Neural Networks:

What can a network represent

Deep Learning, Fall 2017

Projects

- Everyone must do a project
- Teams of two
- Projects must
- Use neural networks
- Address a well-defined problem
- Outcomes must be objectively or subjectively evaluateable
- Quality:
- May simply revisit already published literature
- E.g. obtain near-state-of-art on imagenet, or speech recognition
- Existing solutions, new problems
- MT for a new language
- Propose new designs or learning methods
- E.g. use LSTMs for image recognition
- Be entirely novel
- Objective: Demonstrate ability to implement a complex solution using neural networks

Projects

- Schedule:
- Announce teams to TAs/myself by 15 Sep
- Send project proposals by 21 Sep
- Finalize project by 28 Sep
- Poster presentation: Between Dec 7 and Dec 10th

Recap : Neural networks have taken over AI

Explore the AlphaGo Games

- Tasks that are made possible by NNs, aka deep learning

Recap : NNets and the brain

- In their basic form, NNets mimic the networked structure in the brain

Recap : The brain

- The Brain is composed of networks of neurons

Recap : Nnets and the brain

- Neural nets are composed of networks of computational models of neurons called perceptrons

Recap: the perceptron

- A threshold unit
- "Fires" if the weighted sum of inputs exceeds a threshold

A better figure

- A threshold unit
- "Fires" if the weighted sum of inputs and the "bias" T is positive

The "soft" perceptron

$$
z=\sum_{i} \mathrm{w}_{i} \mathrm{x}_{i}-T
$$

- A "squashing" function instead of a threshold at the output
- The sigmoid "activation" replaces the threshold
- Activation: The function that acts on the weighted combination of inputs (and threshold)

Other "activations"

- Does not always have to be a squashing function
- We will hear more about activations later
- We will continue to assume a "threshold" activation in this lecture

Recap: the multi-layer perceptron

- A network of perceptrons
- Generally "layered"

Defining "depth"

- What is a "deep" network

Deep Structures

- In any directed network of computational elements with input source nodes and output sink nodes, "depth" is the length of the longest path from a source to a sink

- Left: Depth $=2$.

Right: Depth = 3

Deep Structures

- Layered deep structure

Input to another layer above (image with 8 channels)

- "Deep" \rightarrow Depth > 2

The multi-layer perceptron

Deep neural network

- Inputs are real or Boolean stimuli
- Outputs are real or Boolean values
- Can have multiple outputs for a single input
- What can this network compute?
- What kinds of input/output relationships can it model?

MLPs approximate functions

$((A \& \bar{X} \& Z) \mid(A \& \bar{Y})) \&((X \& Y) \mid \overline{(X \& Z)})$

- MLPs can compose Boolean functions
- MLPs can compose real-valued functions
- What are the limitations?

Today

- Multi-layer Perceptrons as universal Boolean functions
- The need for depth
- MLPs as universal classifiers
- The need for depth
- MLPs as universal approximators
- A discussion of optimal depth and width
- Brief segue: RBF networks

Today

- Multi-layer Perceptrons as universal Boolean functions
- The need for depth
- MLPs as universal classifiers
- The need for depth
- MLPs as universal approximators
- A discussion of optimal depth and width
- Brief segue: RBF networks

The MLP as a Boolean function

- How well do MLPs model Boolean functions?

The perceptron as a Boolean gate

- A perceptron can model any simple binary Boolean gate

Perceptron as a Boolean gate

- The universal AND gate
- AND any number of inputs
- Any subset of who may be negated

Perceptron as a Boolean gate

- The universal OR gate
- OR any number of inputs
- Any subset of who may be negated

Perceptron as a Boolean Gate

- Universal OR:
- Fire if any K -subset of inputs is " ON "

The perceptron is not enough

- Cannot compute an XOR

Multi-layer perceptron

- MLPs can compute the XOR

Multi-layer perceptron

$((A \& \bar{X} \& Z) \mid(A \& \bar{Y})) \&((X \& Y) \mid \overline{(X \& Z)})$

- MLPs can compute more complex Boolean functions
- MLPs can compute any Boolean function
- Since they can emulate individual gates
- MLPs are universal Boolean functions

MLP as Boolean Functions

$((A \& \bar{X} \& Z) \mid(A \& \bar{Y})) \&((X \& Y) \mid \overline{(X \& Z)})$

- MLPs are universal Boolean functions
- Any function over any number of inputs and any number of outputs
- But how many "layers" will they need?

