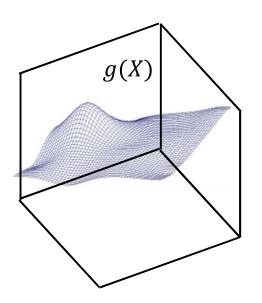




- The MLP can be constructed to represent anything
- But how do we construct it?

Recap: How to learn the function

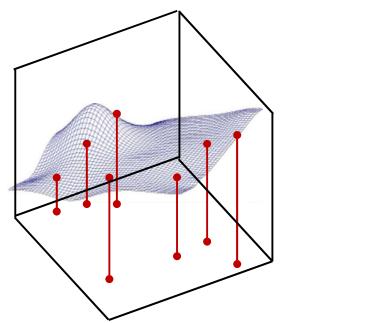


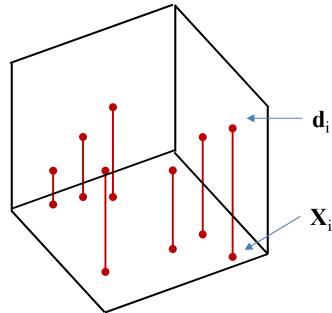


By minimizing expected error

$$\widehat{\boldsymbol{W}} = \underset{W}{\operatorname{argmin}} \int_{X} div(f(X; W), g(X))P(X)dX$$
$$= \underset{W}{\operatorname{argmin}} E[div(f(X; W), g(X))]$$

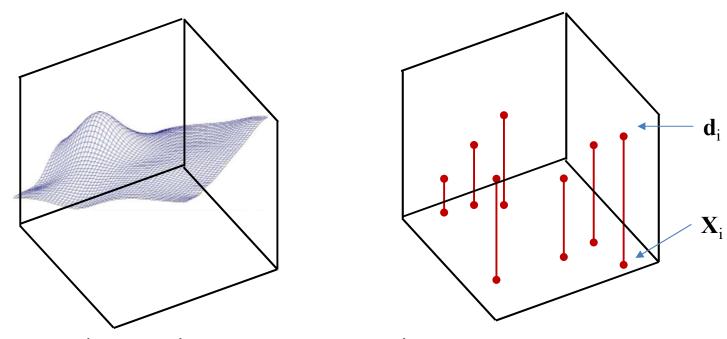
Recap: Sampling the function





- g(X) is unknown, so sample it
 - Basically, get input-output pairs for a number of samples of input X_i
 - Many samples (X_i, d_i) , where $d_i = g(X_i) + noise$
 - Good sampling: the samples of X will be drawn from P(X)
- Estimate function from the samples

The *Empirical* risk



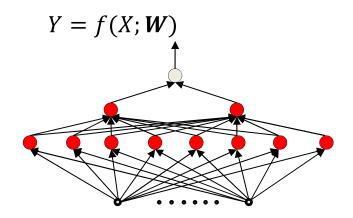
• The expected error is the average error over the entire input space

$$E[div(f(X;W),g(X))] = \int_X div(f(X;W),g(X))P(X)dX$$

The empirical estimate of the expected error is the average error over the samples

$$E[div(f(X;W),g(X))] \approx \frac{1}{T} \sum_{i=1}^{T} div(f(X_i;W),d_i)$$

Empirical Risk Minimization



- Given a training set of input-output pairs (X_1, d_1) , (X_2, d_2) , ..., (X_T, d_T)
 - Error on the i-th instance: $div(f(X_i; W), d_i)$
 - Empirical average error on all training data:

$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

Estimate the parameters to minimize the empirical estimate of expected error

$$\widehat{\boldsymbol{W}} = \operatorname*{argmin}_{W} Err(W)$$

I.e. minimize the *empirical error* over the drawn samples

Problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

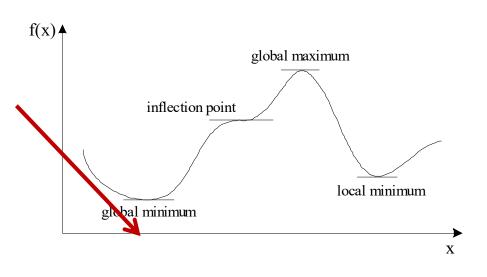
- This is problem of function minimization
 - An instance of optimization

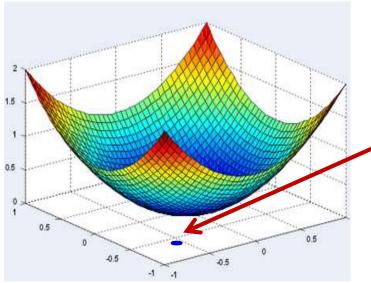
A CRASH COURSE ON FUNCTION OPTIMIZATION

Caveat about following slides

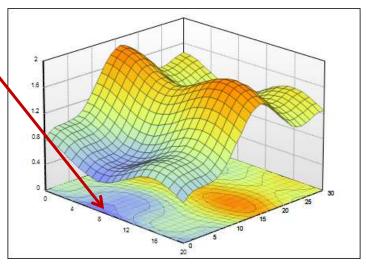
- The following slides speak of optimizing a function w.r.t a variable "x"
- This is only mathematical notation. In our actual network optimization problem we would be optimizing w.r.t. network weights "w"
- To reiterate "x" in the slides represents the variable that we're optimizing a function over and not the input to a neural network
- Do not get confused!

The problem of optimization

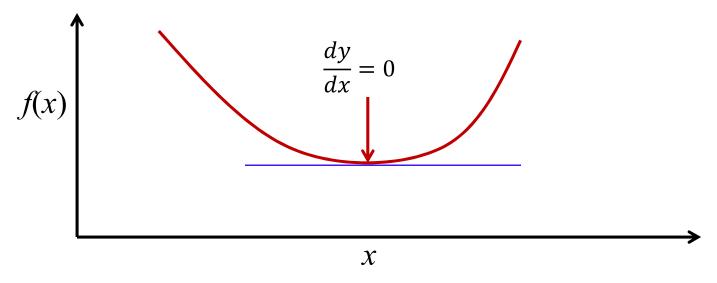




General problem of optimization: find the value of x where
 f(x) is minimum



Finding the minimum of a function

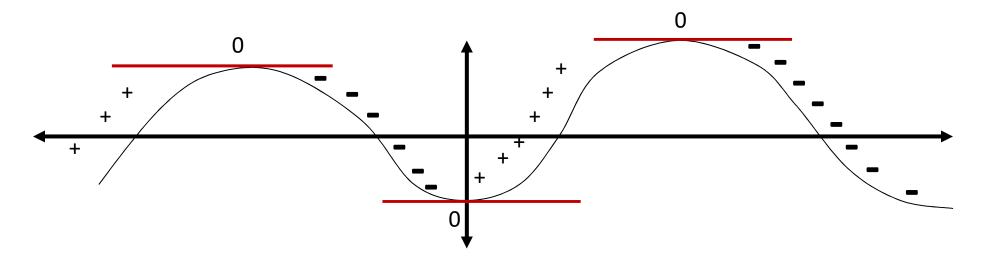


- Find the value x at which f'(x) = 0
 - Solve

$$\frac{df(x)}{dx} = 0$$

- The solution is a "turning point"
 - Derivatives go from positive to negative or vice versa at this point
- But is it a minimum?

Turning Points



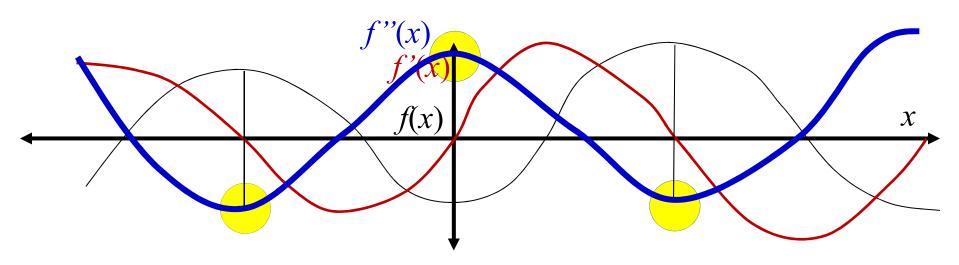
- Both maxima and minima have zero derivative
- Both are turning points

Derivatives of a curve



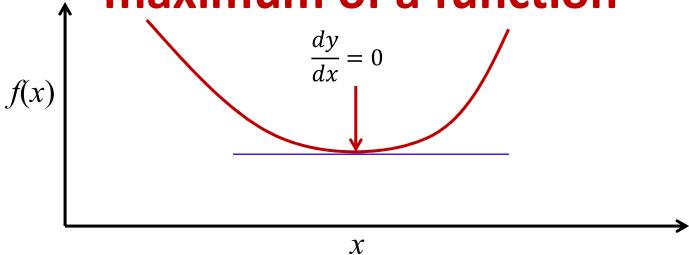
- Both maxima and minima are turning points
- Both maxima and minima have zero derivative

Derivative of the derivative of the curve



- Both maxima and minima are turning points
- Both maxima and minima have zero derivative
- The second derivative f''(x) is –ve at maxima and +ve at minima!

Soln: Finding the minimum or maximum of a function



• Find the value x at which f'(x) = 0: Solve

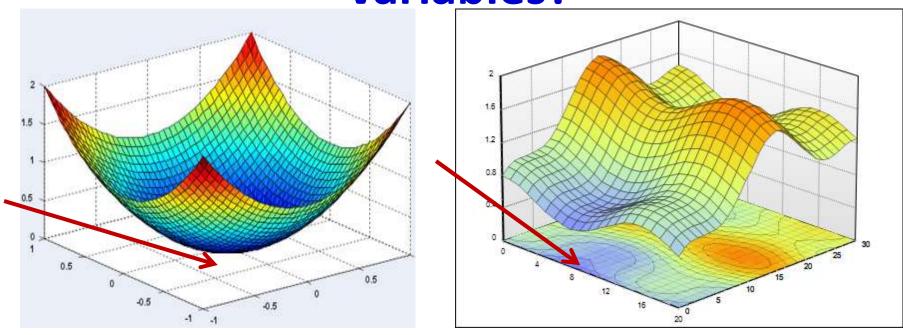
$$\frac{df(x)}{dx} = 0$$

- The solution x_{soln} is a turning point
- Check the double derivative at x_{soln} : compute

$$f''(x_{soln}) = \frac{df'(x_{soln})}{dx}$$

• If $f''(x_{soln})$ is positive x_{soln} is a minimum, otherwise it is a maximum

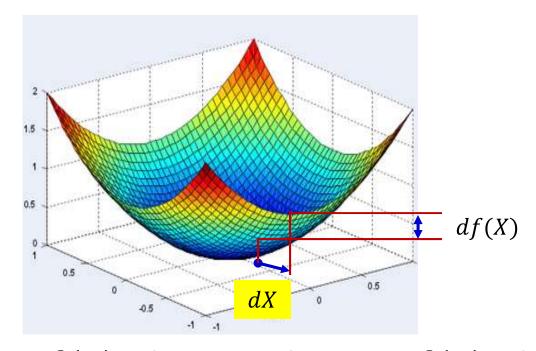
What about functions of multiple variables?



- The optimum point is still "turning" point
 - Shifting in any direction will increase the value
 - For smooth functions, miniscule shifts will not result in any change at all
- We must find a point where shifting in any direction by a microscopic amount will not change the value of the function

A brief note on derivatives of multivariate functions

The *Gradient* of a scalar function

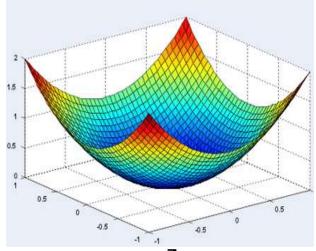


• The *Gradient* $\nabla f(X)$ of a scalar function f(X) of a multi-variate input X is a multiplicative factor that gives us the change in f(X) for tiny variations in X

$$df(X) = \nabla f(X)dX$$

Gradients of scalar functions with multi-variate inputs

• Consider $f(X) = f(x_1, x_2, ..., x_n)$



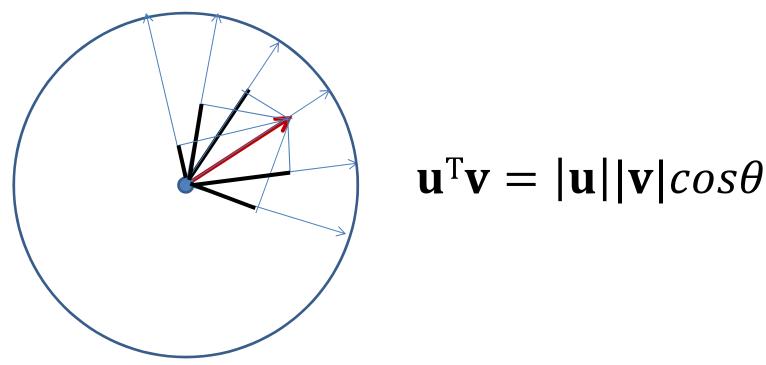
$$\nabla f(X) = \begin{bmatrix} \frac{\partial f(X)}{\partial x_1} & \frac{\partial f(X)}{\partial x_2} & \cdots & \frac{\partial f(X)}{\partial x_n} \end{bmatrix}$$

$$\cdots \frac{\partial f(X)}{\partial x_n}$$

• Check:

$$\frac{df(X) = \nabla f(X)dX}{\partial x_1} = \frac{\partial f(X)}{\partial x_1} dx_1 + \frac{\partial f(X)}{\partial x_2} dx_2 + \dots + \frac{\partial f(X)}{\partial x_n} dx_n$$

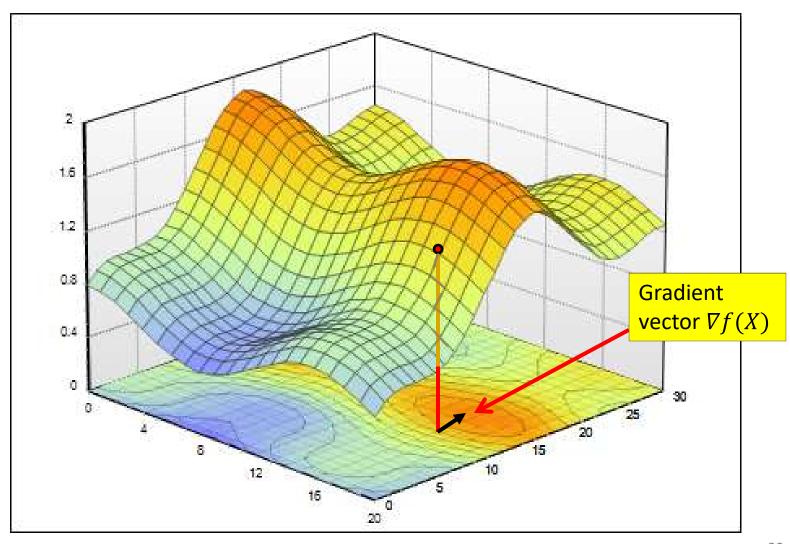
A well-known vector property

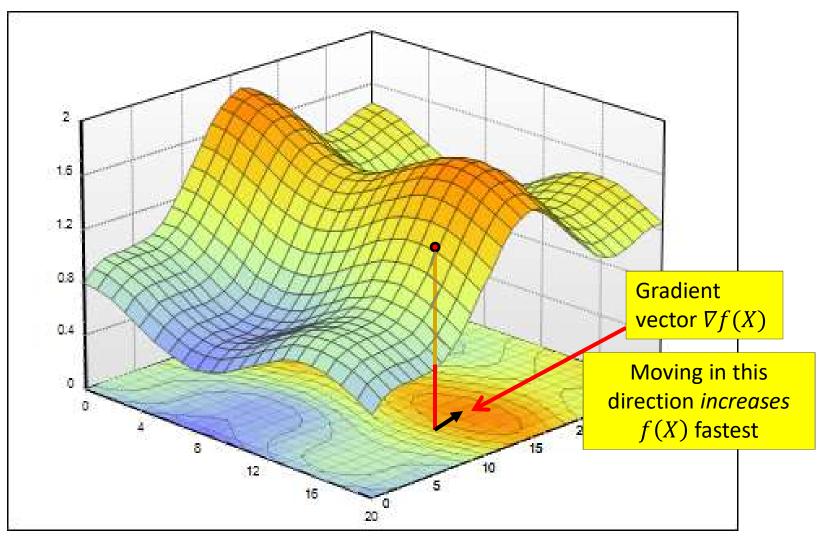


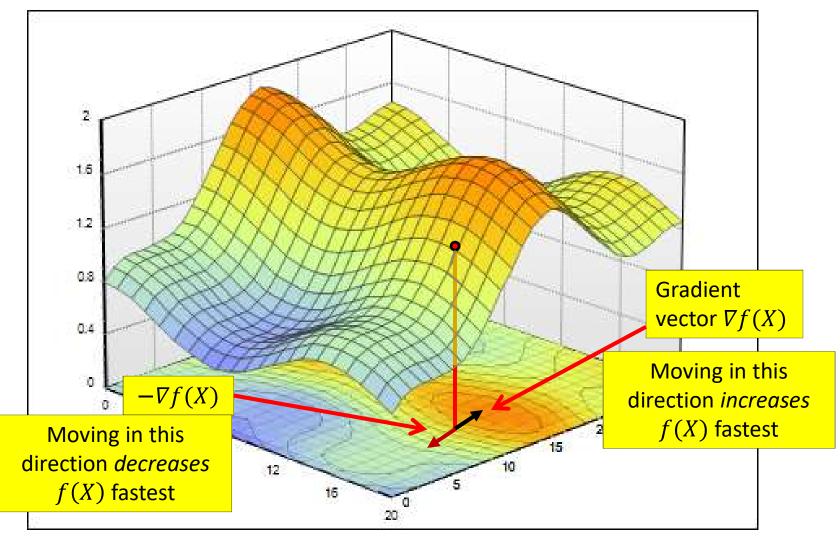
- The inner product between two vectors of fixed lengths is maximum when the two vectors are aligned
 - i.e. when $\theta = 0$

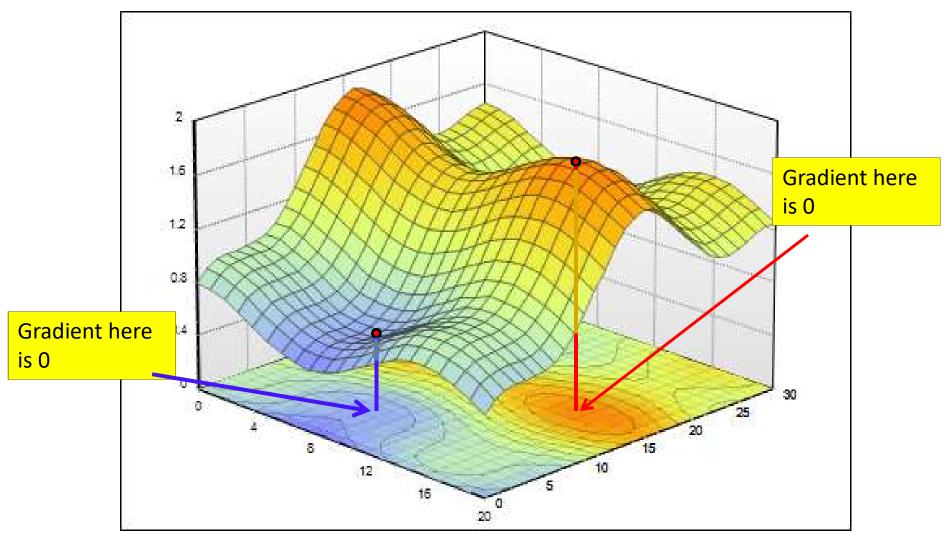
Properties of Gradient

- $df(X) = \nabla f(X) dX$
 - The inner product between $\nabla f(X)$ and dX
- Fixing the length of dX
 - E.g. |dX| = 1
- df(X) is max if dX is aligned with $\nabla f(X)$
 - $\angle \nabla f(X), dX = 0$
 - The function f(X) increases most rapidly if the input increment dX is perfectly aligned to $\nabla f(X)$
- The gradient is the direction of fastest increase in f(X)

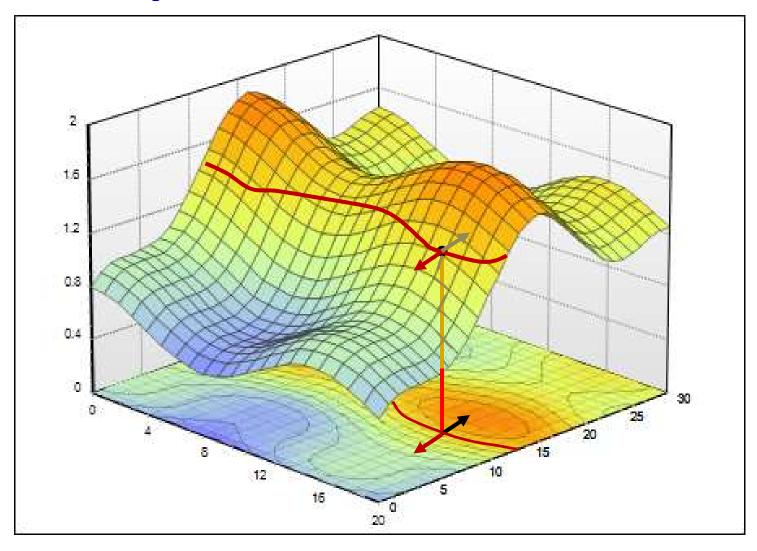








Properties of Gradient: 2



• The gradient vector $\nabla f(X)$ is perpendicular to the level curve

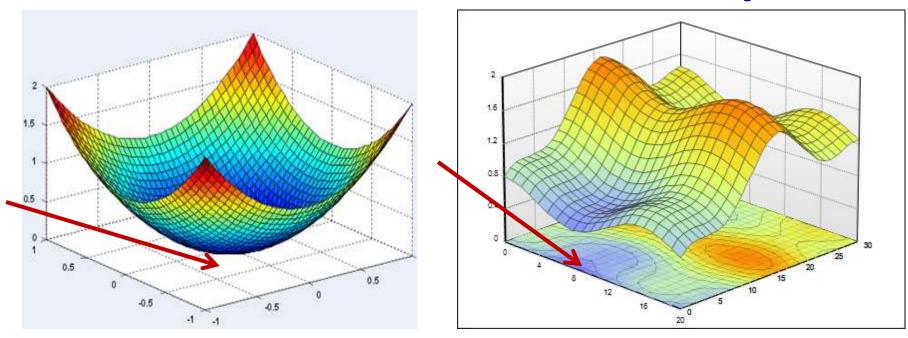
The Hessian

• The Hessian of a function $f(x_1, x_2, ..., x_n)$ is given by the second derivative

$$\nabla^{2} f(x_{1},...,x_{n}) := \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \dots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Returning to direct optimization...

