
Neural Networks: 
What can a network represent

Deep Learning, Fall 2017



Projects
• Everyone must do a project

– Teams of two

• Projects must

– Use neural networks

– Address a well-defined problem

– Outcomes must be objectively or subjectively evaluateable

• Quality:

– May simply revisit already published literature
• E.g. obtain near-state-of-art on imagenet, or speech recognition

– Existing solutions, new problems
• MT for a new language

– Propose new designs or learning methods
• E.g. use LSTMs for image recognition

– Be entirely novel

• Objective: Demonstrate ability to implement a complex solution using 
neural networks



Projects

• Schedule:

– Announce teams to TAs/myself by 15 Sep

– Send project proposals by 21 Sep

– Finalize project by 28 Sep

• Poster presentation: Between Dec 7 and Dec 

10th



Recap : Neural networks have taken 
over AI

• Tasks that are made possible by NNs, aka deep learning



Recap : NNets and the brain

• In their basic form, NNets mimic the 
networked structure in the brain



Recap : The brain

• The Brain is composed of networks of neurons



Recap : Nnets and the brain

• Neural nets are composed of networks of 
computational models of neurons called perceptrons



Recap: the perceptron

• A threshold unit
– “Fires” if the weighted sum of inputs exceeds a 

threshold
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A better figure

• A threshold unit

– “Fires” if the weighted sum of inputs and the 
“bias” T is positive
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1 𝑖𝑓 z ≥ 0
0 𝑒𝑙𝑠𝑒
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The “soft” perceptron

• A “squashing” function instead of a threshold 
at the output

– The sigmoid “activation” replaces the threshold

• Activation: The function that acts on the weighted 
combination of inputs (and threshold)
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Other “activations”

• Does not always have to be a squashing function

– We will hear more about activations later

• We will continue to assume a “threshold” activation in this lecture

sigmoid tanh
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Recap: the multi-layer perceptron

• A network of perceptrons

– Generally “layered”



Defining “depth”

• What is a “deep” network



Deep Structures

• In any directed network of computational 

elements with input source nodes and output 

sink nodes, “depth” is the length of the 

longest path from a source to a sink

• Left: Depth = 2.        Right: Depth = 3



Deep Structures

• Layered deep structure

• “Deep”  Depth > 2



The multi-layer perceptron

• Inputs are real or Boolean stimuli

• Outputs are real or Boolean values
– Can have multiple outputs for a single input 

• What can this network compute?
– What kinds of input/output relationships can it model?



MLPs approximate functions

• MLPs can compose Boolean functions

• MLPs can compose real-valued functions

• What are the limitations?
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Today

• Multi-layer Perceptrons as universal Boolean 
functions

– The need for depth

• MLPs as universal classifiers

– The need for depth

• MLPs as universal approximators

• A discussion of optimal depth and width

• Brief segue:  RBF networks 
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The MLP as a Boolean function

• How well do MLPs model Boolean functions?



The perceptron as a Boolean gate

• A perceptron can model any simple binary 
Boolean gate
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Perceptron as a Boolean gate

• The universal AND gate

– AND any number of inputs

• Any subset of who may be negated
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Perceptron as a Boolean gate

• The universal OR gate

– OR any number of inputs

• Any subset of who may be negated
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Perceptron as a Boolean Gate

• Universal OR:

– Fire if any K-subset of inputs is “ON”
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The perceptron is not enough

• Cannot compute an XOR
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Multi-layer perceptron

• MLPs can compute the XOR
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Multi-layer perceptron

• MLPs can compute more complex Boolean functions 

• MLPs can compute any Boolean function

– Since they can emulate individual gates

• MLPs are universal Boolean functions
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MLP as Boolean Functions

• MLPs are universal Boolean functions
– Any function over any number of inputs and any number 

of outputs

• But how many “layers” will they need?

( 𝐴& ത𝑋&𝑍 | 𝐴&ത𝑌 )&( 𝑋 & 𝑌 | 𝑋&𝑍 )

12 1 1 12 1 1

X Y Z A

10 11

12

1
1 1-111 -1

1 1

1 -1 1 1

11



How many layers for a Boolean MLP?

• Expressed in disjunctive normal form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth Table

Truth table shows all input combinations
for which output is 1
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How many layers for a Boolean MLP?

• Any truth table can be expressed in this manner!
• A one-hidden-layer MLP is a Universal Boolean Function

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth Table

Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

But what is the largest number of perceptrons required in the 
single hidden layer for an N-input-variable function?