How many layers for a Boolean MLP?

Truth table shows all input combinations

Truth Table					
X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

- Expressed in disjunctive normal form

How many layers for a Boolean MLP?

Truth table shows all input combinations for which output is 1

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

$$
\begin{aligned}
Y= & \bar{X}_{1} \bar{X}_{2} X_{3} X_{4} \bar{X}_{5}+\bar{X}_{1} X_{2} \bar{X}_{3} X_{4} X_{5}+\bar{X}_{1} X_{2} X_{3} \bar{X}_{4} \bar{x}_{5}+ \\
& X_{1} \bar{X}_{2} \bar{X}_{3} \bar{X}_{4} X_{5}+X_{1} \bar{X}_{2} X_{3} X_{4} X_{5}+X_{1} X_{2} \bar{X}_{3} \bar{X}_{4} X_{5}
\end{aligned}
$$

- Expressed in disjunctive normal form

How many layers for a Boolean MLP?

Truth table shows all input combinations for which output is 1

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

- Expressed in disjunctive normal form

How many layers for a Boolean MLP?

Truth table shows all input combinations

Truth Table

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

$$
\begin{aligned}
Y= & \bar{X}_{1} \bar{X}_{2} X_{3} X_{4} \bar{X}_{5}+X_{1} X_{2} \bar{X}_{3} X_{4} X_{5}+\bar{X}_{1} X_{2} X_{3} \bar{X}_{4} \bar{X}_{5}+ \\
& X_{1} \bar{X}_{2} \bar{X}_{3} \bar{X}_{4} X_{5}+X_{1} X_{2} X_{3} X_{4} X_{5}+X_{1} X_{2} \bar{X}_{3} \bar{X}_{4} X_{5}
\end{aligned}
$$

- Expressed in disjunctive normal form

How many layers for a Boolean MLP?

Truth table shows all input combinations for which output is 1

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

- Expressed in disjunctive normal form

How many layers for a Boolean MLP?

Truth table shows all input combinations for which output is 1

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

- Expressed in disjunctive normal form

How many layers for a Boolean MLP?

Truth table shows all input combinations for which output is 1

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

- Expressed in disjunctive normal form

How many layers for a Boolean MLP?

Truth table shows all input combinations for which output is 1

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

- Expressed in disjunctive normal form

How many layers for a Boolean MLP?

Truth table shows all input combinations

Truth Table

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

$$
\begin{aligned}
Y= & \bar{X}_{1} \bar{X}_{2} X_{3} X_{4} \bar{X}_{5}+\bar{X}_{1} X_{2} \bar{X}_{3} X_{4} X_{5}+\bar{X}_{1} X_{2} X_{3} \bar{X}_{4} \bar{X}_{5}+ \\
& X_{1} \bar{X}_{2} \bar{X}_{3} \bar{X}_{4} X_{5}+X_{1} \bar{X}_{2} X_{3} X_{4} X_{5}+X_{1} X_{2} \bar{X}_{3} \bar{X}_{4} X_{5}
\end{aligned}
$$

- Expressed in disjunctive normal form

How many layers for a Boolean MLP?

Truth table shows all input combinations for which output is 1

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

- Any truth table can be expressed in this manner!
- A one-hidden-layer MLP is a Universal Boolean Function

But what is the largest number of perceptrons required in the single hidden layer for an N -input-variable function?

Reducing a Boolean Function

This is a "Karnaugh Map"
It represents a truth table as a grid Filled boxes represent input combinations for which output is 1; blank boxes have output 0

Adjacent boxes can be "grouped" to reduce the complexity of the DNF formula for the table

- DNF form:
- Find groups
- Express as reduced DNF

- Reduced DNF form:
- Find groups
- Express as reduced DNF

- Find groups
- Express as reduced DNF

Largest irreducible DNF?

- What arrangement of ones and zeros simply cannot be reduced further?

Largest irreducible DNF?

- What arrangement of ones and zeros simply cannot be reduced further?

Largest irreducible DNF?

- What arrangement of ones and zeros simply cannot be reduced further?

Width of a single-layer Boolean MLP

- How many neurons in a DNF (one-hiddenlayer) MLP for this Boolean function of 6 variables?