Finding the minimum of a scalar function of a multi-variate input



 The optimum point is a turning point – the gradient will be 0

Unconstrained Minimization of function (Multivariate)

1. Solve for the *X* where the gradient equation equals to zero

$$\nabla f(X) = 0$$

- 2. Compute the Hessian Matrix $\nabla^2 f(X)$ at the candidate solution and verify that
 - Hessian is positive definite (eigenvalues positive) -> to identify local minima
 - Hessian is negative definite (eigenvalues negative) -> to identify local maxima

Unconstrained Minimization of function (Example)

Minimize

$$f(x_1, x_2, x_3) = (x_1)^2 + x_1(1 - x_2) - (x_2)^2 - x_2x_3 + (x_3)^2 + x_3$$

$$\nabla f = \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix}^T$$

Unconstrained Minimization of function (Example)

Set the gradient to null

$$\nabla f = 0 \Rightarrow \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving the 3 equations system with 3 unknowns

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

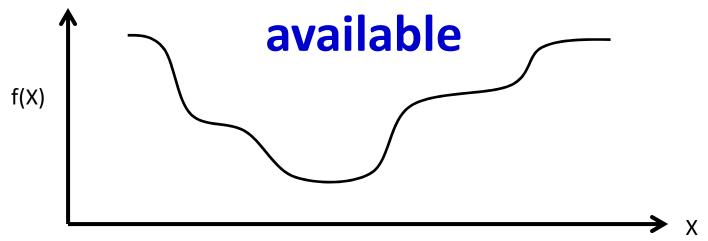
Unconstrained Minimization of

- Compute the Hessian matrix $\nabla^2 f = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$
- Evaluate the eigenvalues of the Hessian matrix

$$\lambda_1 = 3.414, \quad \lambda_2 = 0.586, \quad \lambda_3 = 2$$

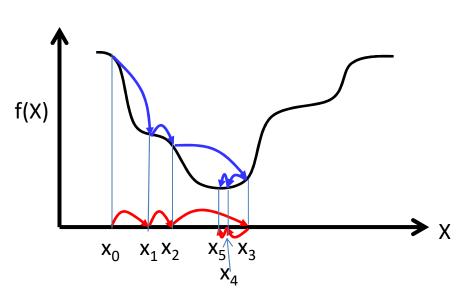
- All the eigenvalues are positives => the Hessian matrix is positive definite
- The point $x = \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} -1 \\ -1 \\ -1 \end{vmatrix}$ is a minimum

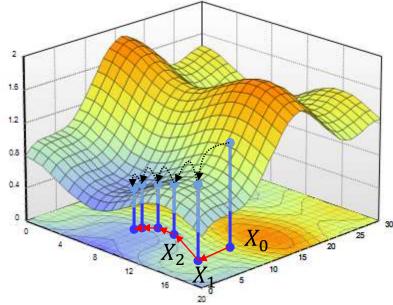
Closed Form Solutions are not always



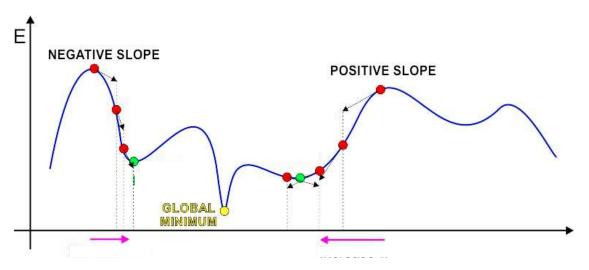
- Often it is not possible to simply solve $\nabla f(X) = 0$
 - The function to minimize/maximize may have an intractable form
- In these situations, iterative solutions are used
 - Begin with a "guess" for the optimal X and refine it iteratively until the correct value is obtained

Iterative solutions

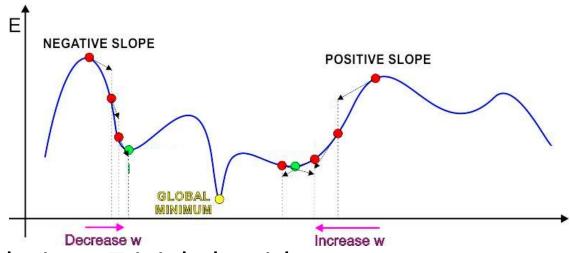




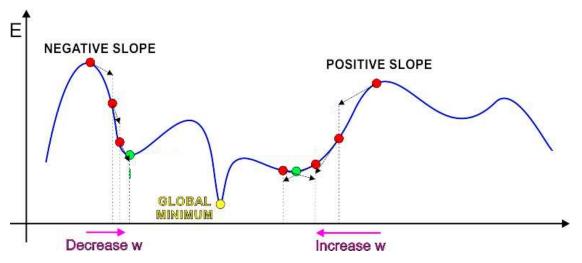
- Iterative solutions
 - Start from an initial guess X_0 for the optimal X
 - Update the guess towards a (hopefully) "better" value of f(X)
 - Stop when f(X) no longer decreases
- Problems:
 - Which direction to step in
 - How big must the steps be



- Iterative solution:
 - Start at some point
 - Find direction in which to shift this point to decrease error
 - This can be found from the derivative of the function
 - A positive derivative → moving left decreases error
 - A negative derivative → moving right decreases error
 - Shift point in this direction



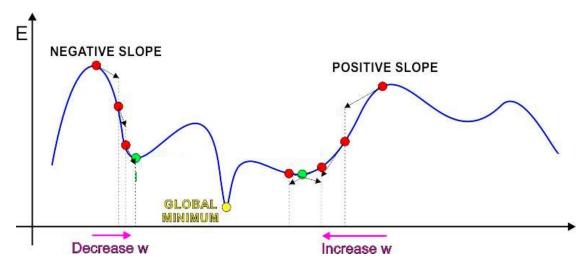
- Iterative solution: Trivial algorithm
 - Initialize x^0
 - While $f'(x^k) \neq 0$
 - If $sign(f'(x^k))$ is positive: $-x^{k+1} = x^k - step$
 - Else $-x^{k+1} = x^k + step$
 - What must step be to ensure we actually get to the optimum?



- Iterative solution: Trivial algorithm
 - Initialize x^0
 - While $f'(x^k) \neq 0$

•
$$x^{k+1} = x^k - sign(f'(x^k))$$
. step

Identical to previous algorithm



- Iterative solution: Trivial algorithm
 - Initialize x_0
 - $-\operatorname{While} f'(x^k) \neq 0$
 - $\bullet \ x^{k+1} = x^k \eta^k f'(x^k)$
 - $-\eta^k$ is the "step size"

Gradient descent/ascent (multivariate)

- The gradient descent/ascent method to find the minimum or maximum of a function f iteratively
 - To find a maximum move in the direction of the gradient

$$x^{k+1} = x^k + \eta^k \nabla f(x^k)^T$$

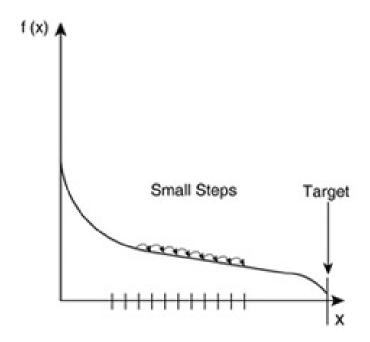
 To find a minimum move exactly opposite the direction of the gradient

$$x^{k+1} = x^k - \eta^k \nabla f(x^k)^T$$

- Many solutions to choosing step size η^k
 - Later lecture

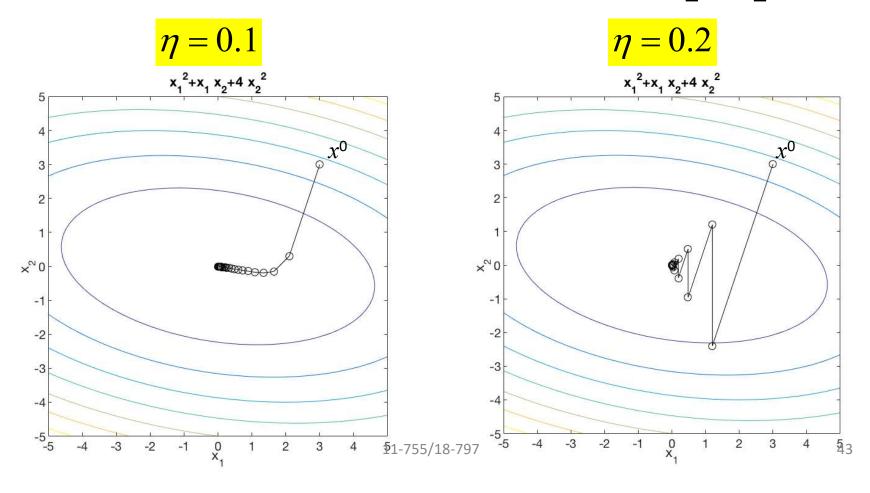
1. Fixed step size

- Fixed step size
 - Use fixed value for η^k



Influence of step size example (constant step size)

$$f(x_1, x_2) = (x_1)^2 + x_1 x_2 + 4(x_2)^2$$
 $x^{initial} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$



What is the optimal step size?

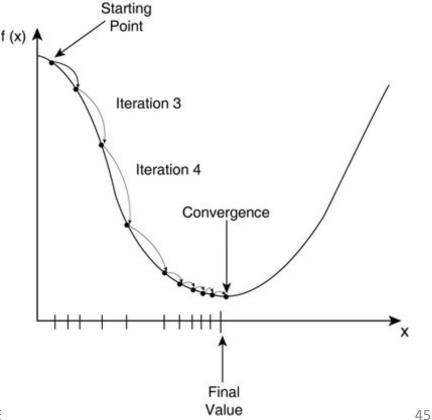
- Step size is critical for fast optimization
- Will revisit this topic later
- For now, simply assume a potentiallyiteration-dependent step size

Gradient descent convergence criteria

 The gradient descent algorithm converges when one of the following criteria is satisfied

$$\left| f(x^{k+1}) - f(x^k) \right| < \varepsilon_1$$

• Or $\left\|\nabla f(x^k)\right\| < \varepsilon_2$



11-75!,

Overall Gradient Descent Algorithm

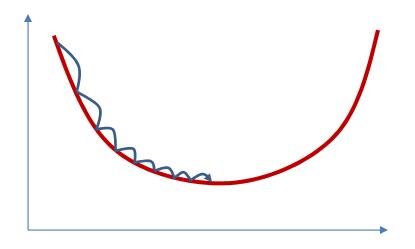
• Initialize:

$$-x^0$$
$$-k=0$$

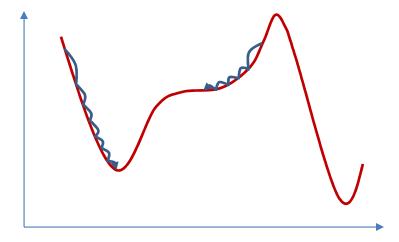
• While
$$|f(x^{k+1}) - f(x^k)| > \varepsilon$$

 $-x^{k+1} = x^k - \eta^k \nabla f(x^k)^T$
 $-k = k+1$

Convergence of Gradient Descent



 For appropriate step size, for convex (bowlshaped) functions gradient descent will always find the minimum.



 For non-convex functions it will find a local minimum or an inflection point • Returning to our problem..

Problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

- This is problem of function minimization
 - An instance of optimization

Preliminaries

Before we proceed: the problem setup

Given a training set of input-output pairs

$$(X_1, \underline{d}_1), (X_2, \underline{d}_2), \dots, (X_T, \underline{d}_T)$$

What are these input-output pairs?

$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

- This is problem of function minimization
 - An instance of optimization

Given a training set of input-output pairs

$$(X_1, \underline{d}_1), (X_2, \underline{d}_2), \dots, (X_T, \underline{d}_T)$$

What are these input-output pairs?

$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

What is f() and what are its parameters?

- This is problem of functio parameters?
 - An instance of optimization

Given a training set of input-output pairs

$$(X_1, \underline{d}_1), (X_2, \underline{d}_2), \dots, (X_T, \underline{d}_T)$$

What are these input-output pairs?

$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

What is f() and

what are its

What is the divergence div()?
This is problem or runctio parameters W?

- - An instance of optimization

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

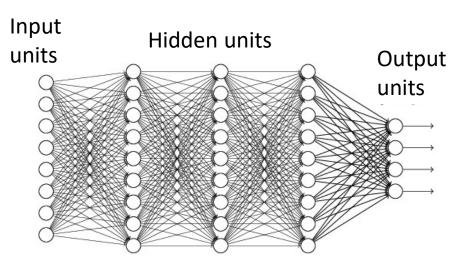
$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

What is f() and what are its parameters W?

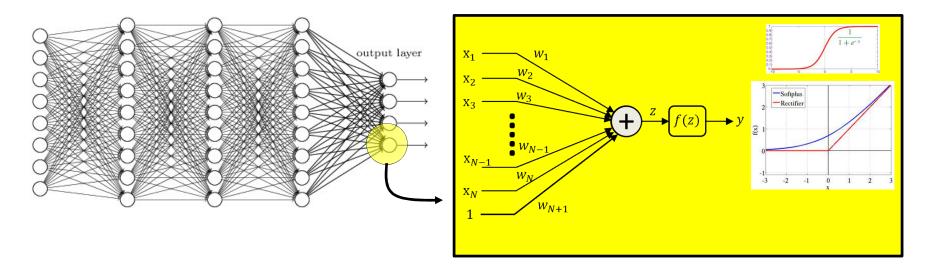
- This is problem of functio parameters W?
 - An instance of optimization

What is f()? Typical network



- Multi-layer perceptron
- A directed network with a set of inputs and outputs
 - No loops
- Generic terminology
 - We will refer to the inputs as the input units
 - No neurons here the "input units" are just the inputs
 - We refer to the outputs as the output units
 - Intermediate units are "hidden" units

The individual neurons



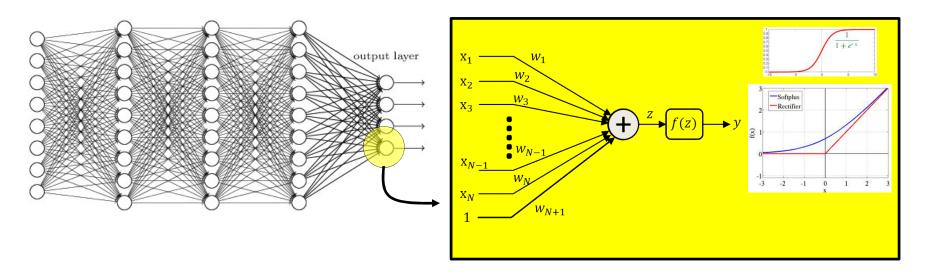
- Individual neurons operate on a set of inputs and produce a single output
 - Standard setup: A differentiable activation function applied the sum of weighted inputs and a bias

$$y = f\left(\sum_{i} w_{i} x_{i} + b\right)$$

More generally: any differentiable function

$$y = f(x_1, x_2, ..., x_N; W)$$

The individual neurons



- Individual neurons operate on a set of inputs and produce a single output
 - Standard setup: A differentiable activation function applied the sum of weighted inputs and a bias

$$y = f\left(\sum_{i} w_{i} x_{i} + b\right)$$

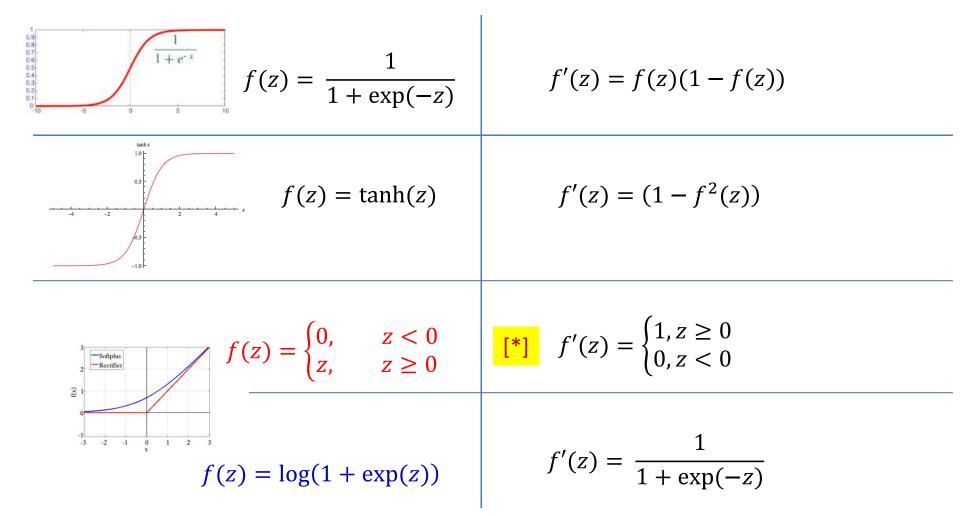
More generally: any differentiable function

$$y = f(x_1, x_2, ..., x_N; W)$$

We will assume this unless otherwise specified

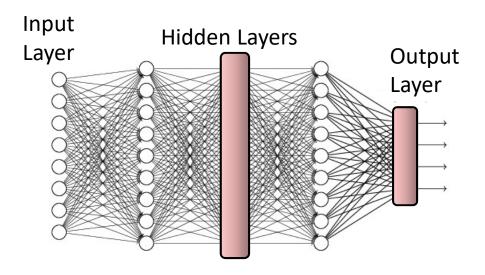
Parameters are weights w_i and bias b

Activations and their derivatives



Some popular activation functions and their derivatives

Vector Activations

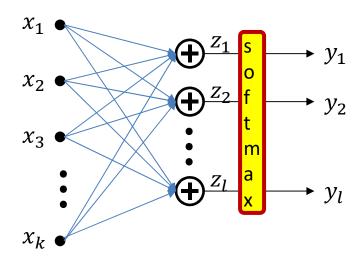


We can also have neurons that have multiple coupled outputs

$$[y_1, y_2, ..., y_l] = f(x_1, x_2, ..., x_k; W)$$

- Function f() operates on set of inputs to produce set of outputs
- Modifying a single parameter in W will affect all outputs

Vector activation example: Softmax



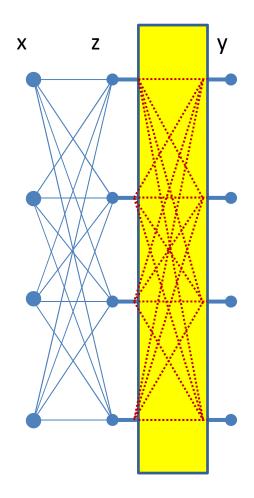
Example: Softmax vector activation

$$z_i = \sum_{j} w_{ji} x_j + b_i$$
 Parameters weights w_{ji} and bias b_i

$$y = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$

Parameters are and bias b_i

Multiplicative combination: Can be viewed as a case of vector activations



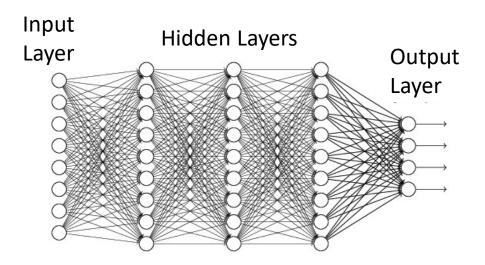
$$z_i = \sum_j w_{ji} x_j + b_i$$

$$y_i = \prod_l (z_l)^{\alpha_{li}}$$

Parameters are weights w_{ji} and bias b_i

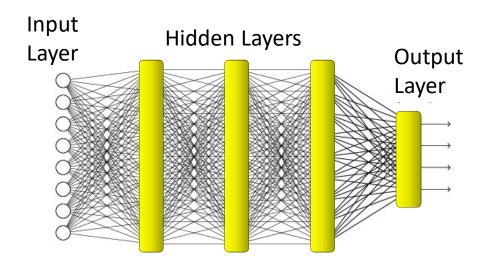
A layer of multiplicative combination is a special case of vector activation

Typical network



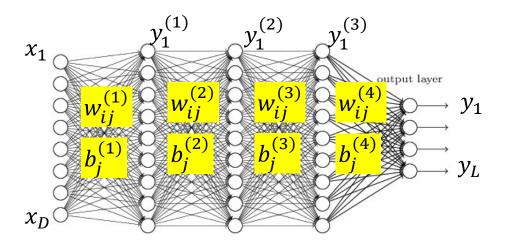
- We assume a "layered" network for simplicity
 - We will refer to the inputs as the input layer
 - No neurons here the "layer" simply refers to inputs
 - We refer to the outputs as the output layer
 - Intermediate layers are "hidden" layers

Typical network



 In a layered network, each layer of perceptrons can be viewed as a single vector activation

Notation



- The input layer is the 0th layer
- We will represent the output of the i-th perceptron of the k^{th} layer as $y_i^{(k)}$
 - Input to network: $y_i^{(0)} = x_i$
 - Output of network: $y_i = y_i^{(N)}$
- We will represent the weight of the connection between the i-th unit of the k-1th layer and the jth unit of the k-th layer as $w_{i\,i}^{(k)}$
 - The bias to the jth unit of the k-th layer is $b_i^{(k)}$

Given a training set of input-output pairs

$$(X_1, \underline{d_1}), (X_2, \underline{d_2}), \dots, (X_T, \underline{d_T})$$

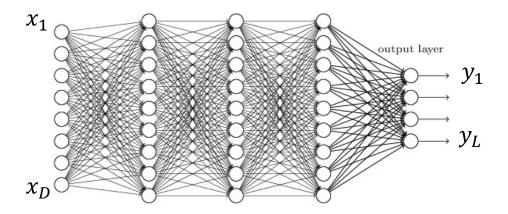
What are these input-output pairs?

