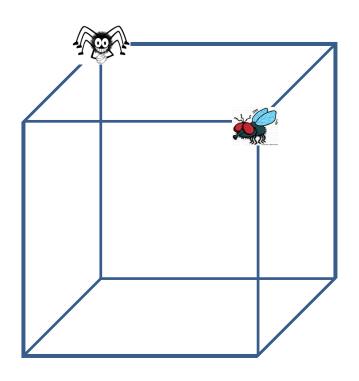
Reinforcement Learning

Spring 2018 RL!

Recap: Model-Free Assumption



- Can see the fly
- Know the distance to the fly
- Know possible actions (get closer/farther)
- But have no idea of how the fly will respond
 - Will it move, and if so, to what corner

Recap: Model-Free Methods

AKA model-free reinforcement learning

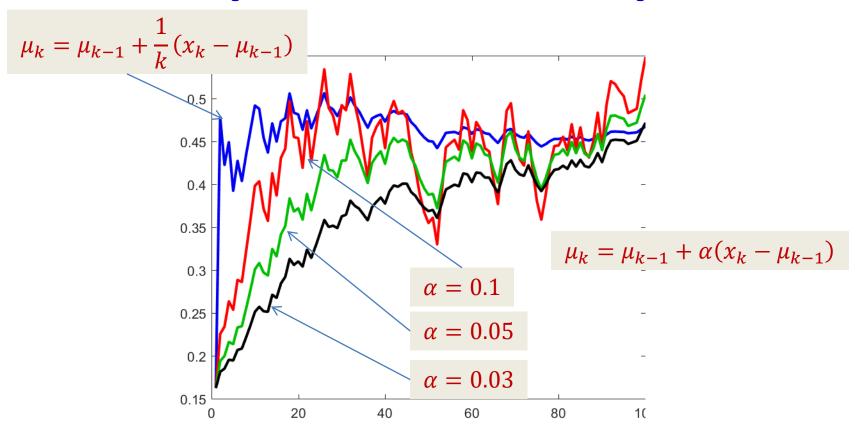
- How do you find the value of a policy, without knowing the underlying MDP?
 - Model-free prediction
- How do you find the optimal policy, without knowing the underlying MDP?
 - Model-free control

Recap: Methods

Monte-Carlo Learning

- Temporal-Difference Learning
 - -TD(1)
 - -TD(K)
 - $-TD(\lambda)$

Recap: Incremental Updates



- Correct equation is unbiased and converges to true value
- Equation with α is *biased* (early estimates can be expected to be wrong) but *converges* to true value

Recap: TD(1)

- For all s Initialize: $v_{\pi}(s) = 0$
- For every episode e
 - For every time $t = 1 \dots T_e$
 - $v_{\pi}(S_t) = v_{\pi}(S_t) + \alpha (R_{t+1} + \gamma v_{\pi}(S_{t+1}) v_{\pi}(S_t))$
- There's a "lookahead" of one state, to know which state the process arrives at at the next time
- But is otherwise online, with continuous updates

Recap: TD(N) with lookahead

$$v_{\pi}(S_t) = v_{\pi}(S_t) + \alpha \delta_t(N)$$

Where

$$\delta_t(N) = R_{t+1} + \sum_{i=1}^N \gamma^i R_{t+1+i} + \gamma^{N+1} v_{\pi}(S_{t+N}) - v_{\pi}(S_t)$$

• $\delta_t(N)$ is the TD *error* with N step lookahead

Recap: $TD(\lambda)$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t(n)$$

- Combine the predictions from all lookaheads with an exponentially falling weight
 - Weights sum to 1.0

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t) \right)$$

Recap: $TD(\lambda)$

Maintain an eligibility trace for every state

$$E_0(s) = 0$$

 $E_t(s) = \lambda \gamma E_{t-1}(s) + 1(S_t = s)$

 Computes total weight for the state until the present time

Recap: $TD(\lambda)$

 At every time, update the value of every state according to its eligibility trace