Width of a single-layer Boolean MLP

Can be generalized: Will require $2^{\mathrm{N}-1}$ perceptrons in hidden layer Exponential in N

- How many neurons in a DNF (one-hiddenlayer) MLP for this Boolean function

Width of a single-layer Boolean MLP

Can be generalized: Will require $2^{\mathrm{N}-1}$ perceptrons in hidden layer Exponential in N

How many units if we use multiple layers?

- How many neurons in a DNF (one-hiddenlayer) MLP for this Boolean function

Width of a deep MLP

$O=W \oplus X \oplus Y \oplus Z$

$O=U \oplus V \oplus W \oplus X \oplus Y \oplus Z$

Multi-layer perceptron XOR

- An XOR takes three perceptrons

Width of a deep MLP

$O=W \oplus X \oplus Y \oplus Z$

- An XOR needs 3 perceptrons
- This network will require $3 \times 3=9$ perceptrons

Width of a deep MLP

$O=U \oplus V \oplus W \oplus X \oplus Y \oplus Z$
15 perceptrons

- An XOR needs 3 perceptrons
- This network will require $3 \times 5=15$ perceptrons

Width of a deep MLP

$$
O=U \oplus V \oplus W \oplus X \oplus Y \oplus Z
$$

More generally, the XOR of N variables will require $3(\mathrm{~N}-1)$ perceptrons!!

- An XOR needs 3 perceptrons
- This network will require $3 \times 5=15$ perceptrons

Width of a single-layer Boolean MLP

Single hidden layer: Will require $2^{\mathrm{N}-1}+1$ perceptrons in all (including output unit) Exponential in N

Will require $3(\mathrm{~N}-1)$ perceptrons in a deep network
Linear in N!!!
Can be arranged in only $2 \log _{2}(N)$ layers

A better representation

$$
O=X_{1} \oplus X_{2} \oplus \cdots \oplus X_{N}
$$

- Only $2 \log _{2} N$ layers
- By pairing terms

$$
\begin{aligned}
0= & \left(\left(\left(\left(\left(X_{1} \oplus X_{2}\right) \oplus\left(X_{1} \oplus X_{2}\right)\right) \oplus\right.\right.\right. \\
& \left.\left(\left(X_{5} \oplus X_{6}\right) \oplus\left(X_{7} \oplus X_{8}\right)\right)\right) \oplus(((\ldots
\end{aligned}
$$

The challenge of depth

$$
\begin{aligned}
O & =X_{1} \oplus X_{2} \oplus \cdots \oplus X_{N} \\
& =Z_{1} \oplus Z_{2} \oplus \cdots \oplus Z_{M}
\end{aligned}
$$

- Using only K hidden layers will require $\mathrm{O}\left(2^{(\mathrm{N}-\mathrm{K} / 2)}\right)$ neurons in the Kth layer
- Because the output can be shown to be the XOR of all the outputs of the K-1th hidden layer
- I.e. reducing the number of layers below the minimum will result in an exponentially sized network to express the function fully
- A network with fewer than the required number of neurons cannot model the function

Recap: The need for depth

- Deep Boolean MLPs that scale linearly with the number of inputs ...
- ... can become exponentially large if recast using only one layer
- It gets worse..

The need for depth

- The wide function can happen at any layer
- Having a few extra layers can greatly reduce network size

Network size: summary

- An MLP is a universal Boolean function
- But can represent a given function only if
- It is sufficiently wide
- It is sufficiently deep
- Depth can be traded off for (sometimes) exponential growth of the width of the network
- Optimal width and depth depend on the number of variables and the complexity of the Boolean function
- Complexity: minimal number of terms in DNF formula to represent it

Story so far

- Multi-layer perceptrons are Universal Boolean Machines
- Even a network with a single hidden layer is a universal Boolean machine
- But a single-layer network may require an exponentially large number of perceptrons
- Deeper networks may require far fewer neurons than shallower networks to express the same function
- Could be exponentially smaller

Today

- Multi-layer Perceptrons as universal Boolean functions
- The need for depth
- MLPs as universal classifiers
- The need for depth
- MLPs as universal approximators
- A discussion of optimal depth and width
- Brief segue: RBF networks

The MLP as a classifier

784 dimensions (MNIST)

784 dimensions

- MLP as a function over real inputs
- MLP as a function that finds a complex "decision boundary" over a space of reals

A Perceptron on Reals

- A perceptron operates on real-valued vectors
- This is a linear classifier

Boolean functions with a real perceptron

- Boolean perceptrons are also linear classifiers
- Purple regions are 1

Composing complicated "decision" boundaries

Can now be composed into "networks" to compute arbitrary classification "boundaries"