$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

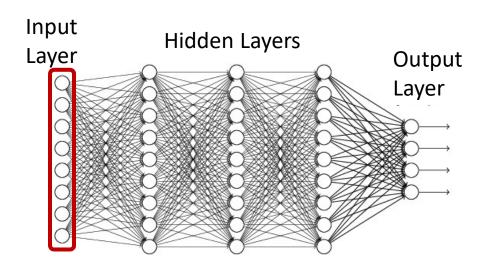
- This is problem of function minimization
 - An instance of optimization

Vector notation



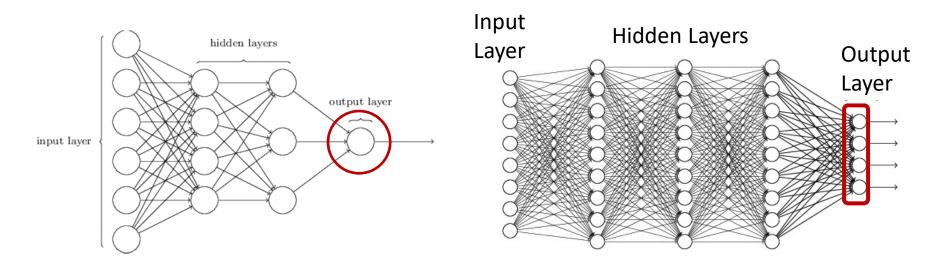
- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- $X_n = [x_{n1}, x_{n2}, ..., x_{nD}]$ is the nth input vector
- $d_n = [d_{n1}, d_{n2}, ..., d_{nL}]$ is the nth desired output
- $Y_n = [y_{n1}, y_{n2}, \dots, y_{nL}]$ is the nth vector of *actual* outputs of the network
- We will sometimes drop the first subscript when referring to a specific instance

Representing the input

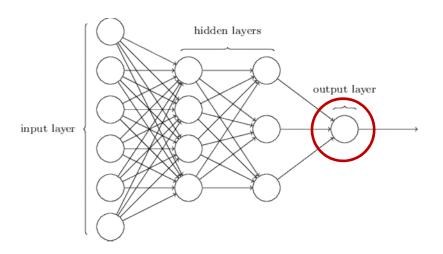


Vectors of numbers

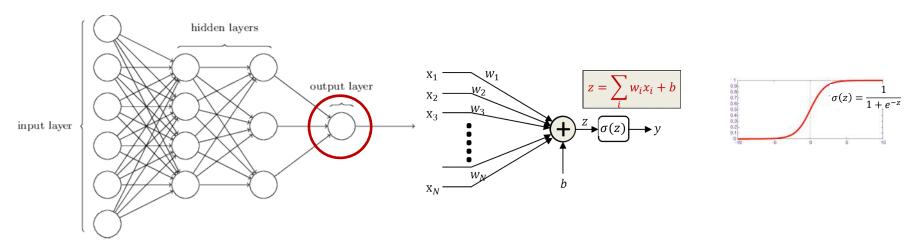
- (or may even be just a scalar, if input layer is of size 1)
- E.g. vector of pixel values
- E.g. vector of speech features
- E.g. real-valued vector representing text
 - We will see how this happens later in the course
- Other real valued vectors



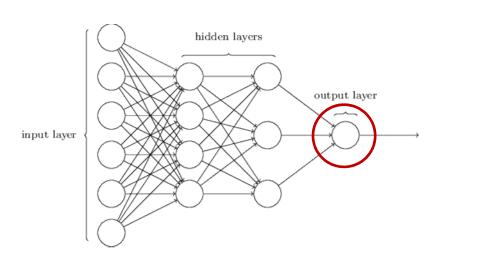
- If the desired *output* is real-valued, no special tricks are necessary
 - Scalar Output : single output neuron
 - d = scalar (real value)
 - Vector Output : as many output neurons as the dimension of the desired output
 - $d = [d_1 d_2 ... d_L]$ (vector of real values)

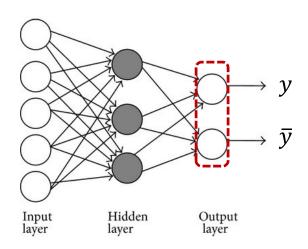


- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
 - -1 = Yes it's a cat
 - -0 = No it's not a cat.



- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
- Output activation: Typically a sigmoid
 - Viewed as the probability P(Y = 1|X) of class value 1
 - Indicating the fact that for actual data, in general an feature value X may occur for both classes, but with different probabilities
 - Is differentiable





- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
 - 1 = Yes it's a cat
 - 0 = No it's not a cat.
- Sometimes represented by *two independent* outputs, one representing the desired output, the other representing the *negation* of the desired output
 - Yes: \rightarrow [1 0]
 - No: → [0 1]

Multi-class output: One-hot representations

- Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat, or a flower
- We can represent this set as the following vector:

[cat dog camel hat flower]^T

For inputs of each of the five classes the desired output is:

cat: $[10000]^{T}$

dog: $[0 1 0 0 0]^{T}$

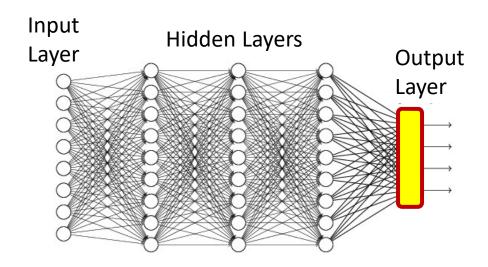
camel: [0 0 1 0 0]^T

hat: $[0\ 0\ 0\ 1\ 0]^{\mathsf{T}}$

flower: [0 0 0 0 1]^T

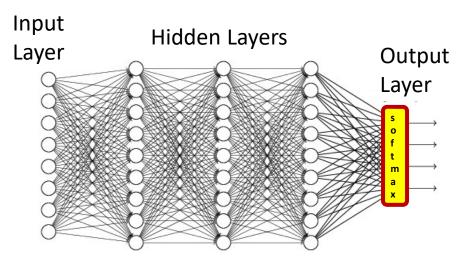
- For an input of any class, we will have a five-dimensional vector output with four zeros and a single 1 at the position of that class
- This is a one hot vector

Multi-class networks



- For a multi-class classifier with N classes, the one-hot representation will have N binary outputs
 - An N-dimensional binary vector
- The neural network's output too must ideally be binary (N-1 zeros and a single 1 in the right place)
- More realistically, it will be a probability vector
 - N probability values that sum to 1.

Multi-class classification: Output



 Softmax vector activation is often used at the output of multi-class classifier nets

$$z_{i} = \sum_{j} w_{ji}^{(n)} y_{j}^{(n-1)}$$

$$y_i = \frac{exp(z_i)}{\sum_j exp(z_j)}$$

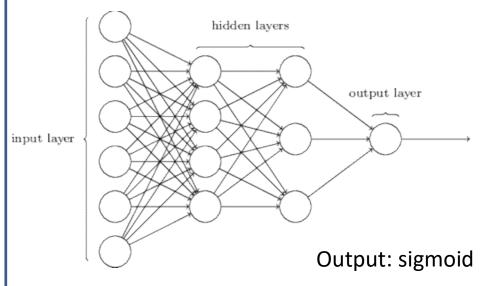
• This can be viewed as the probability $y_i = P(class = i|X)$

Typical Problem Statement

- We are given a number of "training" data instances
- E.g. images of digits, along with information about which digit the image represents
- Tasks:
 - Binary recognition: Is this a "2" or not
 - Multi-class recognition: Which digit is this? Is this a digit in the first place?

Typical Problem statement: binary classification

Training data

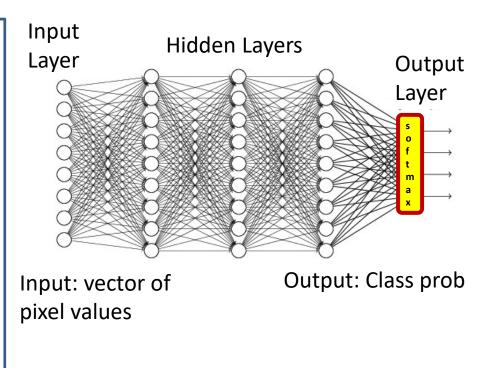


Input: vector of pixel values

- Given, many positive and negative examples (training data),
 - learn all weights such that the network does the desired job

Typical Problem statement: multiclass classification

Training data



- Given, many positive and negative examples (training data),
 - learn all weights such that the network does the desired job

Problem Setup: Things to define

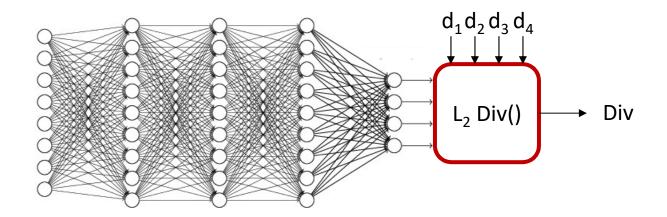
- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

What is the

- divergence div()?
 - An instance of optimization

Examples of divergence functions



• For real-valued output vectors, the (scaled) L_2 divergence is popular

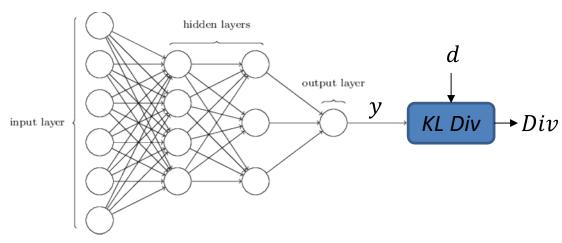
$$Div(Y,d) = \frac{1}{2}||Y - d||^2 = \frac{1}{2}\sum_{i}(y_i - d_i)^2$$

- Squared Euclidean distance between true and desired output
- Note: this is differentiable

$$\frac{dDiv(Y,d)}{dy_i} = (y_i - d_i)$$

$$\nabla_Y Div(Y,d) = [y_1 - d_1, y_2 - d_2, \dots]$$

For binary classifier



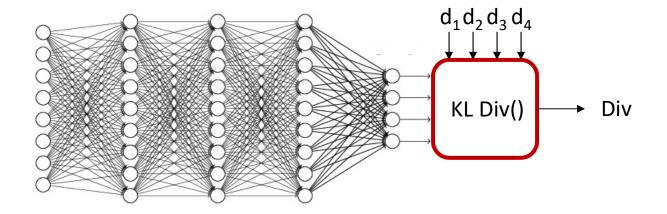
• For binary classifier with scalar output, $Y \in (0,1)$, d is 0/1, the cross entropy between the probability distribution [Y, 1-Y] and the ideal output probability [d, 1-d] is popular

$$Div(Y, d) = -dlogY - (1 - d)\log(1 - Y)$$

- Minimum when d = Y
- Derivative

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1-Y} & \text{if } d = 0 \end{cases}$$

For multi-class classification



- Desired output d is a one hot vector $\begin{bmatrix} 0 & 0 & \dots & 1 & \dots & 0 & 0 & 0 \end{bmatrix}$ with the 1 in the c-th position (for class c)
- Actual output will be probability distribution $[y_1, y_2, ...]$
- The cross-entropy between the desired one-hot output and actual output:

$$Div(Y,d) = -\sum_{i} d_{i} \log y_{i}$$

Derivative

$$\frac{dDiv(Y,d)}{dY_i} = \begin{cases} -\frac{1}{y_c} & \text{for the } c - \text{th component} \\ 0 & \text{for remaining component} \end{cases}$$

$$\nabla_Y Div(Y, d) = \left[0\ 0\ \dots \frac{-1}{y_c} \dots 0\ 0\right]$$

Problem Setup

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- The error on the ith instance is $div(Y_i, d_i)$
- The total error

$$Err = \frac{1}{T} \sum_{i} div(Y_i, d_i)$$

• Minimize Err w.r.t $\left\{w_{ij}^{(k)}, b_j^{(k)}\right\}$

Recap: Gradient Descent Algorithm

- In order to minimize any function f(x) w.r.t. x
- Initialize:

$$-x^0$$

$$-k=0$$

• While
$$|f(x^{k+1}) - f(x^k)| > \varepsilon$$

 $-x^{k+1} = x^k - \eta^k \nabla f(x^k)^T$
 $-k = k+1$

Recap: Gradient Descent Algorithm

- In order to minimize any function f(x) w.r.t. x
- Initialize:
 - $-x^0$
 - -k = 0
- While $|f(x^{k+1}) f(x^k)| > \varepsilon$
 - For every component i

•
$$x_i^{k+1} = x_i^k - \eta^k \frac{df}{dx_i}$$
 Explicitly stating it by component

$$-k = k + 1$$

Training Neural Nets through Gradient Descent

Total training error:

$$Err = \frac{1}{T} \sum_{t} Div(Y_t, d_t)$$

- Gradient descent algorithm:
- Initialize all weights and biases $\{w_i^{(i)}\}_{i=1}^{N}$
 - Using the extended notation: the bias is also a weight
- Do:
 - For every layer k for all i, j, update:

•
$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \eta \frac{dErr}{dw_{i,j}^{(k)}}$$

Until *Err* has converged

Training Neural Nets through Gradient Descent

Total training error:

$$Err = \frac{1}{T} \sum_{t} Div(Y_t, d_t)$$

- Gradient descent algorithm:
- Initialize all weights $\left\{w_{ij}^{(k)}\right\}$
- Do:
 - For every layer k for all i, j, update:

•
$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \eta \frac{dErr}{dw_{i,j}^{(k)}}$$

Until Err has converged

The derivative

Total training error:

$$Err = \frac{1}{T} \sum_{t} Div(Y_t, d_t)$$

Computing the derivative

Total derivative:

$$\frac{dErr}{dw_{i,j}^{(k)}} = \frac{1}{T} \sum_{t} \frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$$

Training by gradient descent

- Initialize all weights $\left\{ w_{ij}^{(k)} \right\}$
- Do:
 - For all i, j, k, initialize $\frac{dErr}{dw_{i,j}^{(k)}} = 0$
 - For all t = 1:T
 - For every layer *k* for all *i*, *j*:
 - Compute $\frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$
 - Compute $\frac{dErr}{dw_{i,j}^{(k)}} += \frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$
 - For every layer k for all i, j:

$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \frac{\eta}{T} \frac{dErr}{dw_{i,j}^{(k)}}$$

Until *Err* has converged

The derivative

Total training error:

$$Err = \frac{1}{T} \sum_{t} Div(Y_t, d_t)$$

Total derivative:
$$\frac{dErr}{dw_{i,j}^{(k)}} = \frac{1}{T} \sum_{t} \frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$$

 So we must first figure out how to compute the derivative of divergences of individual training inputs

Calculus Refresher: Basic rules of calculus

For any differentiable function

$$y = f(x)$$

with derivative

$$\frac{dy}{dx}$$

the following must hold for sufficiently small $\Delta x \Longrightarrow \Delta y \approx \frac{dy}{dx} \Delta x$

For any differentiable function

$$y = f(x_1, x_2, \dots, x_M)$$

with partial derivatives

$$\frac{\partial y}{\partial x_1}$$
, $\frac{\partial y}{\partial x_2}$, ..., $\frac{\partial y}{\partial x_M}$

the following must hold for sufficiently small $\Delta x_1, \Delta x_2, ..., \Delta x_M$

$$\Delta y \approx \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + \dots + \frac{\partial y}{\partial x_M} \Delta x_M$$

Calculus Refresher: Chain rule

For any nested function y = f(g(x))

$$\frac{dy}{dx} = \frac{\partial y}{\partial g(x)} \frac{dg(x)}{dx}$$

Check - we can confirm that: $\Delta y = \frac{dy}{dx} \Delta x$

$$z = g(x) \implies \Delta z = \frac{dg(x)}{dx} \Delta x$$

$$y = f(z) \implies \Delta y = \frac{dy}{dz} \Delta z = \frac{dy}{dz} \frac{dg(x)}{dx} \Delta x$$

Calculus Refresher: Distributed Chain rule

$$y = f(g_1(x), g_1(x), ..., g_M(x))$$

$$\frac{dy}{dx} = \frac{\partial y}{\partial g_1(x)} \frac{dg_1(x)}{dx} + \frac{\partial y}{\partial g_2(x)} \frac{dg_2(x)}{dx} + \dots + \frac{\partial y}{\partial g_M(x)} \frac{dg_M(x)}{dx}$$

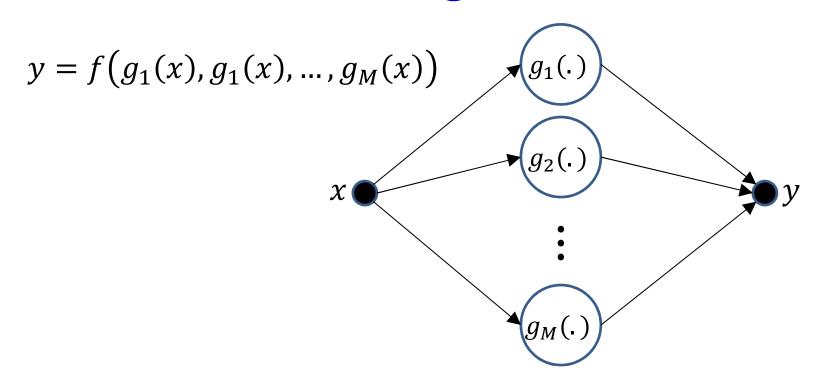
Check:
$$\Delta y = \frac{dy}{dx} \Delta x$$

$$\Delta y = \frac{\partial y}{\partial g_1(x)} \Delta g_1(x) + \frac{\partial y}{\partial g_2(x)} \Delta g_2(x) + \dots + \frac{\partial y}{\partial g_M(x)} \Delta g_M(x)$$

$$\Delta y = \frac{\partial y}{\partial g_1(x)} \frac{dg_1(x)}{dx} \Delta x + \frac{\partial y}{\partial g_2(x)} \frac{dg_2(x)}{dx} \Delta x + \dots + \frac{\partial y}{\partial g_M(x)} \frac{dg_M(x)}{dx} \Delta x$$