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

- Any state that was visited will be updated
 - Those that were not will not be, though

Model-Free Methods

AKA model-free reinforcement learning

- How do you find the value of a policy, without knowing the underlying MDP?
 - Model-free prediction
- How do you find the optimal policy, without knowing the underlying MDP?
 - Model-free control

Value vs. Action Value

- The solution we saw so far only computes the value function
- Not sufficient, even if we knew the optimal values
 - To select the optimal action given the optimal values, we will need extra information, namely transition probabilities
 - Which we do not have
- Instead, we use the same method to compute the optimal action value functions
 - Optimal policy in any state : Choose the action that has the largest optimal action value

Value vs. Action Value

 Given only value functions, the optimal policy must be estimated as:

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ \mathcal{R}_s^a + \mathcal{P}_{ss'}^a V(s')$$

- Needs knowledge of transition probabilities
- Given action value functions, we can find it as:

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$$

 This is model free (no need for knowledge of model parameters)

TD(1) with action-values

• For all *s*, *a*, initialize:

$$q_{\pi}(s,a)=0$$

- For every episode e
 - For every time $t = 1 \dots T_e$

$$\hat{A}_{t+1} \sim \pi(S_{t+1})$$

$$\delta_t = R_{t+1} + \gamma q_{\pi}(S_{t+1}, \hat{A}_{t+1}) - q_{\pi}(S_t, A_t)$$
$$q_{\pi}(S_t, A_t) = q_{\pi}(S_t, A_t) + \alpha \delta_t$$

$TD(\lambda)$ with action-values

For all s, a, initialize:

$$q_{\pi}(s, a) = 0$$

$$E_t(s, a) = 0$$

- For every episode e
 - For every time $t = 1 ... T_e$ $E_t(s, a) = \lambda \gamma E_{t-1}(s, a) + 1(S_t = s \land A_t = a)$ $\hat{A}_{t+1} \sim \pi(S_{t+1})$ $\delta_t = R_{t+1} + \gamma q_{\pi}(S_{t+1}, \hat{A}_{t+1}) q_{\pi}(S_t, A_t)$ $q(s, a) \leftarrow q(s, a) + \alpha \delta_t E_t(s, a)$

Optimal Policy: Control

 We learned how to estimate the state value functions for an MDP whose transition probabilities are unknown for a given policy

How do we find the optimal policy?

Problem of optimal control

- From a series of episodes of the kind: $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \dots, S_T$
- Find the optimal action value function $q_*(s, a)$
 - The optimal policy can be found from it
- Ideally do this online
 - So that we can continuously improve our policy from *ongoing experience*

Control: Greedy Policy

- Recall the steps in policy iteration:
 - Start with any policy $\pi^{(0)}$
 - Iterate ($k = 0 \dots$ convergence)
 - Find the value function $v_{\pi^{(k)}}(s)$ using DP
 - Find the greedy policy

$$\pi^{(k+1)}(s) = \operatorname{argmax}_{a} \left(R_{s}^{a} + \gamma \sum_{s'} P_{s,s'}^{a} v_{\pi^{(k)}}(s') \right)$$

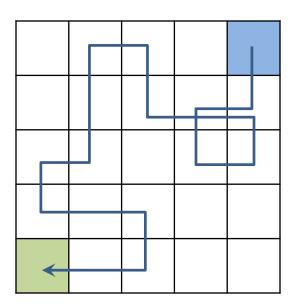
Can we adapt this for model-free control?

Control: Greedy Policy

- Our proposed algorithm:
 - Start with any policy $\pi^{(0)}$
 - Iterate ($k = 0 \dots$ convergence)
 - Estimate the action-value function $q_{\pi^{(k)}}(s,a)$ using TD-learning
 - Find the greedy policy $\pi^{(k+1)}(\mathbf{s}) = \operatorname{argmax}_a\left(q_{\pi^{(k)}}(s,a)\right)$
- Let's see if this works...