- Build a network of units with a single output that fires if the input is in the coloured area

Booleans over the reals

- The network must fire if the input is in the coloured area

Booleans over the reals

- The network must fire if the input is in the coloured area

Booleans over the reals

- The network must fire if the input is in the coloured area

Booleans over the reals

- The network must fire if the input is in the coloured area

Booleans over the reals

- The network must fire if the input is in the coloured area

Booleans over the reals

- The network must fire if the input is in the coloured area

More complex decision boundaries

- Network to fire if the input is in the yellow area
- "OR" two polygons
- A third layer is required

Complex decision boundaries

- Can compose arbitrarily complex decision boundaries

Complex decision boundaries

- Can compose arbitrarily complex decision boundaries

Complex decision boundaries

- Can compose arbitrarily complex decision boundaries
- With only one hidden layer!
- How?

Exercise: compose this with one hidden layer

- How would you compose the decision boundary to the left with only one hidden layer?

Composing a Square decision boundary

- The polygon net

Composing a pentagon

- The polygon net

Composing a hexagon

- The polygon net

How about a heptagon

- What are the sums in the different regions?
- A pattern emerges as we consider $\mathrm{N}>6$..

Composing a polygon

- The polygon net
- Increasing the number of sides reduces the area outside the polygon that have $\mathrm{N} / 2<$ Sum < N

Composing a circle

- The circle net
- Very large number of neurons
- Sum is N inside the circle, $N / 2$ outside everywhere
- Circle can be of arbitrary diameter, at any location

Composing a circle

- The circle net
- Very large number of neurons
- Sum is N/2 inside the circle, 0 outside everywhere
- Circle can be of arbitrary diameter, at any location ${ }_{84}$

Adding circles

- The "sum" of two circles sub nets is exactly N/2 inside either circle, and 0 outside

Composing an arbitrary figure

- Just fit in an arbitrary number of circles
- More accurate approximation with greater number of smaller circles
- Can achieve arbitrary precision

MLP: Universal classifier

- MLPs can capture any classification boundary
- A one-layer MLP can model any classification boundary
- MLPs are universal classifiers

Depth and the universal classifier

- Deeper networks can require far fewer neurons

Special case: Sum-product nets

- "Shallow vs deep sum-product networks," Oliver Dellaleau and Yoshua Bengio
- For networks where layers alternately perform either sums or products, a deep network may require an exponentially fewer number of layers than a shallow one

Depth in sum-product networks

Theorem 5

A certain class of functions \mathcal{F} of n inputs can be represented using a deep network with $\mathcal{O}(n)$ units, whereas it would require $\mathcal{O}\left(2^{\sqrt{n}}\right)$ units for a shallow network.

Theorem 6
For a certain class of functions \mathcal{G} of n inputs, the deep sum-product network with depth k can be represented with $\mathcal{O}(n k)$ units, whereas it would require $\mathcal{O}\left((n-1)^{k}\right)$ units for a shallow network.

Optimal depth in generic nets

- We look at a different pattern:
- "worst case" decision boundaries
- For threshold-activation networks
- Generalizes to other nets

Optimal depth

- A one-hidden-layer neural network will required infinite hidden neurons

Optimal depth

- Two layer network: 56 hidden neurons

Optimal depth

- Two layer network: 56 hidden neurons
- 16 neurons in hidden layer 1

Optimal depth

- Two-layer network: 56 hidden neurons
- 16 in hidden layer 1
- 40 in hidden layer 2
- 57 total neurons, including output neuron

Optimal depth

- But this is just $Y_{1} \oplus Y_{2} \oplus \cdots \oplus Y_{16}$

Optimal depth

- But this is just $Y_{1} \oplus Y_{2} \oplus \cdots \oplus Y_{16}$
- The XOR net will require $16+15 \times 3=61$ neurons
- Greater than the 2-layer network with only 52 neurons

Optimal depth

- A one-hidden-layer neural network will required infinite hidden neurons

Actual linear units

- 64 basic linear feature detectors

Optimal depth

- Two hidden layers: 608 hidden neurons
- 64 in layer 1
- 544 in layer 2
- 609 total neurons (including output neuron)

Optimal depth

- XOR network (12 hidden layers): 253 neurons
- The difference in size between the deeper optimal (XOR) net and shallower nets increases with increasing pattern complexity

Network size?