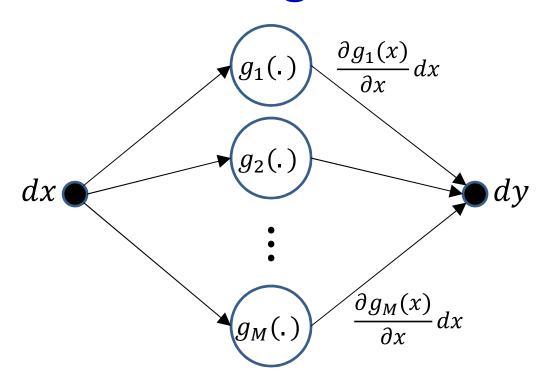
$$\Delta y = \left(\frac{\partial y}{\partial g_1(x)} \frac{dg_1(x)}{dx} + \frac{\partial y}{\partial g_2(x)} \frac{dg_2(x)}{dx} + \dots + \frac{\partial y}{\partial g_M(x)} \frac{dg_M(x)}{dx}\right) \Delta x$$
92

Distributed Chain Rule: Influence Diagram



• x affects y through each of $g_1 \dots g_M$

Distributed Chain Rule: Influence Diagram

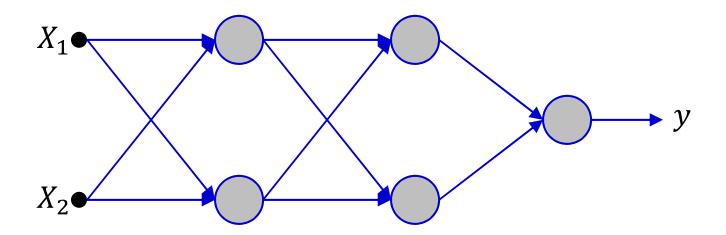


• Small perturbations in x cause small perturbations in each of $g_1 \dots g_M$, each of which individually additively perturbs y

Returning to our problem

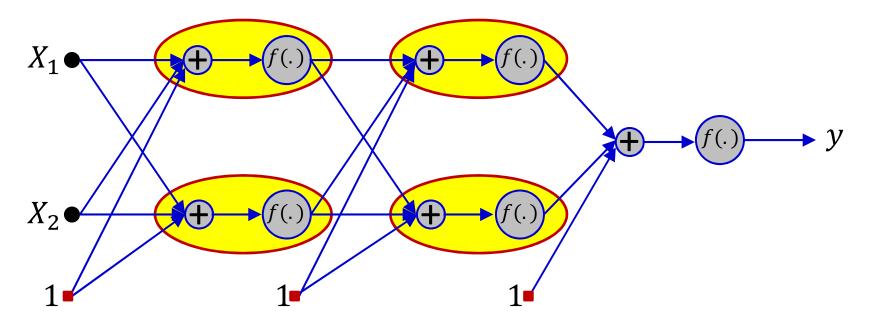
• How to compute
$$\frac{dDiv(Y,d)}{dw_{i,j}^{(k)}}$$

A first closer look at the network



- Showing a tiny 2-input network for illustration
 - Actual network would have many more neurons and inputs

A first closer look at the network



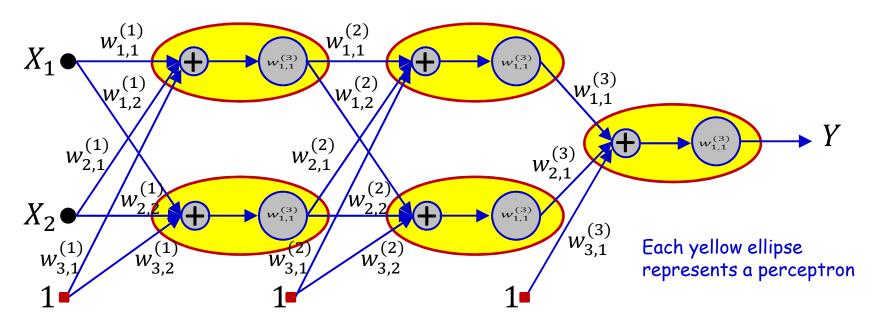
- Showing a tiny 2-input network for illustration
 - Actual network would have many more neurons and inputs
- Explicitly separating the weighted sum of inputs from the activation

A first closer look at the network



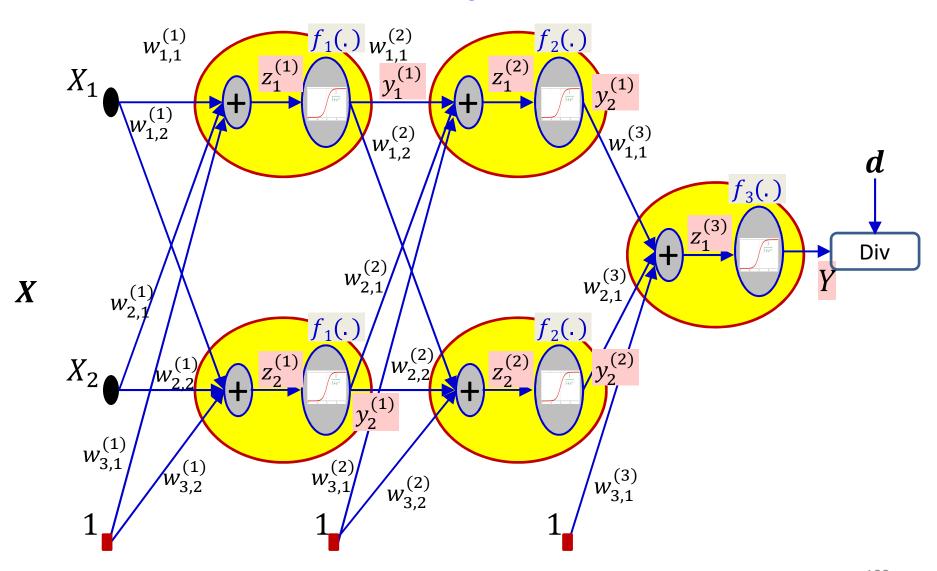
- Showing a tiny 2-input network for illustration
 - Actual network would have many more neurons and inputs
- Expanded with all weights and activations shown
- The overall function is differentiable w.r.t every weight, bias and input

Computing the derivative for a *single* input



- Aim: compute derivative of Div(Y,d) w.r.t. each of the weights
- But first, lets label all our variables and activation functions

Computing the derivative for a *single* input



Computing the gradient

• What is: $\frac{dDiv(Y,d)}{dw_{i,j}^{(k)}}$

– Derive on board?

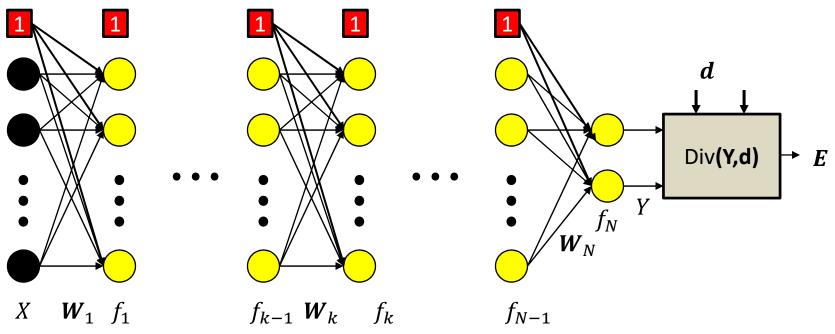
Computing the gradient

• What is: $\frac{dDiv(Y,d)}{dw_{i,j}^{(k)}}$

Derive on board?

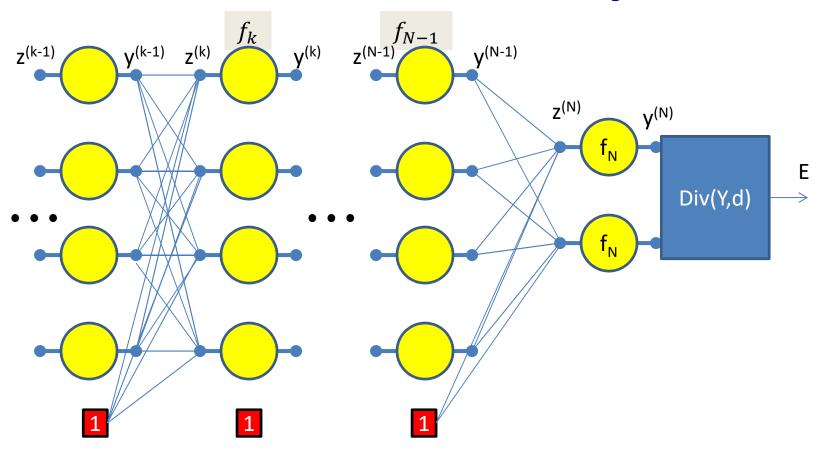
 Note: computation of the derivative requires intermediate and final output values of the network in response to the input

BP: Scalar Formulation

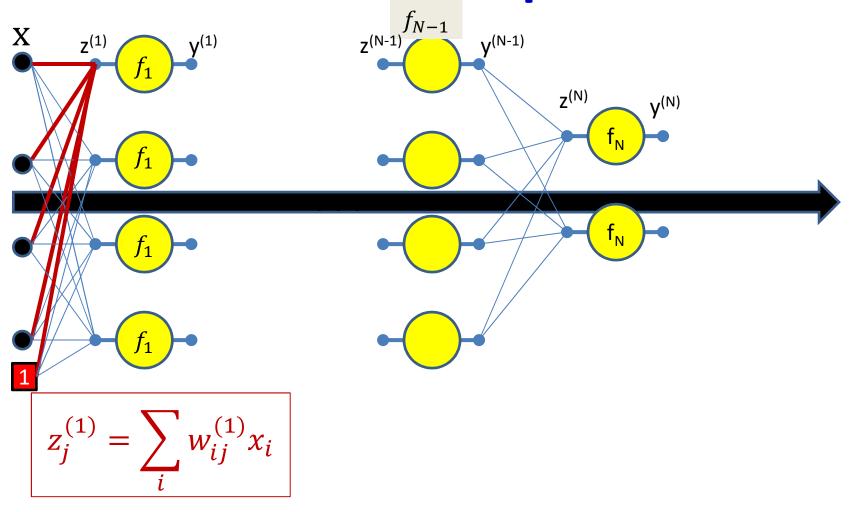


The network again

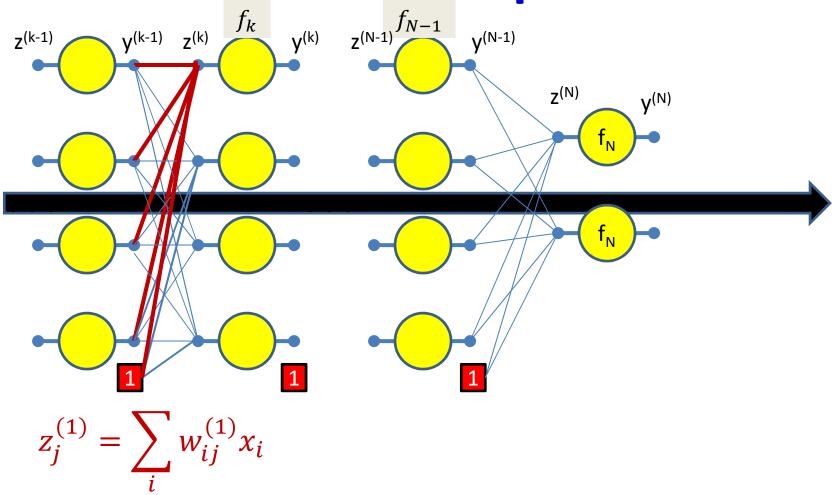
Gradients: Local Computation



- Redrawn
- Separately label input and output of each node

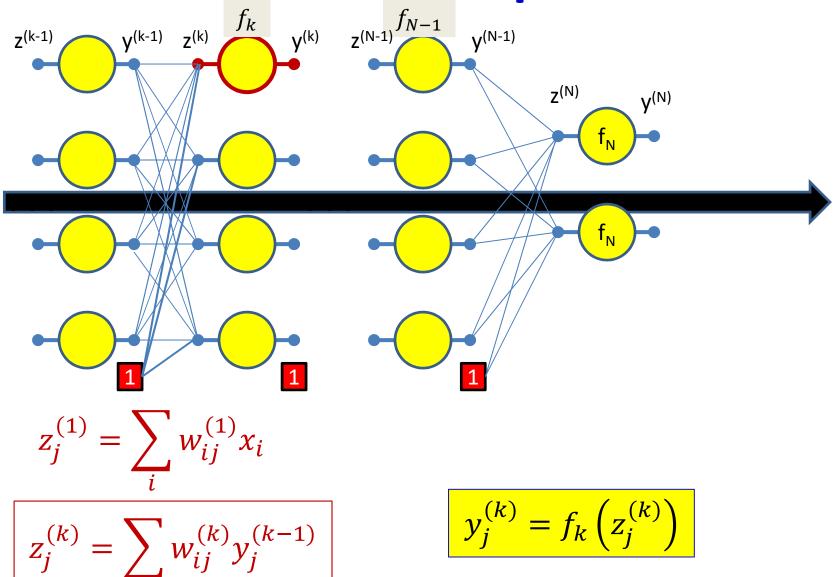


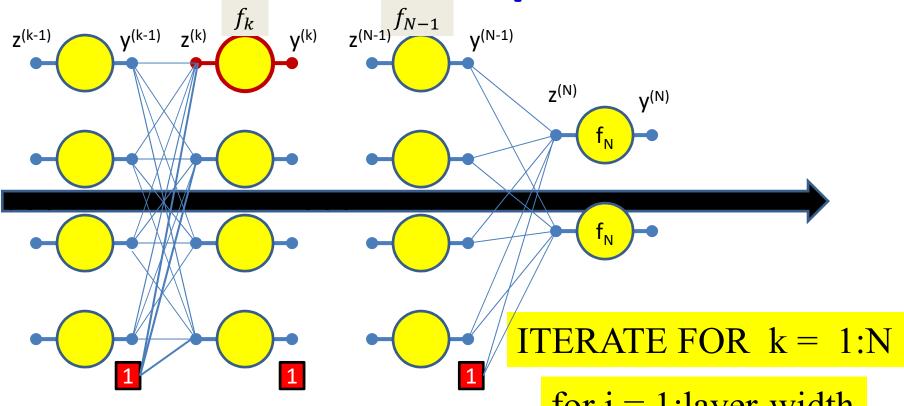
Assuming
$$w_{0j}^{(1)} = b_j^{(1)}$$
 and $x_0 = 1$



$$z_j^{(k)} = \sum_i w_{ij}^{(k)} y_j^{(k-1)}$$

 $z_j^{(k)} = \sum_{i=1}^{k} w_{ij}^{(k)} y_j^{(k-1)}$ Assuming $w_{0j}^{(k)} = b_j^{(k)}$ and $y_0^{(k-1)} = 1$





$$y_i^{(0)} = x_i$$

for j = 1:layer-width

$$z_j^{(k)} = \sum_i w_{ij}^{(k)} y_i^{(k-1)}$$

$$y_j^{(k)} = f_k \left(z_j^{(k)} \right)$$

Forward "Pass"

- Input: D dimensional vector $\mathbf{x} = [x_i, j = 1 ... D]$
- Set:
 - $-D_0=D$, is the width of the 0th (input) layer

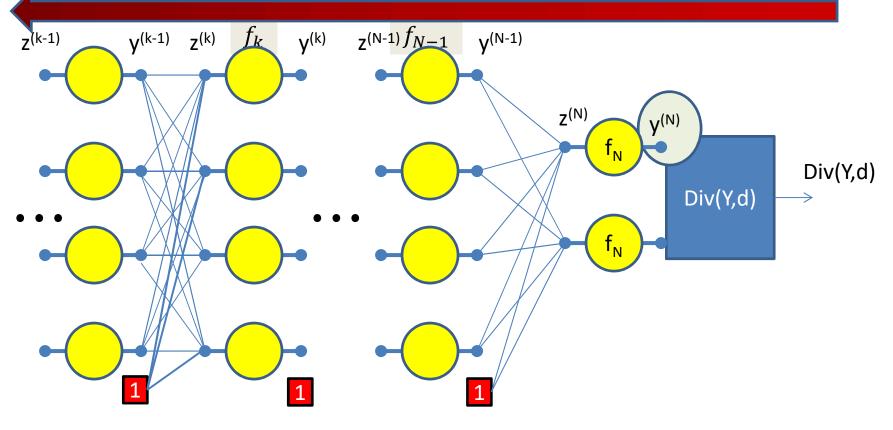
$$-y_j^{(0)} = x_j, j = 1 \dots D; y_0^{(k=1\dots N)} = x_0 = 1$$

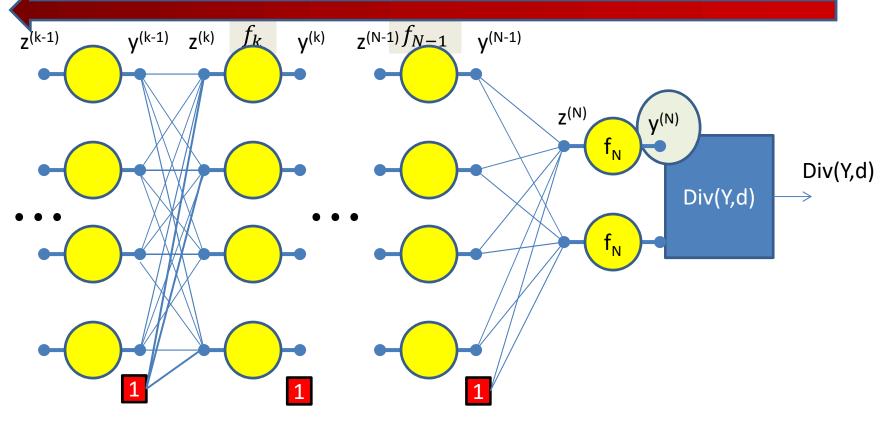
- $$\begin{split} \bullet & \text{ For layer } k = 1 \dots N \\ & \text{ For } j = 1 \dots D_k \quad \mathsf{D_k} \text{ is the size of the kth layer} \\ & \bullet \ z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)} \\ & \bullet \ y_j^{(k)} = f_k \left(z_j^{(k)} \right) \end{split}$$

•
$$z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)}$$

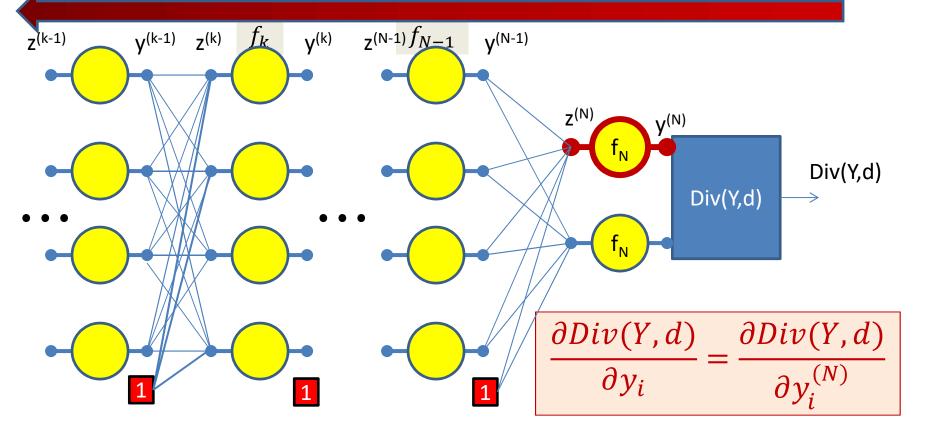
- Output:

$$-Y = y_j^{(N)}, j = 1...D_N$$

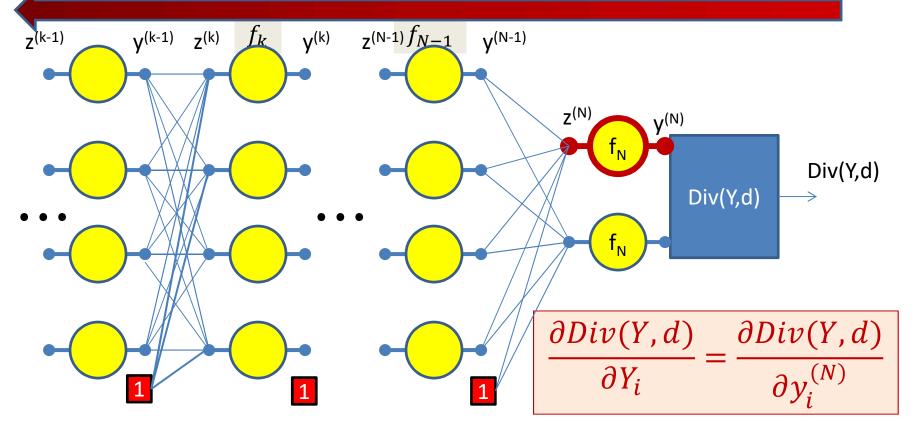




$$\frac{\partial Div(Y,d)}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$$