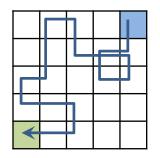
Gridworld Example

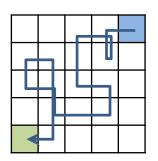
- States: Location on a 5x5 grid of cells
- Actions: Move up, down, left or right
- The game starts on the top right corner and ends on the lower left corner. State transitions are deterministic.

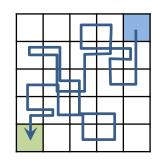


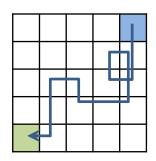
Gridworld: Iteration 1

 Initialize with a uniform random policy and collect sample episodes. Use TD-learning to estimate action-values.



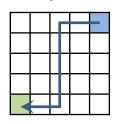


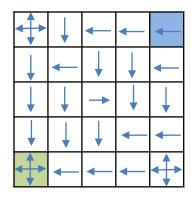




Find the greedy policy

True optimal route:



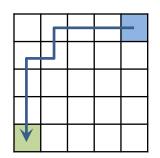


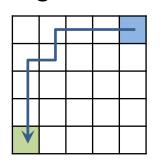
Ignore state-action pairs that haven't been visited when performing argmax.

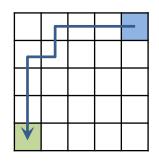
We're getting close. Nice!

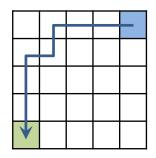
Gridworld: Iteration 2

Use the previous policy and collect sample episodes.
 Use TD-learning to estimate action-values.



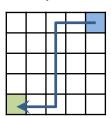


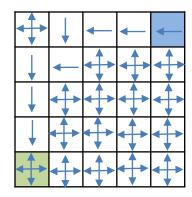




Find the greedy policy

True optimal route:





Err... what just happened?

Exploration vs. Exploitation

- The original policy iteration algorithm can update the values of all states because all the rewards and transition probabilities are known.
- Our model-free control algorithm gathers sample data by following a policy.
 - Can't learn about state-action pairs that weren't encountered
 - Will never learn about alternate policies that may turn out to be better
- Solution: Follow our current policy 1ϵ of the time
 - But choose a random action ϵ of the time
 - The "epsilon-greedy" policy

GLIE Monte Carlo

- Greedy in the limit with infinite exploration
- Start with some random initial policy π
- Produce the episode

$$S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \dots, S_T$$

Process the episode using the following online update rules:

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

• Compute the ϵ -greedy policy for each state

$$\pi(a|s) = \begin{cases} 1 - \epsilon & for \ a = arg \max_{a'} Q(s, a') \\ \frac{\epsilon}{N_a - 1} & otherwise \end{cases}$$

Repeat

GLIE Monte Carlo

- Greedy in the limit with infinite exploration
- Start with some random initial policy π
- Produce the episode

$$S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \dots, S_T$$

Process the episode using the following online update rules:

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

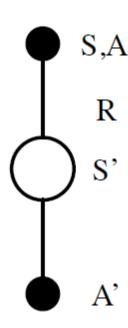
• Compute the ϵ -greedy policy for each state

$$\pi(a|s) = \begin{cases} 1 - \epsilon & for \ a = arg \max_{a'} Q(s, a') \\ \frac{\epsilon}{N_a - 1} & otherwise \end{cases}$$

Repeat

On-line version of GLIE: SARSA

- Replace G_t with an estimate
- TD(1) or TD(λ)
 - Just as in the prediction problem
- TD(1) → SARSA



SARSA

- Initialize Q(s, a) for all s, a
- Start at initial state S₁
- Select an initial action A₁
- For t = 1.. Terminate
 - Get reward R_t
 - Let system transition to new state S_{t+1}
 - Draw A_{t+1} according to ϵ -greedy policy

$$P(\pi(s) = a) = \begin{cases} 1 - \epsilon & for \ a = arg \max_{a'} Q(s, a') \\ \frac{\epsilon}{N_a - 1} & otherwise \end{cases}$$