𝑌 = ത𝑋1 ത𝑋2𝑋3𝑋4 ത𝑋5 + ത𝑋1𝑋2 ത𝑋3𝑋4𝑋5 + ത𝑋1𝑋2𝑋3 ത𝑋4 ത𝑋5 +
𝑋1 ത𝑋2 ത𝑋3 ത𝑋4𝑋5 + 𝑋1 ത𝑋2𝑋3𝑋4𝑋5 + 𝑋1𝑋2 ത𝑋3 ത𝑋4𝑋5



Reducing a Boolean Function

• DNF form:

– Find groups

– Express as reduced DNF

This is a “Karnaugh Map”

It represents a truth table as a grid
Filled boxes represent input combinations
for which output is 1; blank boxes have
output 0

Adjacent boxes can be “grouped” to 
reduce the complexity of the DNF formula 
for the table
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Reducing a Boolean Function
00 01 11 10
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Basic DNF formula will require 7 terms



Reducing a Boolean Function

• Reduced DNF form:

– Find groups

– Express as reduced DNF

𝑂 = ത𝑌 ҧ𝑍 + ഥ𝑊𝑋ത𝑌 + ത𝑋𝑌 ҧ𝑍
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Reducing a Boolean Function

• Reduced DNF form:

– Find groups

– Express as reduced DNF

𝑂 = ത𝑌 ҧ𝑍 + ഥ𝑊𝑋ത𝑌 + ത𝑋𝑌 ҧ𝑍
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Largest irreducible DNF?

• What arrangement of ones and zeros simply 
cannot be reduced further?
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Largest irreducible DNF?

• What arrangement of ones and zeros simply 
cannot be reduced further?

00 01 11 10
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YZ
WX How many neurons 

in a DNF (one-

hidden-layer) MLP 

for this Boolean 

function?



• How many neurons in a DNF (one-hidden-
layer) MLP for this Boolean function of 6 
variables?
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• How many neurons in a DNF (one-hidden-

layer) MLP for this Boolean function
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Width of a single-layer Boolean MLP

Can be generalized: Will require 2N-1

perceptrons in hidden layer
Exponential in N



• How many neurons in a DNF (one-hidden-

layer) MLP for this Boolean function
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Width of a single-layer Boolean MLP

Can be generalized: Will require 2N-1

perceptrons in hidden layer
Exponential in N

How many units if we use multiple layers?
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Multi-layer perceptron XOR

• An XOR takes three perceptrons
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• An XOR needs 3 perceptrons

• This network will require 3x3 = 9 perceptrons

Width of a deep MLP
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𝑂 = 𝑊⊕𝑋⊕ 𝑌⊕ 𝑍
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• An XOR needs 3 perceptrons

• This network will require 3x5 = 15 perceptrons

Width of a deep MLP
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• An XOR needs 3 perceptrons

• This network will require 3x5 = 15 perceptrons

Width of a deep MLP
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𝑂 = 𝑈⊕ 𝑉⊕𝑊⊕𝑋⊕𝑌⊕ 𝑍

More generally, the XOR of N 
variables will require 3(N-1) 
perceptrons!!



• How many neurons in a DNF (one-hidden-

layer) MLP for this Boolean function
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Width of a single-layer Boolean MLP

Single hidden layer: Will require 2N-1+1 
perceptrons in all (including output unit)
Exponential in N

Will require 3(N-1) perceptrons in a deep 
network
Linear in N!!!
Can be arranged in only 2log2(N) layers



A better representation

• Only 2 log2𝑁 layers

– By pairing terms

– 2 layers per XOR

𝑂 = 𝑋1 ⊕𝑋2 ⊕⋯⊕𝑋𝑁

𝑋1 𝑋𝑁

𝑂 = (((((𝑋1⊕𝑋2) ⊕ (𝑋1⊕𝑋2)) ⊕
((𝑋5⊕𝑋6) ⊕ (𝑋7⊕𝑋8))) ⊕ (((…



𝑍1 𝑍𝑀

The challenge of depth

• Using only K hidden layers will require O(2(N-K/2)) neurons in the Kth layer

– Because the output can be shown to be the XOR of all the outputs of the K-1th 
hidden layer 

– I.e. reducing the number of layers below the minimum will result in an 
exponentially sized network to express the function fully

– A network with fewer than the required number of neurons cannot model the 
function

𝑂 = 𝑋1 ⊕𝑋2 ⊕⋯⊕𝑋𝑁……
= 𝑍1 ⊕𝑍2 ⊕⋯⊕𝑍𝑀

𝑋1 𝑋𝑁



Recap: The need for depth

• Deep Boolean MLPs that scale linearly with 
the number of inputs …

• … can become exponentially large if recast 
using only one layer

• It gets worse..



The need for depth

• The wide function can happen at any layer
• Having a few extra layers can greatly reduce network 

size

X1 X2 X3 X4 X5

a b c d e f

𝑎 ⊕ 𝑏⊕ 𝑐 ⊕ 𝑑⊕ 𝑒⊕ 𝑓



Network size: summary

• An MLP is a universal Boolean function

• But can represent a given function only if

– It is sufficiently wide

– It is sufficiently deep

– Depth can be traded off for (sometimes) exponential growth of the 
width of the network

• Optimal width and depth depend on the number of variables and 
the complexity of the Boolean function

– Complexity:  minimal number of terms in DNF formula to represent it



Story so far

• Multi-layer perceptrons are Universal Boolean Machines

• Even a network with a single hidden layer is a universal 
Boolean machine

– But a single-layer network may require an exponentially 
large number of perceptrons

• Deeper networks may require far fewer neurons than 
shallower networks to express the same function