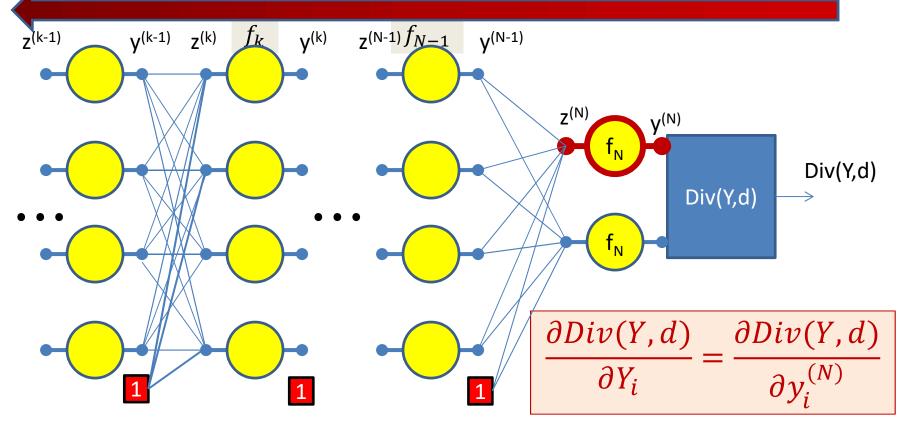


$$\frac{\partial Div}{\partial z_i^{(N)}} = \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} \frac{\partial Div}{\partial y_i} = f_N' \left(z_i^{(N)} \right) \frac{\partial Div}{\partial y_i^{(N)}}$$



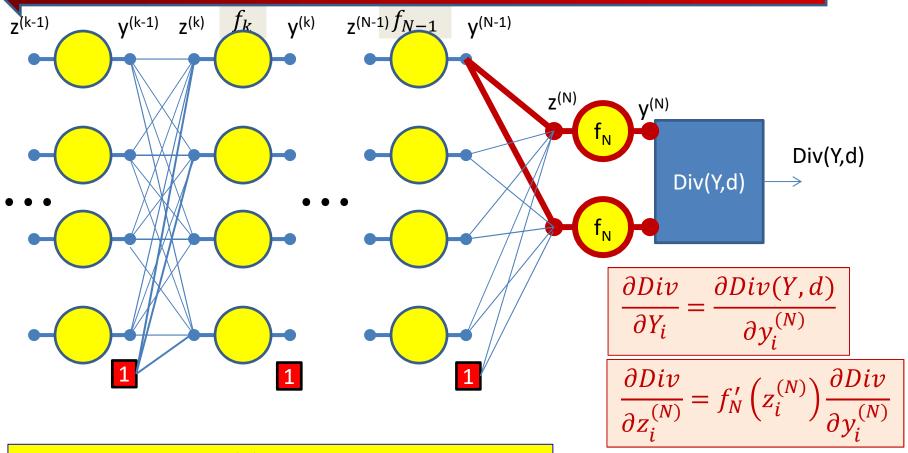
 $z_i^{(N)}$ computed during the forward pass

$$\frac{\partial Div}{\partial z_i^{(N)}} = \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} \frac{\partial Div}{\partial Y_i} = f_N' \left(\mathbf{z_i^{(N)}} \right) \frac{\partial Div}{\partial y_i^{(N)}}$$



Derivative of the activation function of Nth layer

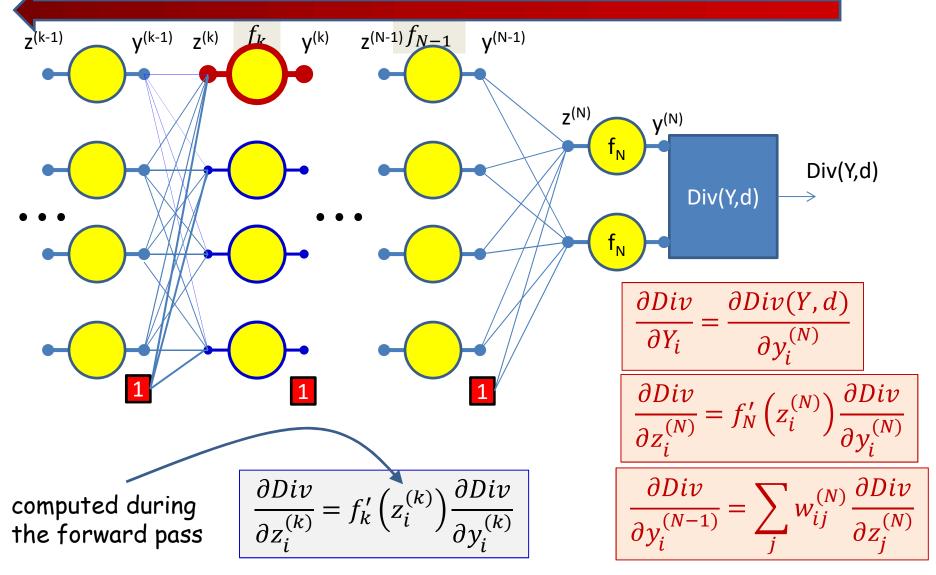
$$\frac{\partial Div}{\partial z_i^{(N)}} = \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} \frac{\partial Div}{\partial Y_i} = f_N' \left(z_i^{(N)} \right) \frac{\partial Div}{\partial y_i^{(N)}}$$

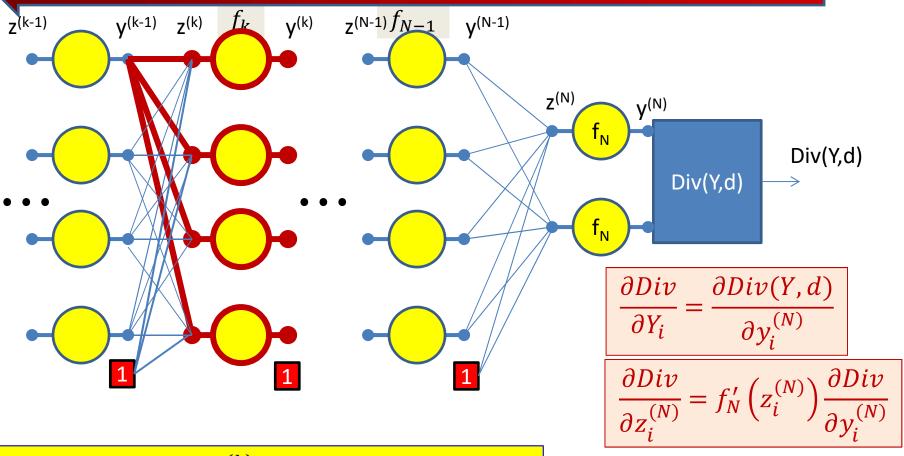


$$\frac{\partial Div}{\partial y_i^{(N-1)}} = \sum_j \frac{\partial z_j^{(N)}}{\partial y_i^{(N-1)}} \frac{\partial Div}{\partial z_j^{(N)}} = \sum_j w_{ij}^{(N)} \frac{\partial Div}{\partial z_j^{(N)}}$$

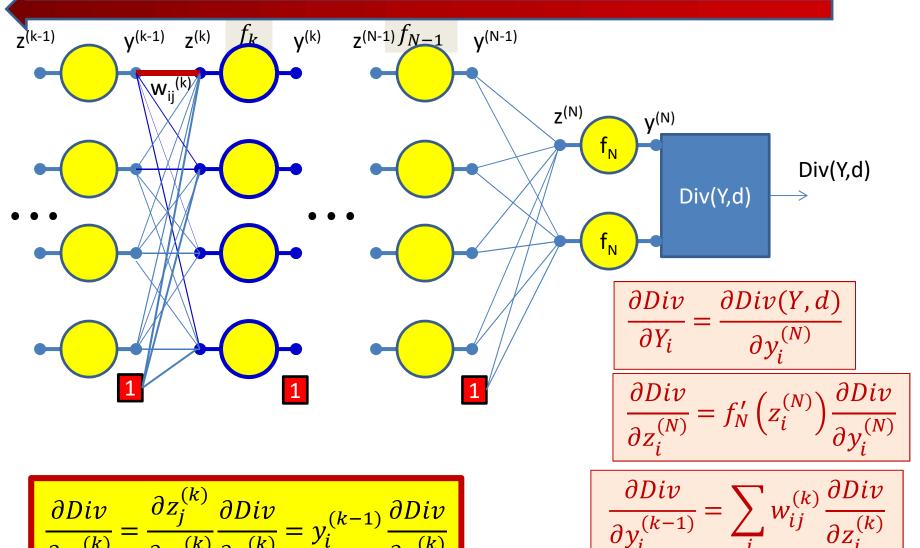
Because:

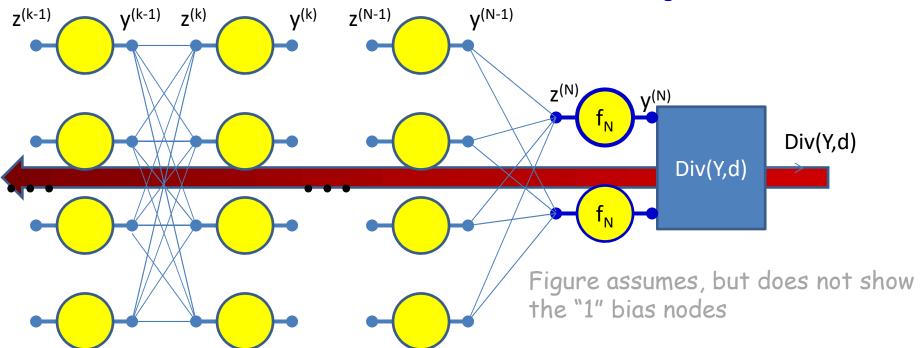
$$\frac{\partial z_j^{(N)}}{\partial y_i^{(N-1)}} = w_{ij}^{(N)}$$





$$\frac{\partial Div}{\partial y_i^{(k-1)}} = \sum_j \frac{\partial z_j^{(k)}}{\partial y_i^{(k-1)}} \frac{\partial Div}{\partial z_j^{(k)}} = \sum_j w_{ij}^{(k)} \frac{\partial Div}{\partial z_j^{(k)}}$$





Initialize: Gradient w.r.t network output

$$\frac{\partial Div}{\partial y_i} = \frac{\partial Div(Y, d)}{\partial y_i^{(N)}}$$

For
$$k = N...1$$

For $i = 1$: layer – width $\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial z_i^{(k)}}$

$$\frac{\partial Div}{\partial y_i^{(k-1)}} = \sum_{i} w_{ij}^{(k)} \frac{\partial Div}{\partial z_i^{(k)}}$$

$$\frac{\partial Div}{\partial w_{ij}^{(k)}} = y_i^{(k-1)} \frac{\partial Div}{\partial z_j^{(k)}}$$

Backward Pass

- Output layer (N):
 - For $i = 1 ... D_N$

•
$$\frac{\partial Div}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$$

•
$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}$$

- For layer k = N 1 downto 0
 - For $i = 1 ... D_k$

•
$$\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$

•
$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}$$

•
$$\frac{\partial Di}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}} \quad \text{for } j = 1 \dots D_{k-1}$$

Backward Pass

- Output layer (N):
 - For $i = 1 ... D_N$
 - $\frac{\partial Div}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$
 - $\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}$

Called "Backpropagation" because the derivative of the error is propagated "backwards" through the network

Very analogous to the forward pass:

- For layer $k = N 1 \ downto \ 0$
 - For $i = 1 ... D_k$
 - $\frac{\partial Di}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$

• $\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}$

Backward weighted combination of next layer

Backward equivalent of activation

•
$$\frac{\partial Div}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}}$$
 for $j = 1 \dots D_{k-1}$

For comparison: the forward pass again

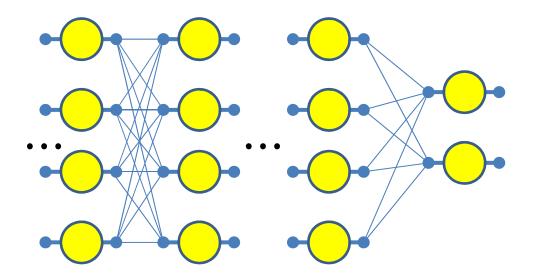
- Input: D dimensional vector $\mathbf{x} = [x_i, j = 1 ... D]$
- Set:
 - $-D_0=D$, is the width of the 0th (input) layer

$$-y_j^{(0)} = x_j, j = 1 \dots D; y_0^{(k=1\dots N)} = x_0 = 1$$

- For layer k = 1 ... N- For $j = 1 ... D_k$ $z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)}$ $y_j^{(k)} = f_k \left(z_j^{(k)} \right)$
- Output:

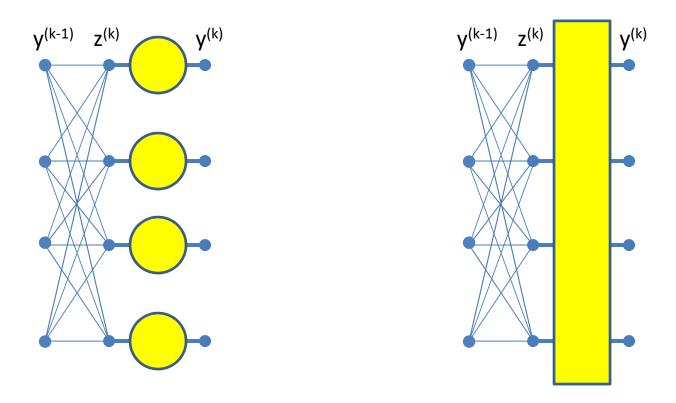
$$-Y = y_j^{(N)}, j = 1...D_N$$

Special cases



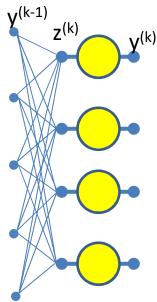
- Have assumed so far that.
 - 1. The computation of the output of one neuron does not directly affect computation of other neurons in the same (or previous) layers
 - 2. Outputs of neurons only combine through weighted addition
 - 3. Activations are actually differentiable
 - All of these conditions are frequently not applicable
- Not discussed in class, but explained in slides
 - Will appear in quiz. Please read the slides

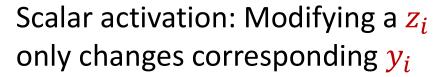
Special Case 1. Vector activations



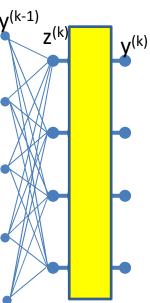
 Vector activations: all outputs are functions of all inputs

Special Case 1. Vector activations





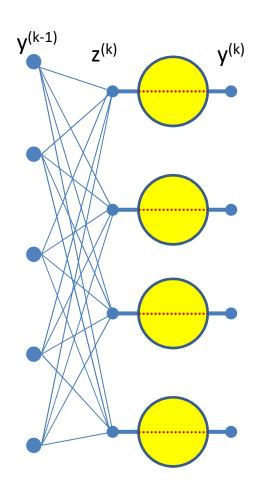
$$y_i^{(k)} = f\left(z_i^{(k)}\right)$$



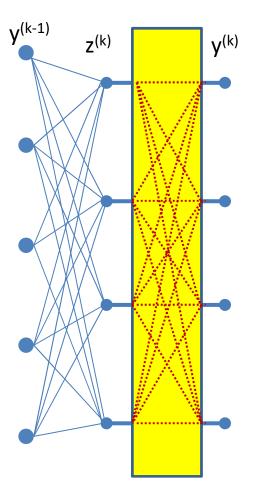
Vector activation: Modifying a z_i potentially changes all, $y_1 \dots y_M$

$$\begin{bmatrix} y_1^{(k)} \\ y_2^{(k)} \\ \vdots \\ y_M^{(k)} \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} z_1^{(k)} \\ z_2^{(k)} \\ \vdots \\ z_D^{(k)} \end{bmatrix} \end{pmatrix}_{125}$$

"Influence" diagram

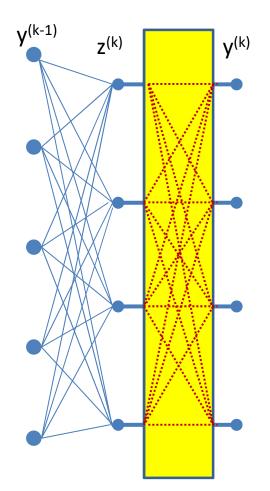


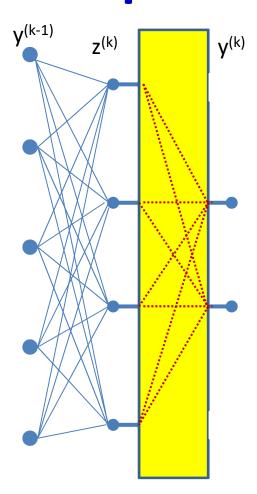
Scalar activation: Each z_i influences one y_i



Vector activation: Each z_i influences all, $y_1 \dots y_M$

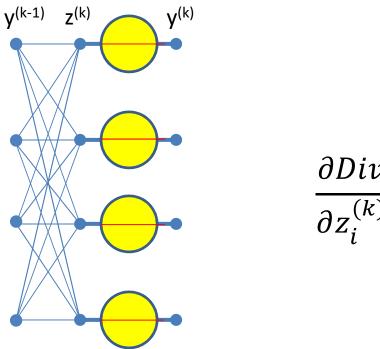
The number of outputs





- Note: The number of outputs $(y^{(k)})$ need not be the same as the number of inputs $(z^{(k)})$
 - May be more or fewer

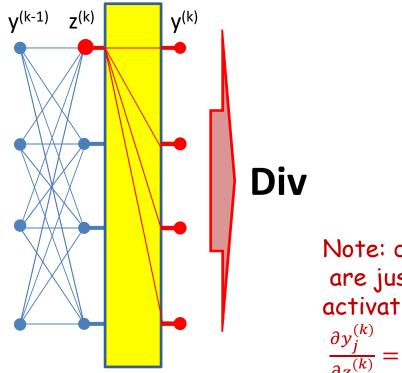
Scalar Activation: Derivative rule



$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{dy_i^{(k)}}{dz_i^{(k)}}$$

• In the case of *scalar* activation functions, the derivative of the error w.r.t to the input to the unit is a simple product of derivatives

Derivatives of vector activation



$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_{j} \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$$

Note: derivatives of scalar activations are just a special case of vector activations:

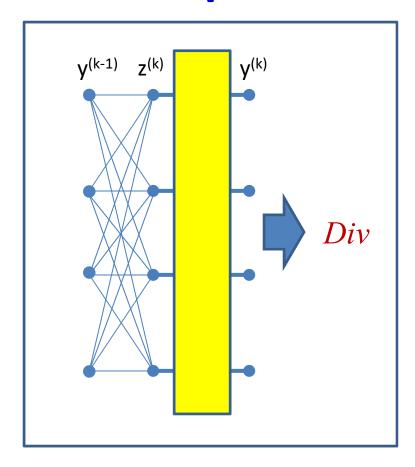
$$\frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} = 0 \ for \ i \neq j$$

- For vector activations the derivative of the error w.r.t.
 to any input is a sum of partial derivatives
 - Regardless of the number of outputs $y_i^{(k)}$

Special cases

- Examples of vector activations and other special cases on slides
 - Please look up
 - Will appear in quiz!