Update

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha (R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

SARSA

- Initialize Q(s, a) for all s, a
- Start at initial state S₁
- Select an initial action A₁
- For t = 1.. Terminate
 - Get reward R_t
 - Let system transition to new state S_{t+1}
 - Draw A_{t+1} according to ϵ -greedy policy

$$P(\pi(s) = \begin{cases} \textbf{Similar to our proposed algorithm!} \\ \textbf{Though here, we're making the greedy update to our policy after each action.} \end{cases}$$

$$- \text{Update} \\ Q(S_t, A_t) = Q \end{cases}$$

$$Q(S_t, A_t) = Q \end{cases}$$
This means we no longer need to explicitly store $\pi(a|s)$; we can infer it using the Q-values.
$$- Q(S_t, A_t) \rbrace$$

$SARSA(\lambda)$

- Again, the TD(1) estimate can be replaced by a TD(λ) estimate
- Maintain an eligibility trace for every state-action pair:

$$E_0(s, a) = 0$$

$$E_t(s, a) = \lambda \gamma E_{t-1}(s, a) + 1(S_t = s, A_t = a)$$

Update every state-action pair visited so far

$$\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)$$
$$Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t E_t(s, a)$$

$SARSA(\lambda)$

- For all s, a initialize Q(s, a)
- For each episode e
 - For all s, a initialize E(s, a) = 0
 - Initialize S_1 , A_1
 - For t = 1 ... Termination
 - Observe R_{t+1} , S_{t+1}
 - Choose action A_{t+1} using policy obtained from Q

•
$$\delta = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)$$

- $E(S_t, A_t) += 1$
- For all s, a

$$- Q(s,a) = Q(s,a) + \alpha \delta E(s,a)$$

$$- E(s,a) = \lambda \gamma E(s,a)$$

Closer look at SARSA

- SARSA: From any state-action (S, A),
 accept reward (R), transition to next state (S'), choose next action (A')
- Use TD rules to update:

$$\delta = R + \gamma Q(S', A') - Q(S, A)$$

 Problem: what's the best policy to use to choose A'?

Closer look at SARSA

- SARSA: From any state-action (S, A), accept reward (R), transition to next state (S'), choose next action (A')
- Problem: which policy do we use to choose A'
- If we choose the current judgment of the best action at S' we will become too greedy
 - Fail to explore the space of possibilities
- If we choose a sub-optimal policy to follow, we will never find the best policy
 - E.g. We don't want to be ϵ -greedy at test-time!

Generalization of SARSA

- Pick a random initial policy π .
- Repeatedly create episodes.
 - For each time step t in the current episode:
 - Start at state S_t (S)
 - Carry out action $A_t = \pi(S_t)$ (A)
 - Get reward R_{t+1} (R)
 - Reach state S_{t+1} (S)
 - Estimate optimal future action $\hat{a}_{S_{t+1}}^*$ (A)
 - Estimate optimal future return $Q(S_{t+1}, \hat{a}_{S_{t+1}}^*)$
 - Update Q(S, a) using R_{t+1} and $Q(S_{t+1}, \hat{a}_{S_{t+1}}^*)$
 - Update the current policy

Generalization of SARSA

- Pick a random initial policy π .
- Repeatedly create episodes.
 - For each time step t in the current episode:
 - Start at state S_t

(S)

(A)

- Carry out action $A_t = \pi(S_t)$
- Get reward R_{t+1}
- Reach state S_{t+1}

← Used to explore the environment

Are there any reasons to choose A_t to be the optimal action?