- In this problem the 2-layer net was quadratic in the number of lines
- $\left\lfloor(N+2)^{2} / 8\right\rfloor$ neurons in $2^{\text {nd }}$ hidden layer
- Not exponential
- Even though the pattern is an XOR
- Why?
- The data are two-dimensional!
- Only two fully independent features

- The pattern is exponential in the dimension of the input (two)!
- For general case of N lines distributed over D dimensions, we will need up to $\frac{1}{2}\left(\frac{N}{D}+1\right)^{D}$
- Increasing input dimensions can increase the worst-case size of the shallower network exponentially, but not the XOR net
- The size of the XOR net depends only on the number of first-level linear detectors (N)

Depth: Summary

- The number of neurons required in a shallow network is
- Polynomial in the number of basic patterns
- Exponential in the dimensionality input
- (this is the worst case)
- Alternately, exponential in the number of statistically independent features

Story so far

- Multi-layer perceptrons are Universal Boolean Machines
- Even a network with a single hidden layer is a universal Boolean machine
- Multi-layer perceptrons are Universal Classification Functions
- Even a network with a single hidden layer is a universal classifier
- But a single-layer network may require an exponentially large number of perceptrons than a deep one
- Deeper networks may require exponentially fewer neurons than shallower networks to express the same function
- Could be exponentially smaller
- Deeper networks are more expressive

Today

- Multi-layer Perceptrons as universal Boolean functions
- The need for depth
- MLPs as universal classifiers
- The need for depth
- MLPs as universal approximators
- A discussion of optimal depth and width
- Brief segue: RBF networks

MLP as a continuous-valued regression

- A simple 3-unit MLP with a "summing" output unit can generate a "square pulse" over an input
- Output is 1 only if the input lies between T_{1} and T_{2}
- T_{1} and T_{2} can be arbitrarily specified

MLP as a continuous-valued regression

- A simple 3-unit MLP can generate a "square pulse" over an input
- An MLP with many units can model an arbitrary function over an input
- To arbitrary precision
- Simply make the individual pulses narrower
- A one-layer MLP can model an arbitrary function of a single input

For higher dimensions

- An MLP can compose a cylinder
$-N / 2$ in the circle, 0 outside

MLP as a continuous-valued function

- MLPs can actually compose arbitrary functions in any number of dimensions!
- Even with only one layer
- As sums of scaled and shifted cylinders
- To arbitrary precision
- By making the cylinders thinner
- The MLP is a universal approximator!

Caution: MLPs with additive output

 units are universal approximators

- MLPs can actually compose arbitrary functions
- But explanation so far only holds if the output unit only performs summation
- i.e. does not have an additional "activation"

"Proper" networks: Outputs with activations

- Output neuron may have actual "activation"
- Threshold, sigmoid, tanh, softplus, rectifier, etc.
- What is the property of such networks?

The network as a function

$$
\begin{gathered}
f:\{0,1\}^{N} \rightarrow\{0,1\} \\
f: R^{N} \rightarrow\{0,1\} \quad \text { Boolean } \\
f: R^{N} \rightarrow(0,1) \quad \text { Shreshold } \\
f: R^{N} \rightarrow(-1,1) \\
f: R^{N} \rightarrow(0, \infty)
\end{gathered} \text { Sontanh } \begin{aligned}
& \text { Softrectifier, Rectifier }
\end{aligned}
$$

- Output unit with activation function
- Threshold or Sigmoid, or any other
- The network is actually a map from the set of all possible input values to all possible output values
- All values the activation function of the output neuron

The network as a function

$$
\begin{array}{ll}
f:\{0,1\}^{N} \rightarrow\{0,1\} & \text { Boolean } \\
f: R^{N} \rightarrow\{0,1\} & \text { Threshold } \\
f: R^{N} \rightarrow(0,1) & \text { Sigmoid } \\
f: R^{N} \rightarrow(-1,1) & \text { Tanh } \\
f: R^{N} \rightarrow(0, \infty) & \text { Softmax, Rectifier }
\end{array}
$$

The MLP is a Universal Approximator for the entire class of functions (maps) it represents!