Example Vector Activation: Softmax



$$y_i^{(k)} = \frac{exp\left(z_i^{(k)}\right)}{\sum_j exp\left(z_j^{(k)}\right)}$$

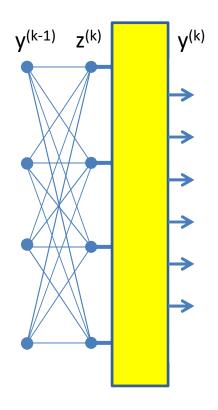
$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_j \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$$

$$\frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} = \begin{cases} y_i^{(k)} \left(1 - y_i^{(k)} \right) & \text{if } i = j \\ -y_i^{(k)} y_j^{(k)} & \text{if } i \neq j \end{cases}$$

$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_j \frac{\partial E}{\partial y_j^{(k)}} y_i^{(k)} \left(\delta_{ij} - y_j^{(k)} \right)$$

- For future reference
- δ_{ij} is the Kronecker delta: $\delta_{ij}=1$ if i=j, 0 if $i\neq j$

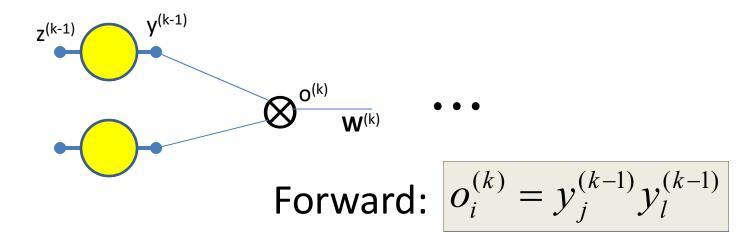
Vector Activations



$$\begin{bmatrix} y_1^{(k)} \\ y_2^{(k)} \\ \vdots \\ y_M^{(k)} \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} z_1^{(k)} \\ z_2^{(k)} \\ \vdots \\ z_D^{(k)} \end{bmatrix} \end{pmatrix}$$

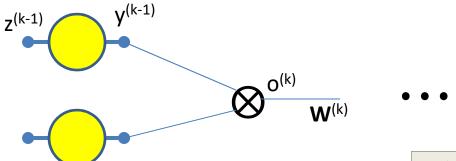
- In reality the vector combinations can be anything
 - E.g. linear combinations, polynomials, logistic (softmax),
 etc.

Special Case 2: Multiplicative networks



- Some types of networks have *multiplicative* combination
 - In contrast to the additive combination we have seen so far
- Seen in networks such as LSTMs, GRUs, attention models, etc.

Backpropagation: Multiplicative Networks



Forward:
$$o_i^{(k)} = y_j^{(k-1)} y_l^{(k-1)}$$

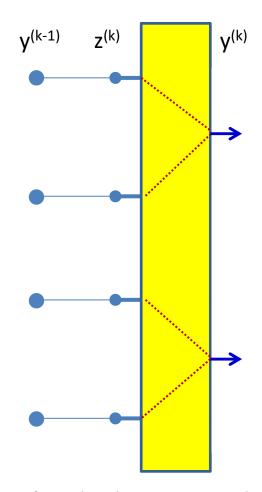
Backward:

$$\frac{\partial Div}{\partial y_j^{(k-1)}} = \frac{\partial o_i^{(k)}}{\partial y_j^{(k-1)}} \frac{\partial Div}{\partial o_i^{(k)}} = y_l^{(k-1)} \frac{\partial Div}{\partial o_i^{(k)}}$$

$$\frac{\partial Div}{\partial y_l^{(k-1)}} = y_j^{(k-1)} \frac{\partial Div}{\partial o_i^{(k)}}$$

 Some types of networks have multiplicative combination

Multiplicative combination as a case of vector activations

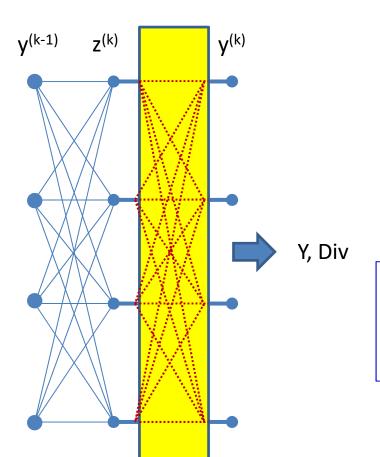


$$z_i^{(k)} = y_i^{(k-1)}$$

$$y_i^{(k)} = z_{2i-1}^{(k)} z_{2i}^{(k)}$$

A layer of multiplicative combination is a special case of vector activation

Multiplicative combination: Can be viewed as a case of vector activations



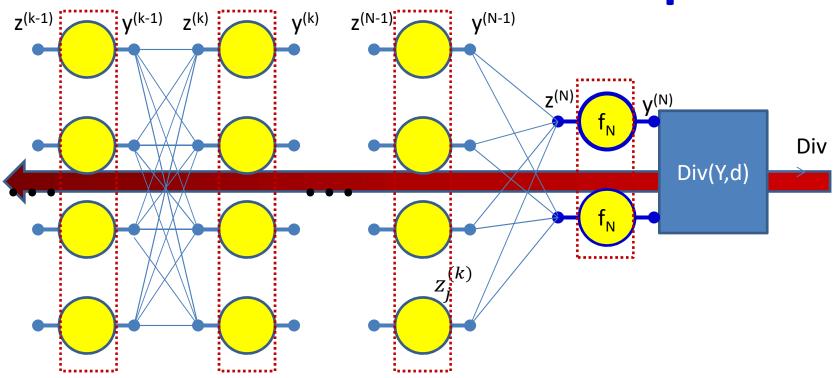
$$z_i^{(k)} = \sum_j w_{ji}^{(k)} y_j^{(k-1)}$$

$$y_i^{(k)} = \prod_l \left(z_l^{(k)} \right)^{\alpha_{li}^{(k)}}$$

$$\frac{\partial y_i^{(k)}}{\partial z_j^{(k)}} = \alpha_{ji}^{(k)} \left(z_j^{(k)} \right)^{\alpha_{ji}^{(k)} - 1} \prod_{l \neq j} \left(z_l^{(k)} \right)^{\alpha_{li}^{(k)}}$$

$$\frac{\partial Div}{\partial z_j^{(k)}} = \sum_{i} \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_j^{(k)}}$$

A layer of multiplicative combination is a special case of vector activation



For k = N...1

For i = 1:layer-width

If layer has vector activation

$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_{j} \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$$

$$\frac{\partial Div}{\partial y_i^{(k-1)}} = \sum_j w_{ij}^{(k)} \frac{\partial Div}{\partial z_j^{(k)}}$$

Else if activation is scalar

$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}$$

$$\frac{\partial Div}{\partial w_{ij}^{(k)}} = y_i^{(k-1)} \frac{\partial Div}{\partial z_j^{(k)}}$$

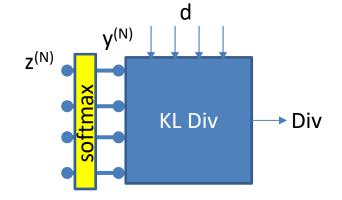
Backward Pass for softmax output

layer

- Output layer (N):
 - For $i = 1 ... D_N$

•
$$\frac{\partial Div}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$$

•
$$\frac{\partial Div}{\partial z_i^{(N)}} = \sum_j \frac{\partial Div(Y,d)}{\partial y_j^{(N)}} y_i^{(N)} \left(\delta_{ij} - y_j^{(N)} \right)$$



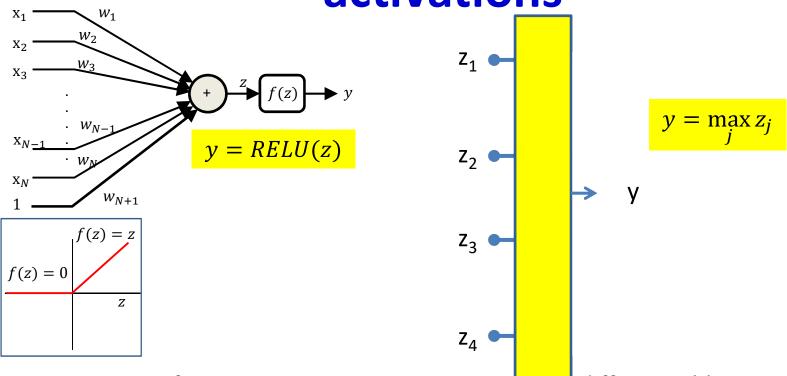
- For layer $k = N 1 \ downto \ 0$
 - For $i = 1 ... D_k$

•
$$\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$

•
$$\frac{\partial Div}{\partial z_i^{(k)}} = f_k' \left(z_i^{(k)} \right) \frac{\partial Di}{\partial y_i^{(k)}}$$

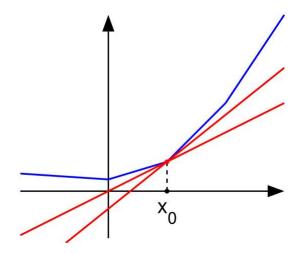
•
$$\frac{\partial Div}{\partial w_{ij}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}}$$
 for $j = 1 \dots D_{k-1}$

Special Case 3: Non-differentiable activations



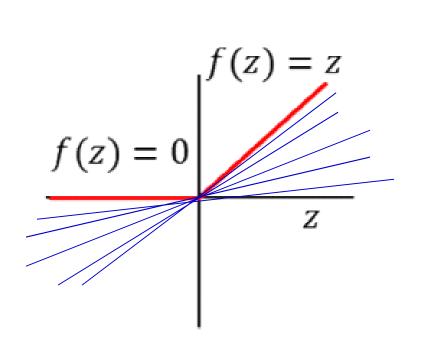
- Activation functions are sometimes not actually differentiable
 - E.g. The RELU (Rectified Linear Unit)
 - And its variants: leaky RELU, randomized leaky RELU
 - E.g. The "max" function
- Must use "subgradients" where available
 - Or "secants"

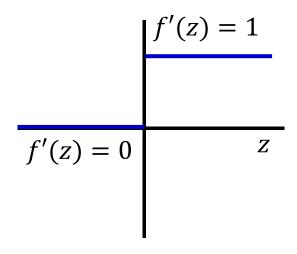
The subgradient



- A subgradient of a function f(x) at a point x_0 is any vector v such that $(f(x) f(x_0)) \ge v^T(x x_0)$
- Guaranteed to exist only for convex functions
 - "bowl" shaped functions
 - For non-convex functions, the equivalent concept is a "quasi-secant"
- The subgradient is a direction in which the function is guaranteed to increase
- If the function is differentiable at x_0 , the subgradient is the gradient
 - The gradient is not always the subgradient though

Subgradients and the RELU

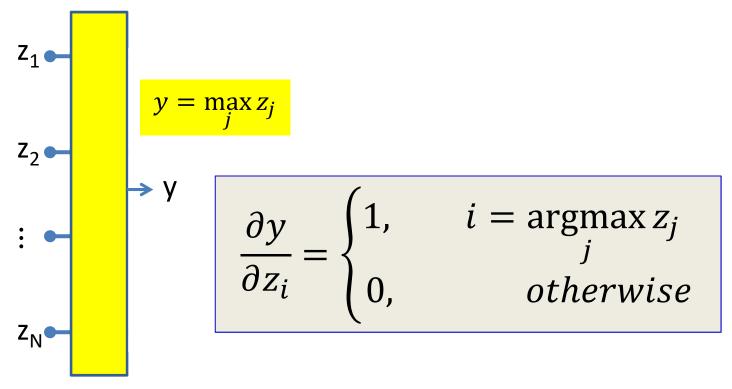




$$f'(z) = \begin{cases} 0, & z < 0 \\ 1, & z \ge 0 \end{cases}$$

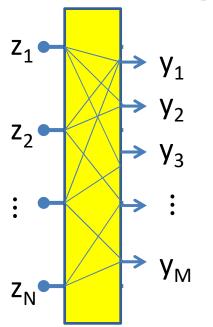
- Can use any subgradient
 - At the differentiable points on the curve, this is the same as the gradient
 - Typically, will use the equation given

Subgradients and the Max



- Vector equivalent of subgradient
 - 1 w.r.t. the largest incoming input
 - Incremental changes in this input will change the output
 - 0 for the rest
 - Incremental changes to these inputs will not change the output

Subgradients and the Max



$$y_i = \operatorname*{argmax}_{l \in \mathcal{S}_j} z_l$$

$$\frac{\partial y_j}{\partial z_i} = \begin{cases} 1, & i = \underset{l \in S_j}{\operatorname{argmax}} z_l \\ 0, & otherwise \end{cases}$$

- Multiple outputs, each selecting the max of a different subset of inputs
 - Will be seen in convolutional networks
- Gradient for any output:
 - 1 for the specific component that is maximum in corresponding input subset
 - 0 otherwise

Backward Pass: Recap

- Output layer (N):
 - For $i = 1 ... D_N$

$$\bullet \ \frac{\partial Div}{\partial Y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$$

•
$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Di}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}$$
 OR $\sum_j \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$ (vector activation)

- For layer k = N 1 downto 0
 - For $i = 1 ... D_k$

•
$$\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$

•
$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}$$
 OR $\sum_j \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$ (vector activation)

•
$$\frac{\partial D}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}}$$
 for $j = 1 \dots D_{k-1}$

Overall Approach

- For each data instance
 - Forward pass: Pass instance forward through the net. Store all intermediate outputs of all computation
 - Backward pass: Sweep backward through the net, iteratively compute all derivatives w.r.t weights
- Actual Error is the sum of the error over all training instances

$$\mathbf{Err} = \frac{1}{|\{X\}|} \sum_{X} Div(Y(X), d(X))$$

 Actual gradient is the sum or average of the derivatives computed for each training instance

$$\nabla_{W}\mathbf{Err} = \frac{1}{|\{X\}|} \sum_{X} \nabla_{W} Div(Y(X), d(X)) \qquad W \leftarrow W - \eta \nabla_{W}\mathbf{Err}$$

Training by BackProp

- Initialize all weights $(W^{(1)}, W^{(2)}, ..., W^{(K)})$
- Do:
 - Initialize Err = 0; For all i, j, k, initialize $\frac{dErr}{dw_{i,j}^{(k)}} = 0$
 - For all t = 1:T (Loop over training instances)
 - Forward pass: Compute
 - Output Y_t
 - $Err += Div(Y_t, d_t)$
 - Backward pass: For all *i*, *j*, *k*:
 - Compute $\frac{d\mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)}{dw_{i,j}^{(k)}}$
 - Compute $\frac{dErr}{dw_{i,j}^{(k)}} + = \frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$
 - For all i, j, k, update:

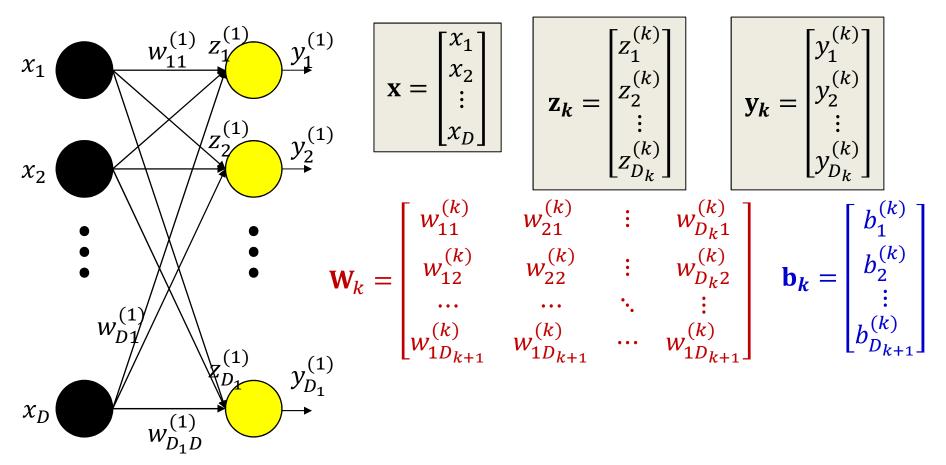
$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \frac{\eta}{T} \frac{dErr}{dw_{i,j}^{(k)}}$$

Until Err has converged

Vector formulation

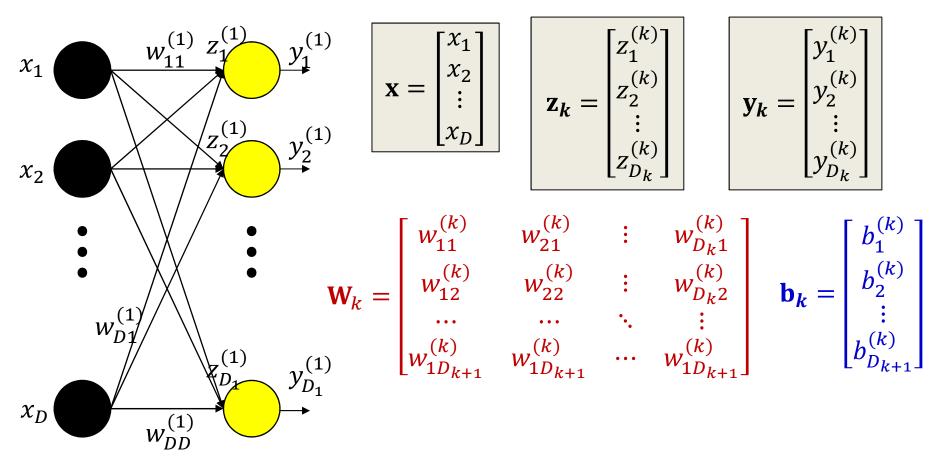
- For layered networks it is generally simpler to think of the process in terms of vector operations
 - Simpler arithmetic
 - Fast matrix libraries make operations much faster
- We can restate the entire process in vector terms
 - On slides, please read
 - This is what is actually used in any real system
 - Will appear in quiz

Vector formulation



- Arrange all inputs to the network in a vector x
- Arrange the *inputs* to neurons of the kth layer as a vector \mathbf{z}_k
- Arrange the outputs of neurons in the kth layer as a vector \mathbf{y}_k
- Arrange the weights to any layer as a matrix \mathbf{W}_k
 - Similarly with biases

Vector formulation



• The computation of a single layer is easily expressed in matrix notation as (setting $y_0 = x$):

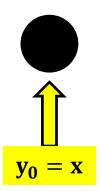
$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k$$

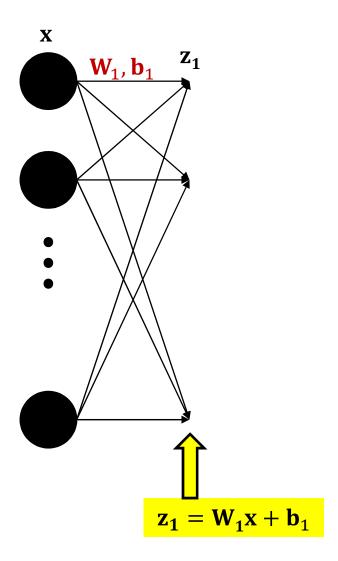
$$\mathbf{y}_k = \boldsymbol{f}_k(\mathbf{z}_k)$$

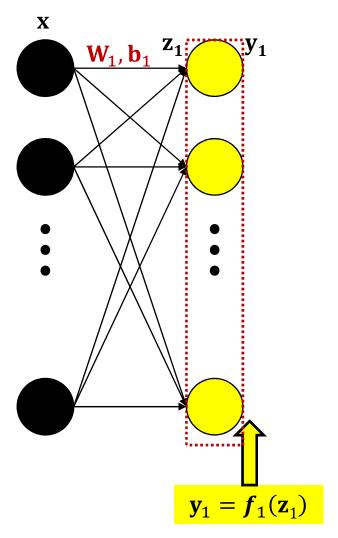
The forward pass: Evaluating the network

X

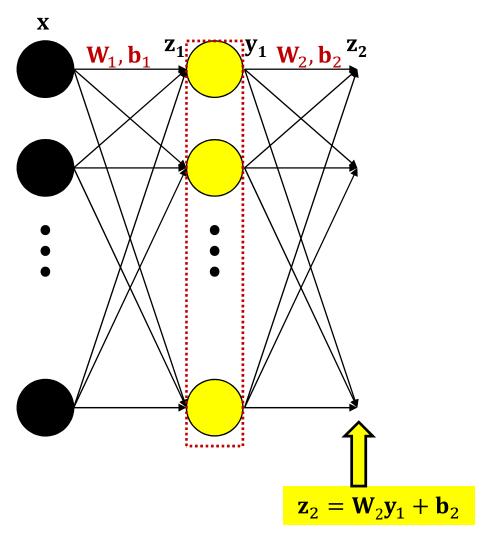
•



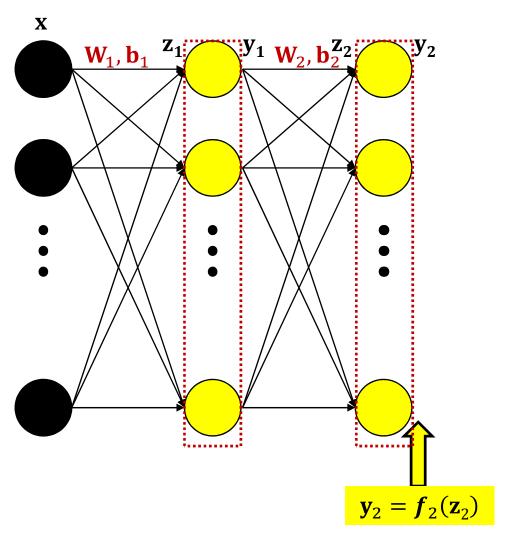




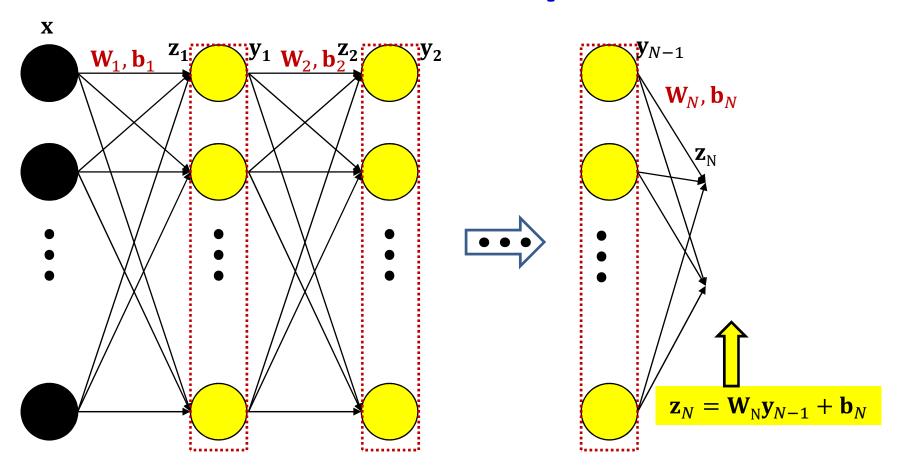
$$\mathbf{y}_1 = f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)$$