Used to estimate optimal return \rightarrow I future action $\hat{a}_{S_{t+1}}^*$

Are there any reasons to make $\hat{a}_{S_{t+1}}^*$ | future return $Q(S_{t+1}, \hat{a}_{S_{t+1}}^*)$

the same as A_{t+1} ? Using R_{t+1} and $Q(S_{t+1}, \hat{a}_{S_{t+1}}^*)$

Update the current policy

On-policy vs. Off-policy

- It's possible learn to what the best actions should be, even if we don't always follow those actions.
 - E.g. learning by observation
- We learn by following a more exploratory policy
- In the process, we look for a hypothetical optimal policy...the one that we'd want to follow at test-time.

$$S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \dots, S_T$$

 $\hat{a}_{S_2}^*$? $\hat{a}_{S_3}^*$?

- The actions we actually follow to get samples (e.g. A_t) are not the same as our best estimates of the optimal actions (e.g. $\hat{a}_{S_t}^*$)
 - Hence this is an "off-policy" method

Solution: Off-policy learning

 Use data to improve your choice of actions, but follow different ("off-policy") actions to collect data.

$$S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \dots, S_T$$

 $\hat{a}_{S_2}^*$? $\hat{a}_{S_3}^*$?

- E.g. Use $\hat{a}_{S_{t+1}}^* = \operatorname{argmax}_a(Q(S_{t+1}, a))$
- But, actually follow the epsilon-greedy policy
 - The hypothetical action is better than the one you actually took, but you still explore (non-greedy)
- This is the basis for the most popular RL algorithm, Q-Learning

Q-Learning (TD-1)

- Pick initial values for Q.
- Repeatedly create episodes.
 - For each time step t in the current episode:
 - Start at state S_t
 - Carry out action $A_t = \pi_{\epsilon \text{greedy}}(S_t)$
 - Get reward R_{t+1}
 - Reach state S_{t+1}
 - Estimate optimal future action $\hat{a}_{S_{t+1}}^* = \operatorname{argmax}_a (Q(S_{t+1}, a))$
 - Estimate optimal future return $Q(S_{t+1}, \hat{a}_{S_{t+1}}^*)$
 - Update $Q(S_t, A_t) = Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, \hat{a}_{S_{t+1}}^*) Q(S_t, A_t) \right)$

The Q-learning algorithm generalizes to TD(λ) too

Off-policy vs. On-policy

Optimal greedy policy:

$$\pi(a|s) = \begin{cases} 1 & for \ a = arg \max_{a'} Q(s, a') \\ & 0 \ otherwise \end{cases}$$

Exploration policy

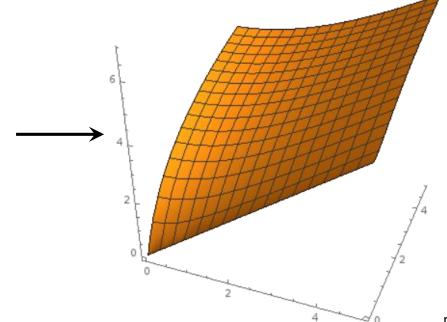
$$\pi(a|s) = \begin{cases} 1 - \epsilon & for \ a = arg \max_{a'} Q(s, a') \\ \frac{\epsilon}{N_a - 1} & otherwise \end{cases}$$

• Ideally ϵ should decrease with time

Continuous State Space

- Tabular methods won't work if our state space is infinite or huge
- E.g. position on a [0, 5] x [0, 5] square, instead of a 5x5 grid.

4.4	4.5	4.8	5.3	5.9
3.9	4.0	4.4	4.9	5.6
3.2	3.4	3.8	4.0	5.1
2.2	2.4	3.0	3.7	4.6
0	1.0	2.0	3.0	4.0



The graphs show the negative value function

 Instead of using a table of Q-values, we use a parametrized function

$$Q(s,a) = f(s,a|\theta)$$

 Instead of writing values to the table, we fit the parameters to minimize the prediction error of the "Q function"

$$\theta_{k+1} \leftarrow \theta_k - \eta \nabla_{\theta} \left(Div(f(s, a | \theta_k), Q_{s,a}^{\text{new}}) \right)$$