- Threshold or Sigmoid, or any other
- The network is actually a map from the set of all possible input values to all possible output values
- All values the activation function of the output neuron

Today

- Multi-layer Perceptrons as universal Boolean functions
- The need for depth
- MLPs as universal classifiers
- The need for depth
- MLPs as universal approximators
- A discussion of optimal depth and width
- Brief segue: RBF networks

The issue of depth

- Previous discussion showed that a single-layer MLP is a universal function approximator
- Can approximate any function to arbitrary precision
- But may require infinite neurons in the layer
- More generally, deeper networks will require far fewer neurons for the same approximation error
- The network is a generic map
- The same principles that apply for Boolean networks apply here
- Can be exponentially fewer than the 1-layer network

Sufficiency of architecture

A network with 16 or more neurons in the first layer is capable of representing the figure to the right perfectly

A network with less than 16 neurons in the first layer cannot represent this pattern exactly * With caveats..

A 2-layer network with 16 neurons in the first layer cannot represent the pattern with less than 41 neurons in the second layer

- A neural network can represent any function provided it has sufficient capacity
- I.e. sufficiently broad and deep to represent the function
- Not all architectures can represent any function

Sufficiency of architecture

- The capacity of a network has various definitions
- Information or Storage capacity: how many patterns can it remember
- VC dimension
- bounded by the square of the number of weights in the network
- From our perspective: largest number of disconnected convex regions it can represent
- A network with insufficient capacity cannot exactly model a function that requires a greater minimal number of convex hulls than the capacity of the network
- But can approximate it with error

The "capacity" of a network

- VC dimension
- A separate lecture
- Koiran and Sontag (1998): For "linear" or threshold units, VC dimension is proportional to the number of weights
- For units with piecewise linear activation it is proportional to the square of the number of weights
- Harvey, Liaw, Mehrabian "Nearly-tight VC-dimension bounds for piecewise linear neural networks" (2017):
- For any W, L s.t. $W>C L>C^{2}$, there exisits a RELU network with $\leq L$ layers, $\leq W$ weights with VC dimension $\geq \frac{W L}{C} \log _{2}\left(\frac{W}{L}\right)$
- Friedland, Krell, "A Capacity Scaling Law for Artificial Neural Networks" (2017):
- VC dimension of a linear/threshold net is $\mathcal{O}(M K), M$ is the overall number of hidden neurons, K is the weights per neuron

Today

- Multi-layer Perceptrons as universal Boolean functions
- The need for depth
- MLPs as universal classifiers
- The need for depth
- MLPs as universal approximators
- A discussion of optimal depth and width
- Brief segue: RBF networks

Perceptrons so far

$$
z=\sum_{i} \mathrm{w}_{i} \mathrm{x}_{i}-T
$$

$$
y=f(z)
$$

- The output of the neuron is a function of a linear combination of the inputs and a bias

An alternate type of neural unit: Radial Basis Functions

$$
\begin{gathered}
z=\|\mathbf{x}-\mathbf{w}\|^{2} \\
y=f(z)
\end{gathered}
$$

Typical activation

$$
f(z)=\exp (-\beta z)
$$

- The output is a function of the distance of the input from a "center"
- The "center" \mathbf{w} is the parameter specifying the unit
- The most common activation is the exponent
- β is a "bandwidth" parameter
- But other similar activations may also be used
- Key aspect is radial symmetry, instead of linear symmetry

An alternate type of neural unit: Radial Basis Functions

- Radial basis functions can compose cylinder-like outputs with just a single unit with appropriate choice of bandwidth (or activation function)
- As opposed to $N \rightarrow \infty$ units for the linear perceptron

RBF networks as universal approximators

- RBF networks are more effective approximators of continuous-valued functions
- A one-hidden-layer net only requires one unit per "cylinder"

RBF networks as universal approximators

- RBF networks are more effective approximators of continuous-valued functions
- A one-hidden-layer net only requires one unit per "cylinder"

RBF networks

- More effective than conventional linear perceptron networks in some problems
- We will revisit this topic, time permitting

Lessons today

- MLPs are universal Boolean function
- MLPs are universal classifiers
- MLPs are universal function approximators
- A single-layer MLP can approximate anything to arbitrary precision
- But could be exponentially or even infinitely wide in its inputs size
- Deeper MLPs can achieve the same precision with far fewer neurons
- Deeper networks are more expressive
- RBFs are good, now lets get back to linear perceptrons... ©

Next up

- We know MLPs can emulate any function
- But how do we make them emulate a specific desired function
- E.g. a function that takes an image as input and outputs the labels of all objects in it
- E.g. a function that takes speech input and outputs the labels of all phonemes in it
- Etc...
- Training an MLP