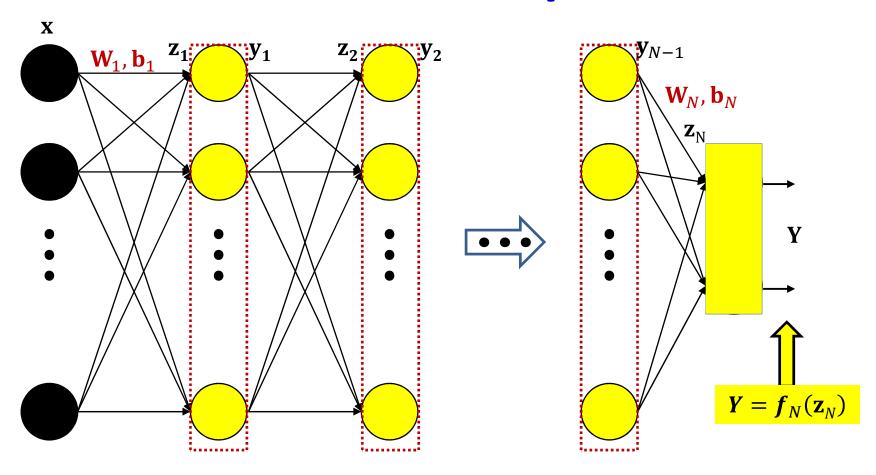
$$\mathbf{y}_1 = f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)$$



$$\mathbf{y}_2 = f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)$$

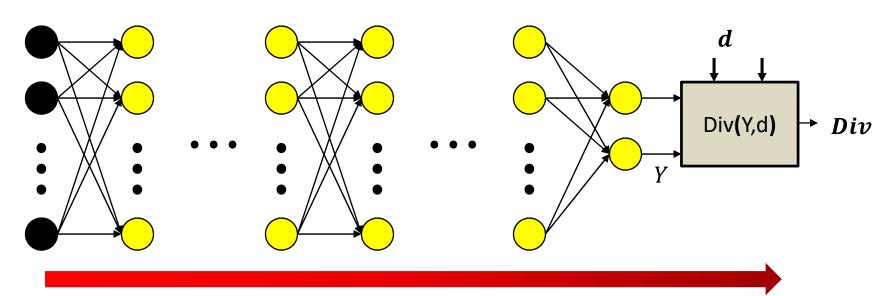


$$\mathbf{y}_2 = f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)$$



$$Y = f_N(\mathbf{W}_N f_{N-1}(...f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) ...) + \mathbf{b}_N)$$

Forward pass



Forward pass:

Initialize

$$\mathbf{y}_0 = \mathbf{x}$$

For k = 1 to N:
$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k \mid \mathbf{y}_k = \mathbf{f}_k(\mathbf{z}_k)$$

$$\mathbf{y}_k = \mathbf{f}_k(\mathbf{z}_k)$$

Output

$$Y = \mathbf{y}_N$$

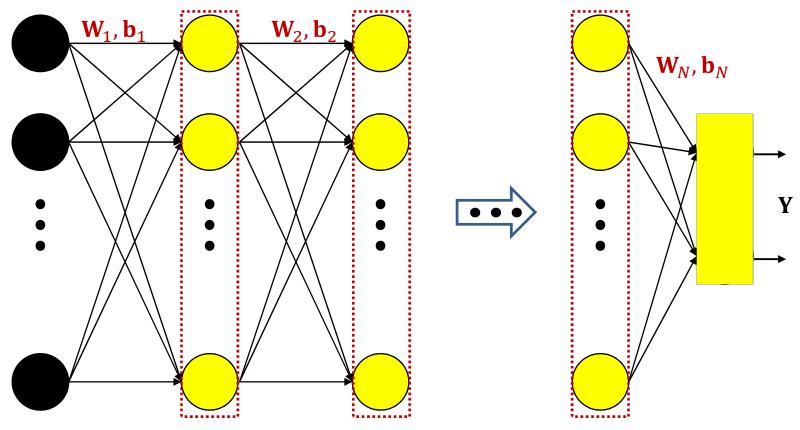
The Forward Pass

- Set $y_0 = x$
- For layer k = 1 to N:
 - Recursion:

$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k$$
$$\mathbf{y}_k = \mathbf{f}_k(\mathbf{z}_k)$$

• Output:

$$\mathbf{Y} = \mathbf{y}_N$$



The network is a nested function

$$Y = f_N(\mathbf{W}_N f_{N-1}(...f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)...) + \mathbf{b}_N)$$

The error for any x is also a nested function

$$Div(Y, d) = Div(f_N(\mathbf{W}_N f_{N-1}(...f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) ...) + \mathbf{b}_N), d)$$

Calculus recap 2: The Jacobian

- The derivative of a vector function w.r.t. vector input is called a Jacobian
- It is the matrix of partial derivatives given below

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = f \left(\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_D \end{bmatrix} \right)$$

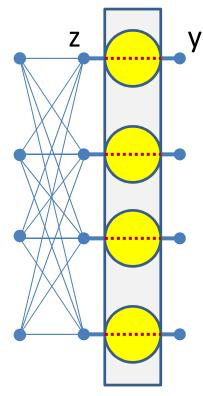
Using vector notation

$$\mathbf{y} = f(\mathbf{z})$$

$$J_{\mathbf{y}}(\mathbf{z}) = \begin{bmatrix} \frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} & \dots & \frac{\partial y_1}{\partial z_D} \\ \frac{\partial y_2}{\partial z_1} & \frac{\partial y_2}{\partial z_2} & \dots & \frac{\partial y_2}{\partial z_D} \\ \dots & \dots & \ddots & \dots \\ \frac{\partial y_M}{\partial z_1} & \frac{\partial y_M}{\partial z_2} & \dots & \frac{\partial y_M}{\partial z_D} \end{bmatrix}$$

Check:
$$\Delta \mathbf{y} = J_{\nu}(\mathbf{z})\Delta \mathbf{z}$$

Jacobians can describe the derivatives of neural activations w.r.t their input

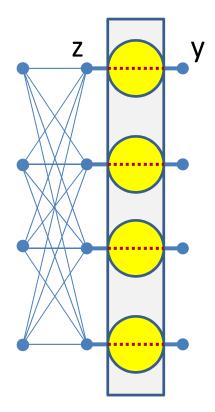


$$J_{\mathbf{y}}(\mathbf{z}) = \begin{bmatrix} \frac{dy_1}{dz_1} & 0 & \cdots & 0 \\ 0 & \frac{dy_2}{dz_2} & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & \cdots & \frac{dy_D}{dz_D} \end{bmatrix}$$

For Scalar activations

- Number of outputs is identical to the number of inputs
- Jacobian is a diagonal matrix
 - Diagonal entries are individual derivatives of outputs w.r.t inputs
 - Not showing the superscript "(k)" in equations for brevity

Jacobians can describe the derivatives of neural activations w.r.t their input

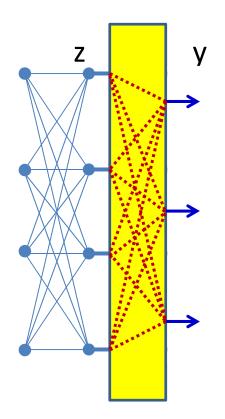


$$y_i = f(z_i)$$

$$J_{\mathbf{y}}(\mathbf{z}) = \begin{bmatrix} f'(y_1) & 0 & \cdots & 0 \\ 0 & f'(y_2) & \cdots & 0 \\ \cdots & \ddots & \ddots & \cdots \\ 0 & 0 & \cdots & f'(y_M) \end{bmatrix}$$

- For scalar activations (shorthand notation):
 - Jacobian is a diagonal matrix
 - Diagonal entries are individual derivatives of outputs w.r.t inputs

For Vector activations



$$J_{\mathbf{y}}(\mathbf{z}) = \begin{bmatrix} \frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} & \dots & \frac{\partial y_1}{\partial z_D} \\ \frac{\partial y_2}{\partial z_1} & \frac{\partial y_2}{\partial z_2} & \dots & \frac{\partial y_2}{\partial z_D} \\ \dots & \dots & \ddots & \dots \\ \frac{\partial y_M}{\partial z_1} & \frac{\partial y_M}{\partial z_2} & \dots & \frac{\partial y_M}{\partial z_D} \end{bmatrix}$$

- Jacobian is a full matrix
 - Entries are partial derivatives of individual outputs
 w.r.t individual inputs

Special case: Affine functions

$$\mathbf{z} = \mathbf{W}\mathbf{y} + \mathbf{b}$$

$$J_{\mathbf{z}}(\mathbf{y}) = \mathbf{W}$$

- Matrix W and bias b operating on vector y to produce vector z
- The Jacobian of z w.r.t y is simply the matrix W

Vector derivatives: Chain rule

- We can define a chain rule for Jacobians
- For vector functions of vector inputs:

$$y = f(g(x))$$

$$J_{y}(x) = J_{y}(z)J_{z}(x)$$

$$Check$$

$$\Delta z = J_{z}(x)\Delta x$$

$$\Delta y = J_{y}(z)\Delta z$$

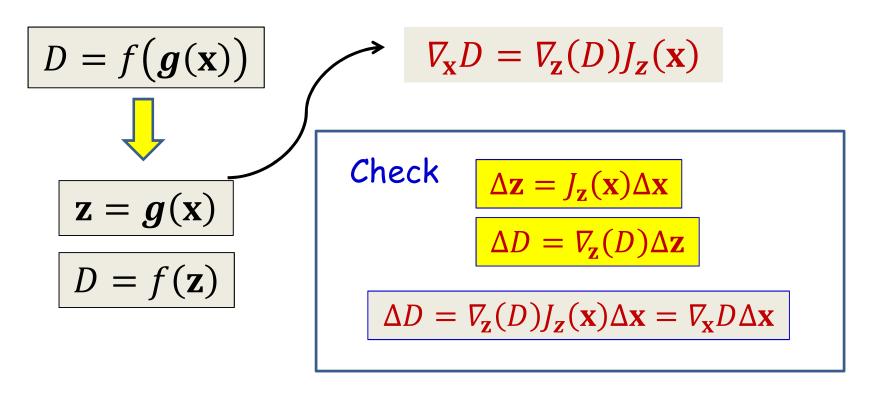
$$y = f(z)$$

$$\Delta y = J_{y}(z)J_{z}(x)\Delta x = J_{y}(x)\Delta x$$

Note the order: The derivative of the outer function comes first

Vector derivatives: Chain rule

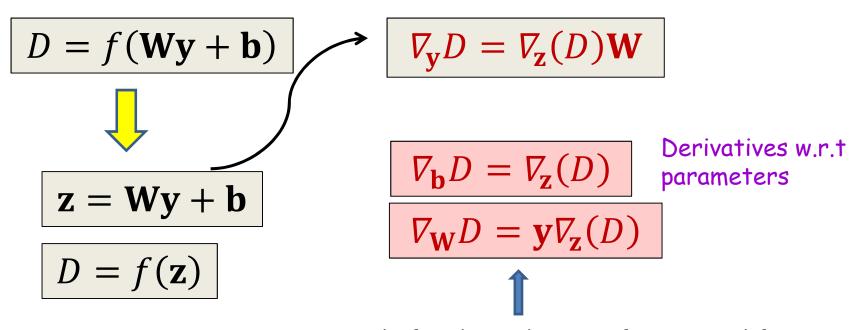
- The chain rule can combine Jacobians and Gradients
- For *scalar* functions of vector inputs (g() is vector):



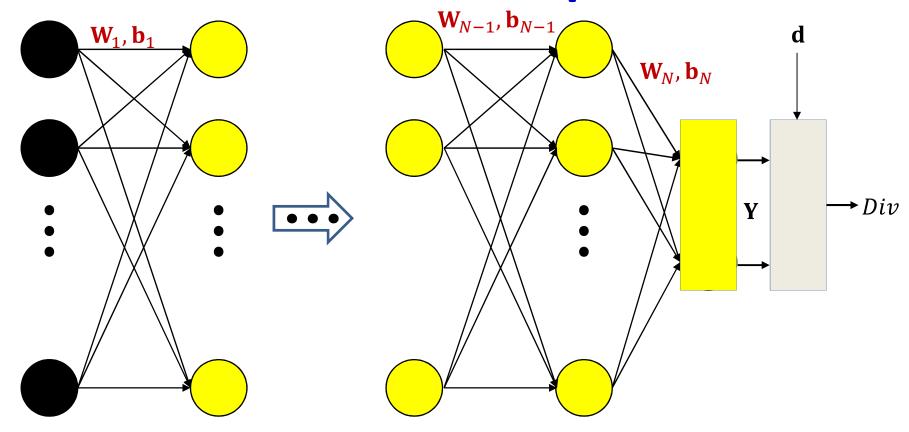
Note the order: The derivative of the outer function comes first

Special Case

Scalar functions of Affine functions

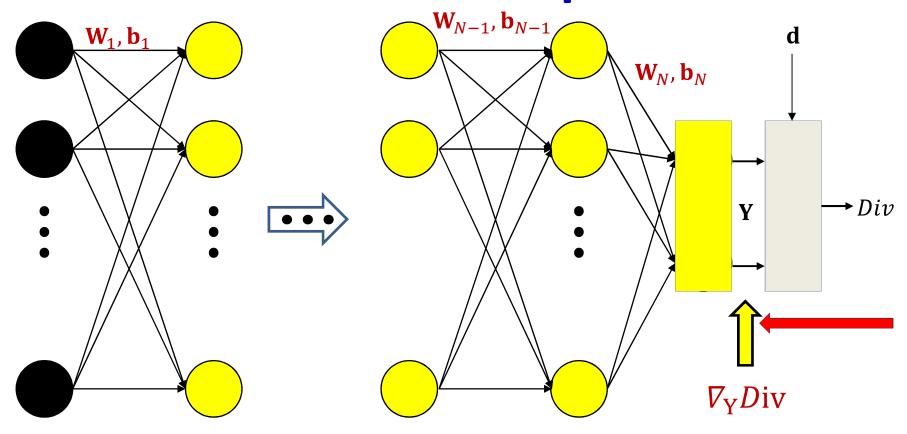


Note reversal of order. This is in fact a simplification of a product of tensor terms that occur in the right order

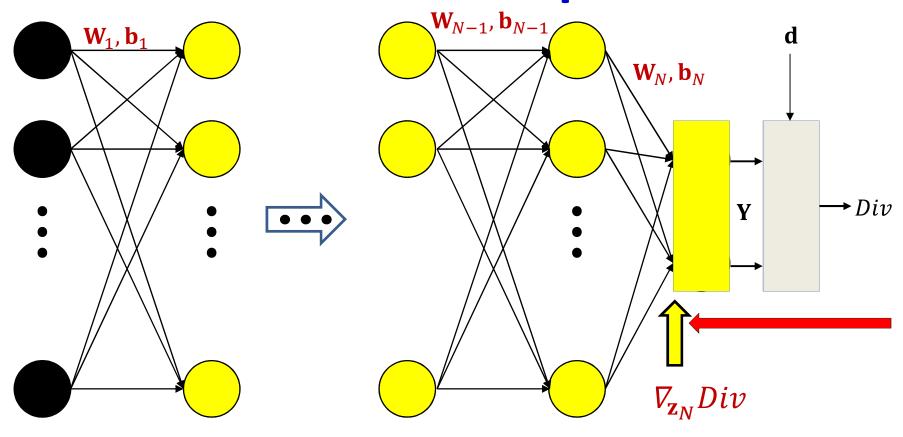


In the following slides we will also be using the notation $\nabla_z Y$ to represent the Jacobian $J_Y(z)$ to explicitly illustrate the chain rule

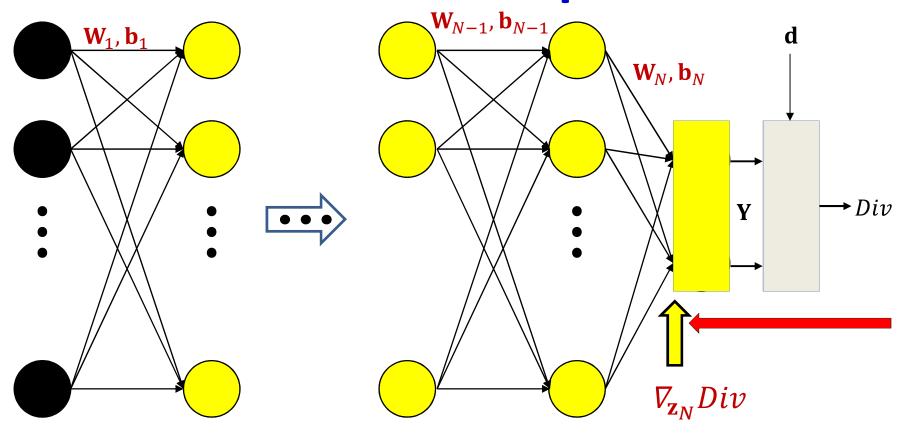
In general $\nabla_a \mathbf{b}$ represents a derivative of \mathbf{b} w.r.t. \mathbf{a} and could be a gradient (for scalar \mathbf{b}) Or a Jacobian (for vector \mathbf{b})



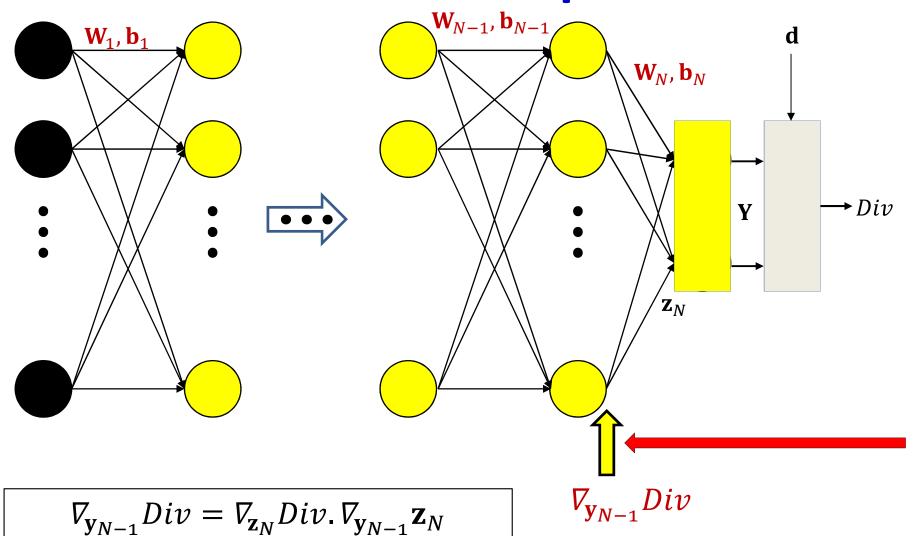
First compute the gradient of the divergence w.r.t. Y. The actual gradient depends on the divergence function.