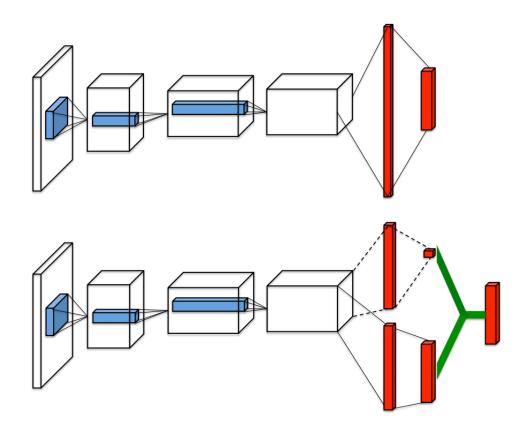
 Instead of using a table of Q-values, we use a parametrized function

$$Q(s,a) = f(s,a|\theta)$$

This can be a simple linear function...

$$f(\mathbf{s}, \mathbf{a}|\mathbf{\theta}) = \mathbf{\theta}^T[\mathbf{s}; \mathbf{a}]$$

Or a massive convolutional network...



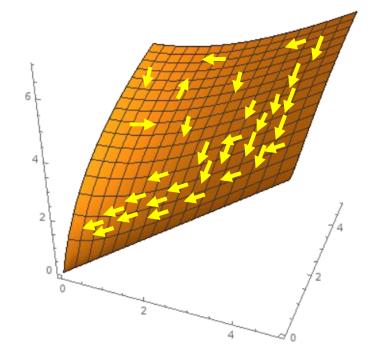
- Fundamental issue: limited capacity
 - A table of Q values will never forget any values that you write into it
 - But, modifying the parameters of a Q-function will affect its overall behavior
 - Fitting the parameters to match one (s, a) pair can change the function's output at (s', a').
 - If we don't visit (s', a') for a long time, the function's output can diverge considerably from the values previously stored there.

Full Capacity

- Q-learning works well with Q-tables
 - The sample data is going to be heavily biased toward optimal actions $(s, \pi^*(s))$, or close approximations thereof.
 - But still, ∈-greedy policy will ensure that we will visit all state-action pairs arbitrarily many times if we explore long enough.
 - The action-value for uncommon inputs will still converge, just more slowly.

Limited Capacity

- The Q-function will fit more closely to more common inputs, even at the expense of lower accuracy for less common inputs.
- Just exploring the whole state-action space isn't enough. We also need to visit those states often enough so the function computes accurate q-values before they are "forgotten".



Action-replay

- The raw data obtained from Q-learning is:
 - Highly correlated: current data can look very different from data from several episodes ago if the policy changed significantly.
 - Very unevenly distributed: only ϵ probability of choosing suboptimal actions.
- Instead, create a replay buffer holding past experiences, so we can train the Qfunction using this data.

Action-replay

Pseudocode:

```
for B steps: (R_{t+1}, S_{t+1}) = \mathsf{make\_action}(A_t) \\ \mathsf{replay\_buffer.add}(S_t, A_t, R_{t+1}, S_{t+1}) \mathsf{TD\_update}(\mathsf{replay\_buffer.sample}(\mathsf{B}), \\ \mathsf{q\_function})
```

- We have control over how the experiences are added, sampled and deleted.
 - Can make the samples look independent
 - Can emphasize old experiences more
 - Can change frequency depending on accuracy

Action-replay

- What is the best way to sample?
 - On the one hand, our function has limited capacity, so we should let it optimize more strongly for the common case
 - On the other hand, our function needs explore uncommon examples just enough to compute accurate action-values, so it can avoid missing out on better policies
- A trade-off!

Moving target

- We already have moving targets in online SARSA and Q-learning, since we're using the action-values to compute the updates to the action-values.
- The problem is much worse with Q-functions though. Optimizing the function at one stateaction pair affects all other state-action pairs.
 - The target value is fluctuating at all inputs in the function's domain, and all updates will shift the target value across the entire domain.