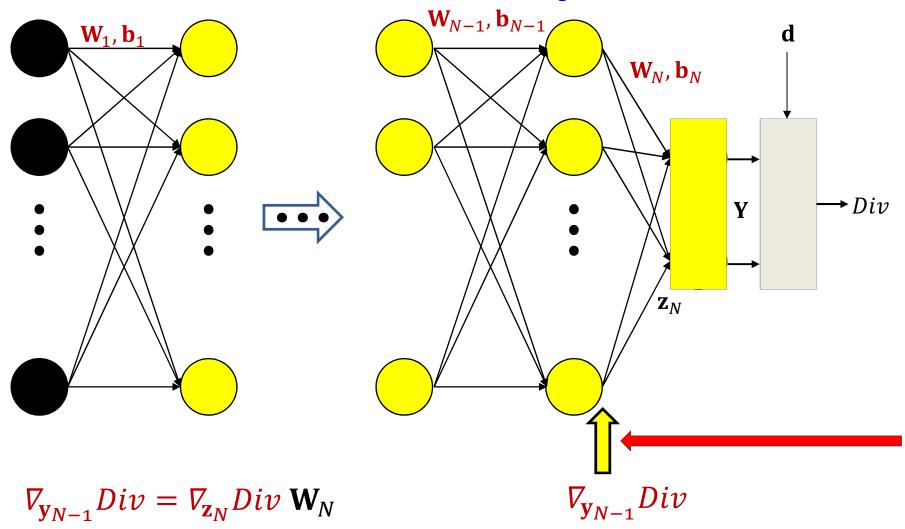


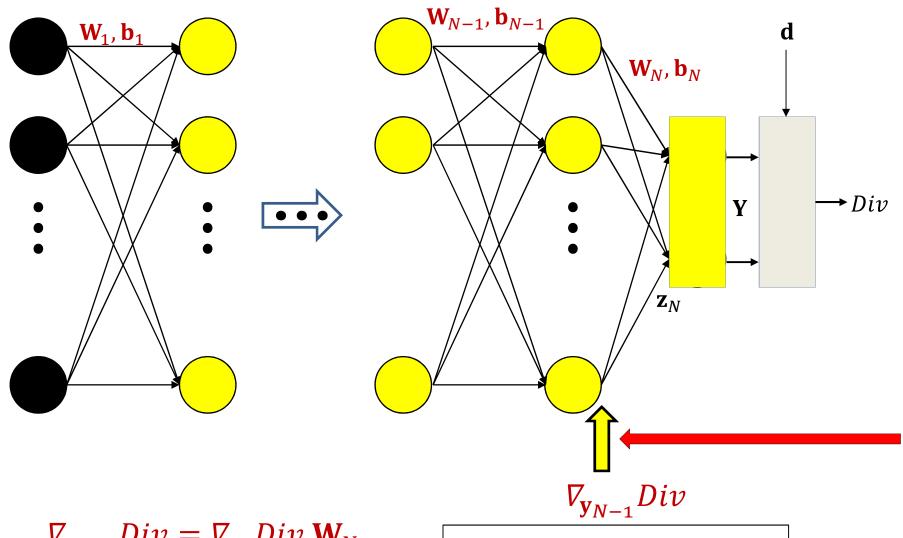
$$\nabla_{\mathbf{z}_N} Div = \nabla_{\mathbf{Y}} Div \cdot \nabla_{\mathbf{z}_N} \mathbf{Y}$$



$$\nabla_{\mathbf{z}_N} Div = \nabla_{\mathbf{Y}} Div J_{\mathbf{Y}}(\mathbf{z}_N)$$



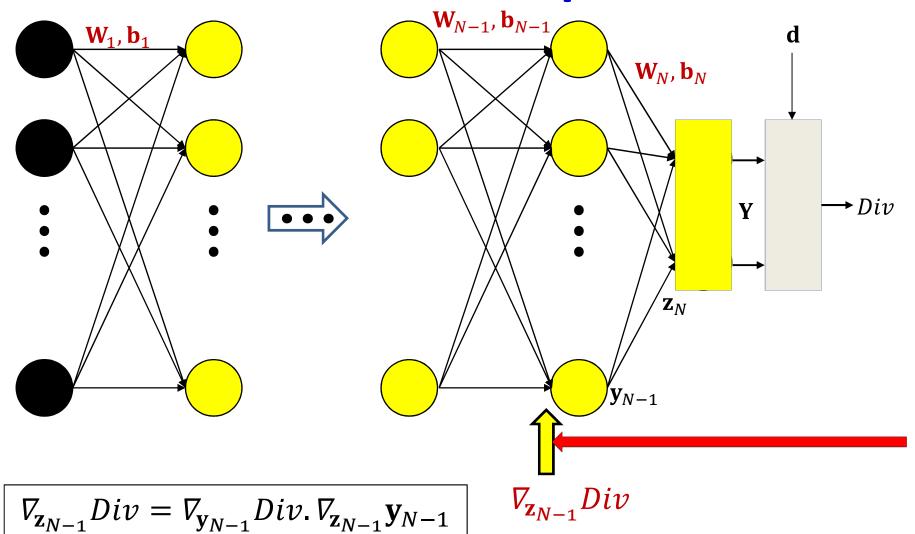


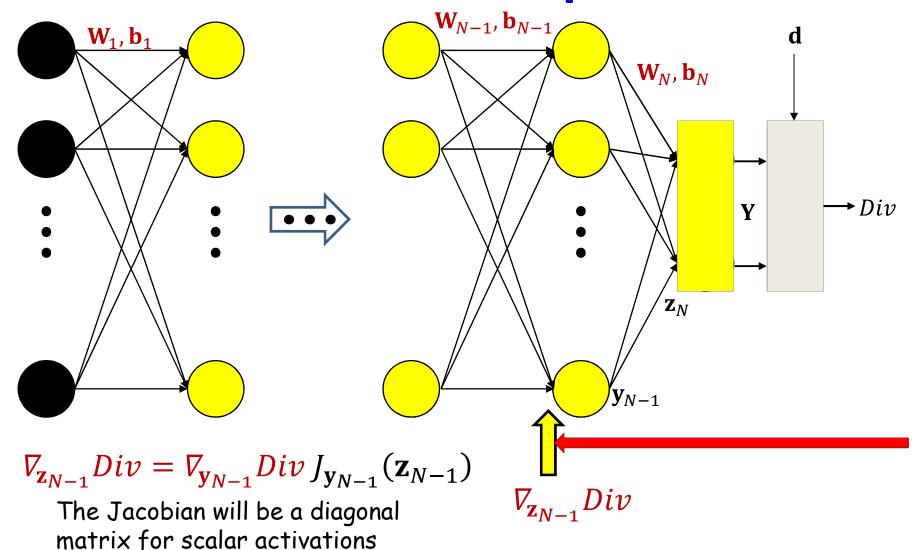


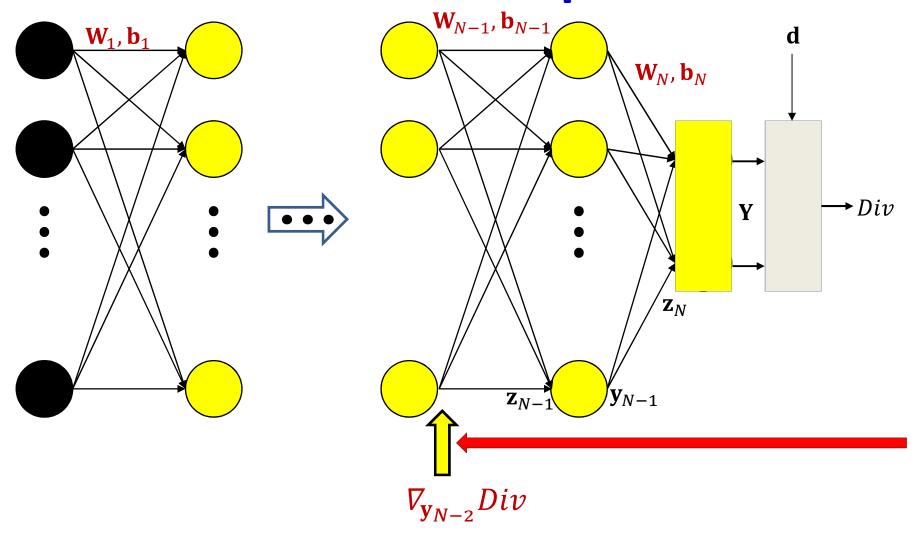
$$\nabla_{\mathbf{y}_{N-1}} Div = \nabla_{\mathbf{z}_N} Div \mathbf{W}_N$$

$$\nabla_{\mathbf{W}_{N}} Div = \mathbf{y}_{N-1} \nabla_{\mathbf{z}_{N}} Div$$

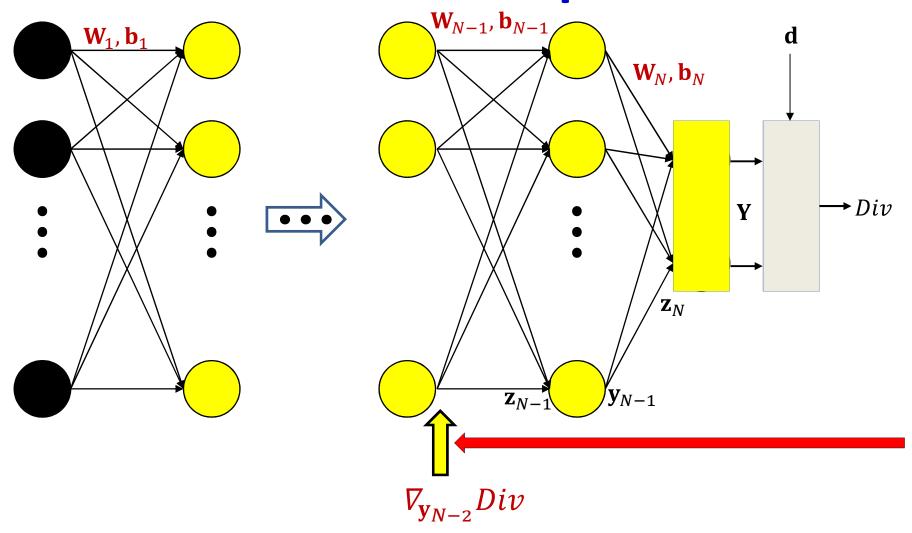
$$\nabla_{\mathbf{b}_{N}} Div = \nabla_{\mathbf{z}_{N}} Div$$



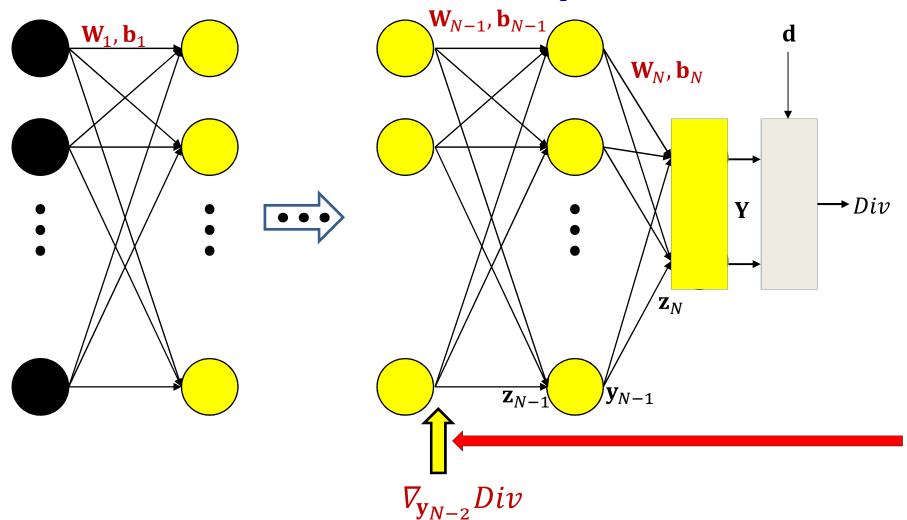




$$\nabla_{\mathbf{y}_{N-2}} Div = \nabla_{\mathbf{z}_{N-1}} Div \cdot \nabla_{\mathbf{y}_{N-2}} \mathbf{z}_{N-1}$$



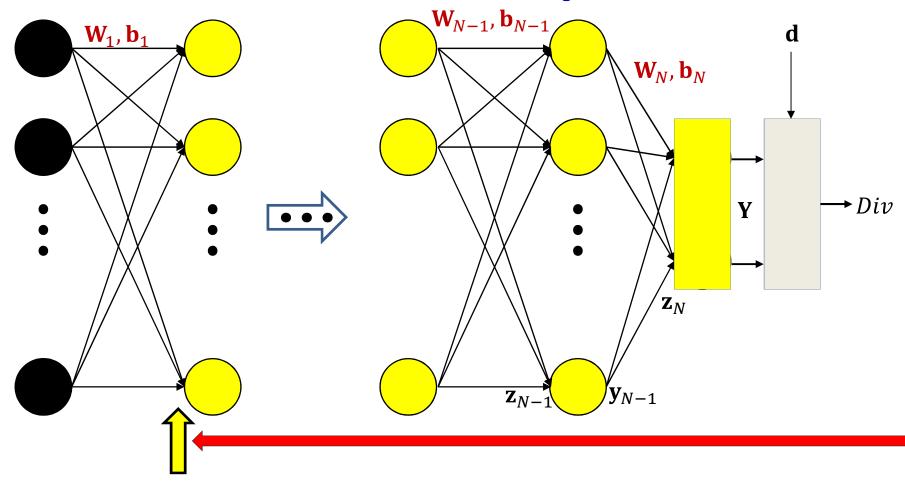
$$\nabla_{\mathbf{y}_{N-2}} Div = \nabla_{\mathbf{z}_{N-1}} Div \mathbf{W}_{N-1}$$



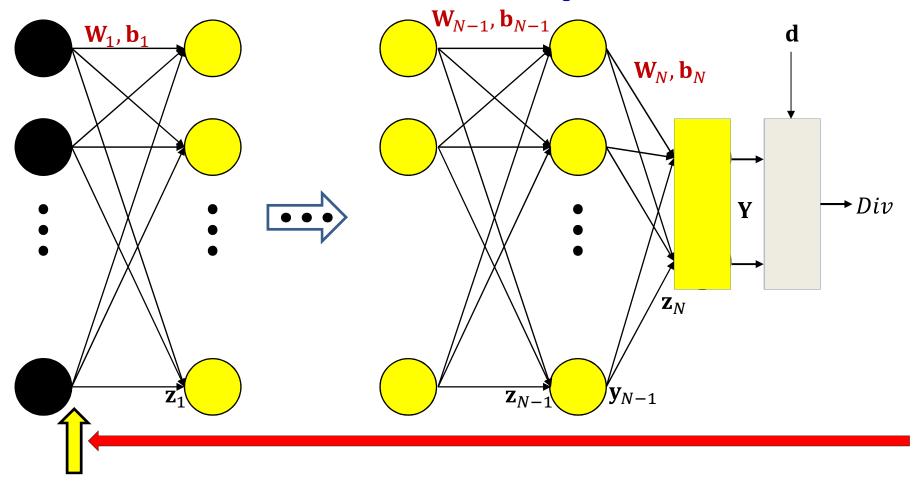
$$\nabla_{\mathbf{y}_{N-2}}Div = \nabla_{\mathbf{z}_{N-1}}Div \mathbf{W}_{N-1}$$

$$\nabla_{\mathbf{W}_{N-1}} Div = \mathbf{y}_{N-2} \nabla_{\mathbf{z}_{N-1}} Div$$

$$\nabla_{\mathbf{b}_{N-1}} Div = \nabla_{\mathbf{z}_{N-1}} Div$$



$$\nabla_{\mathbf{z}_1} Div = \nabla_{\mathbf{y}_1} Div J_{\mathbf{y}_1}(\mathbf{z}_1)$$



In some problems we will also want to compute the derivative w.r.t. the input

The Backward Pass

- Set $\mathbf{y}_N = Y$, $\mathbf{y}_0 = \mathbf{x}$
- Initialize: Compute $\nabla_{\mathbf{y}_N} Div = \nabla_Y Div$
- For layer k = N downto 1:
 - Compute $J_{\mathbf{y}_k}(\mathbf{z}_k)$
 - Will require intermediate values computed in the forward pass
 - Recursion:

$$\nabla_{\mathbf{z}_k} Div = \nabla_{\mathbf{y}_k} Div J_{\mathbf{y}_k}(\mathbf{z}_k)$$
$$\nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_k} Div \mathbf{W}_k$$

— Gradient computation:

$$\nabla_{\mathbf{W}_k} Div = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_k} Div$$
$$\nabla_{\mathbf{b}_k} Div = \nabla_{\mathbf{z}_k} Div$$

The Backward Pass

- Set $\mathbf{y}_N = Y$, $\mathbf{y}_0 = \mathbf{x}$
- Initialize: Compute $\nabla_{\mathbf{y}_N} Div = \nabla_Y Div$
- For layer k = N downto 1:
 - Compute $J_{\mathbf{y}_k}(\mathbf{z}_k)$
 - Will require intermediate values computed in the forward pass
 - Recursion:

Note analogy to forward pass

$$\nabla_{\mathbf{z}_k} Div = \nabla_{\mathbf{y}_k} Div J_{\mathbf{y}_k}(\mathbf{z}_k)$$

$$\nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_k} Div \mathbf{W}_k$$

— Gradient computation:

$$\nabla_{\mathbf{W}_k} Div = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_k} Div$$
$$\nabla_{\mathbf{b}_k} Div = \nabla_{\mathbf{z}_k} Div$$

For comparison: The Forward Pass

- Set $y_0 = x$
- For layer k = 1 to N:
 - Recursion:

$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k$$
$$\mathbf{y}_k = \mathbf{f}_k(\mathbf{z}_k)$$

Output:

$$\mathbf{Y} = \mathbf{y}_N$$

Neural network training algorithm

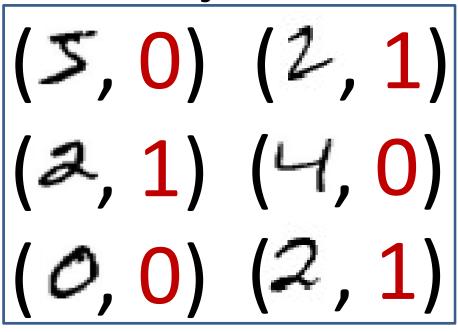
- Initialize all weights and biases $(\mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2, ..., \mathbf{W}_N, \mathbf{b}_N)$
- Do:
 - -Err=0
 - For all k, initialize $\nabla_{\mathbf{W}_k} Err = 0$, $\nabla_{\mathbf{b}_k} Err = 0$
 - For all t = 1:T
 - Forward pass : Compute
 - Output $Y(X_t)$
 - Divergence $Div(Y_t, d_t)$
 - $Err += Div(Y_t, d_t)$
 - Backward pass: For all *k* compute:
 - $\nabla_{\mathbf{W}_{k}} Div(\mathbf{Y}_{t}, \mathbf{d}_{t}); \nabla_{\mathbf{b}_{k}} Div(\mathbf{Y}_{t}, \mathbf{d}_{t})$
 - $\nabla_{\mathbf{W}_k} Err += \nabla_{\mathbf{W}_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t); \nabla_{\mathbf{b}_k} Err += \nabla_{\mathbf{b}_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)$
 - For all k, update:

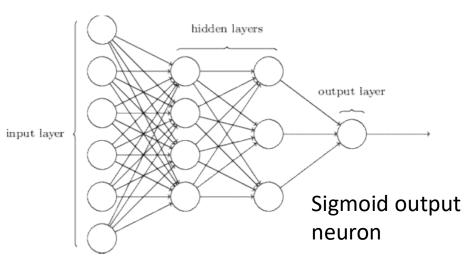
$$\mathbf{W}_k = \mathbf{W}_k - \frac{\eta}{T} (\nabla_{\mathbf{W}_k} Err)^T; \qquad \mathbf{b}_k = \mathbf{b}_k - \frac{\eta}{T} (\nabla_{\mathbf{W}_k} Err)^T$$

Until *Err* has converged

Setting up for digit recognition

Training data

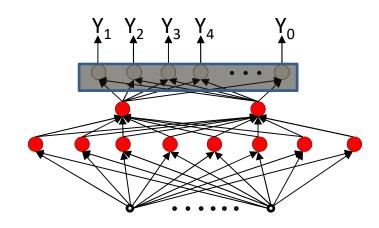




- Simple Problem: Recognizing "2" or "not 2"
- Single output with sigmoid activation
 - $Y \in (0,1)$
 - d is either 0 or 1
- Use KL divergence
- Backpropagation to learn network parameters

Recognizing the digit

Training data



- More complex problem: Recognizing digit
- Network with 10 (or 11) outputs
 - First ten outputs correspond to the ten digits
 - Optional 11th is for none of the above
- Softmax output layer:
 - Ideal output: One of the outputs goes to 1, the others go to 0
- Backpropagation with KL divergence to learn network

Issues

- Convergence: How well does it learn
 - And how can we improve it
- How well will it generalize (outside training data)
- What does the output really mean?
- *Etc..*

Next up

Convergence and generalization