Separate target function

- Solution: Create two copies of the Q-function.
 - The "target copy" is frozen and used to compute the target Q-values.
 - The "learner copy" will be trained on the targets. $Q_{\text{learner}}(S_t, A_t) \leftarrow_{\text{fit}} R_{t+1} + \gamma \max_{a} \left(Q_{\text{target}}(S_{t+1}, a) \right)$

 Just need to periodically update the target copy to match the learner copy.

Deep Q Network

 Create a neural network function which takes in a state and outputs the Q values for all possible actions

$$DQN(s) = [Q(s, a) \mid a \in A]$$

- Note: This is equivalent to a function that takes in both the state and the action to produce one Q value. But this design lets us iterate over all possible actions more efficiently.
- Create a replay buffer and a frozen "target network"
- Perform Q-learning as usual, except:
 - The Q-value updates use samples from the reply buffer
 - The new Q-value is computed using the target network
 - The target network is periodically updated

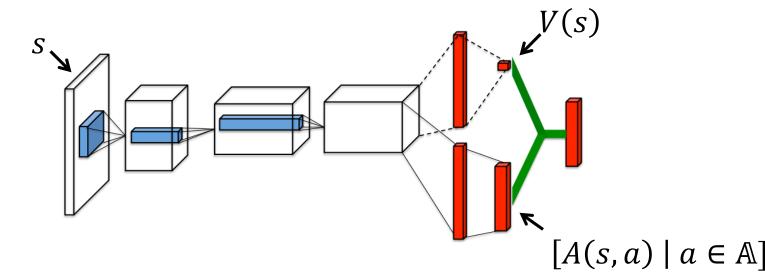
Performance

	Breakout	R. Raid	Enduro	Sequest	S. Invaders
DQN	316.8	7446.6	1006.3	2894.4	1088.9
Naive DQN	3.2	1453.0	29.1	275.8	302.0
Linear	3.0	2346.9	62.0	656.9	301.3

Replay		\bigcirc	×	×
Target	\bigcirc	×	\circ	×
Breakout	316.8	240.7	10.2	3.2
River Raid	7446.6	4102.8	2867.7	1453.0
Seaquest	2894.4	822.6	1003.0	275.8
Space Invaders	1088.9	826.3	373.2	302.0

Other optimizations

- Dualing DQN:
 - Decompose Q(s,a) = f(V(s), A(s,a))
 - V is the value function, and A is known as the advantage function.
 - Easier to learn since you can get good estimates with A(s,a) = some constant A(a) and f(x,y) = x + y



Other optimizations

- Problem: $\max_a \left(Q_{DQN}(S_{t+1},a)\right)$ can be biased toward large values if Q_{DQN} is noisy.
- Solution: Double DQN
 - Train two DQN's with the same parameters, but different initialization.
 - Instead of $\max_{a} \left(Q_{DQN1}(S_{t+1}, a) \right)$, do: $Q_{DQN2} \left(S_{t+1}, \operatorname{argmax}_{a} \left(Q_{DQN1}(S_{t+1}, a) \right) \right)$
 - Similar story for $\max_{a} \left(Q_{DQN2}(S_{t+1}, a) \right)$
- Alternative: $Q_{\text{learner}}\left(\operatorname{argmax}_{a}\left(Q_{\text{target}}(S_{t+1},a)\right)\right)$

Direct Policy Estimation

- It's also possible to make a deep neural network that directly produces a distribution over actions given a state
 - Also known as a policy network, or the policy gradient method
 - Useful when the action space is also large or continuous
- This approach is explained in more depth in the recitation

Summary

- Model-free control
- Exploration vs Exploitation
- Off-policy vs On-policy learning
- Q-learning
- Parameterized Functions
- Action-replay
- Target functions
- Deep Q Networks