– Could be exponentially smaller



Today

• Multi-layer Perceptrons as universal Boolean 
functions

– The need for depth

• MLPs as universal classifiers

– The need for depth

• MLPs as universal approximators

• A discussion of optimal depth and width

• Brief segue:  RBF networks 



The MLP as a classifier

• MLP as a function over real inputs

• MLP as a function that finds a complex “decision 

boundary” over a space of reals

63

784 dimensions
(MNIST)

784 dimensions

2

𝑵𝒐𝒕 𝟐



A Perceptron on Reals

• A perceptron operates on 
real-valued vectors
– This is a linear classifier 64
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Boolean functions with a real 
perceptron

• Boolean perceptrons are also linear classifiers

– Purple regions are 1
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Composing complicated “decision” 
boundaries

• Build a network of units with a single output 
that fires if the input is in the coloured area

66
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“networks” to compute arbitrary
classification “boundaries”



Booleans over the reals

• The network must fire if the input is in the 
coloured area 
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Booleans over the reals

• The network must fire if the input is in the 
coloured area 
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Booleans over the reals

• The network must fire if the input is in the 
coloured area 
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Booleans over the reals

• The network must fire if the input is in the 
coloured area 

70

x1

x2

x1x2



Booleans over the reals

• The network must fire if the input is in the 
coloured area 
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Booleans over the reals

• The network must fire if the input is in the 
coloured area 
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𝑖=1

𝑁

y𝑖 ≥ 5?
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More complex decision boundaries

• Network to fire if the input is in the yellow area

– “OR” two polygons

– A third layer is required
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Complex decision boundaries

• Can compose arbitrarily complex decision 

boundaries

74



Complex decision boundaries

• Can compose arbitrarily complex decision 

boundaries

75
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Complex decision boundaries

• Can compose arbitrarily complex decision boundaries

– With only one hidden layer!

– How?
76
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Exercise: compose this with one 
hidden layer

• How would you compose the decision boundary 

to the left with only one hidden layer?

77
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Composing a Square decision 
boundary

• The polygon net

78
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Composing a pentagon

• The polygon net

79
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Composing a hexagon

• The polygon net
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𝑖=1

𝑁

y𝑖 ≥ 6?
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How about a heptagon

• What are the sums in the different regions?

– A pattern emerges as we consider N > 6..

4
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Composing a polygon

• The polygon net

• Increasing the number of sides reduces the area 

outside the polygon that have N/2 < Sum < N
82
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Composing a circle

• The circle net

– Very large number of neurons

– Sum is N inside the circle, N/2 outside everywhere

– Circle can be of arbitrary diameter, at any location
83
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Composing a circle

• The circle net

– Very large number of neurons

– Sum is N/2 inside the circle, 0 outside everywhere

– Circle can be of arbitrary diameter, at any location
84
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Adding circles

• The “sum” of two circles sub nets is exactly N/2 
inside either circle, and 0 outside

85
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Composing an arbitrary figure

• Just fit in an arbitrary number of circles

– More accurate approximation with greater number of 
smaller circles

– Can achieve arbitrary precision
86
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MLP: Universal classifier

• MLPs can capture any classification boundary

• A one-layer MLP can model any classification 
boundary

• MLPs are universal classifiers 87
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Depth and the universal classifier

• Deeper networks can require far fewer neurons

x2

x1 x1 x2



Special case: Sum-product nets

• “Shallow vs deep sum-product networks,” Oliver 

Dellaleau and Yoshua Bengio

– For networks where layers alternately perform either sums 

or products, a deep network may require an exponentially 

fewer number of layers than a shallow one



Depth in sum-product networks



Optimal depth in generic nets

• We look at a different pattern:

– “worst case” decision boundaries

• For threshold-activation networks

– Generalizes to other nets



Optimal depth

• A one-hidden-layer neural network will 
required infinite hidden neurons
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Optimal depth

• Two layer network: 56 hidden neurons



Optimal depth

• Two layer network: 56 hidden neurons

– 16 neurons in hidden layer 1

𝑌1𝑌2 𝑌3 𝑌16
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Optimal depth

• Two-layer network: 56 hidden neurons
– 16 in hidden layer 1
– 40 in hidden layer 2
– 57 total neurons, including output neuron



Optimal depth

• But this is just 𝑌1⊕𝑌2 ⊕⋯⊕𝑌16

𝑌1𝑌2 𝑌3 𝑌16

𝑌16

𝑌1 𝑌2 𝑌3 𝑌4

𝑌5 𝑌8

𝑌9 𝑌12

𝑌13 𝑌14 𝑌15

𝑌6 𝑌7

𝑌10 𝑌11



Optimal depth

• But this is just 𝑌1⊕𝑌2 ⊕⋯⊕𝑌16
– The XOR net will require 16 + 15x3 = 61 neurons

• Greater than the 2-layer network with only 52 neurons



Optimal depth

• A one-hidden-layer neural network will 
required infinite hidden neurons
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Actual linear units

• 64 basic linear feature detectors

𝑌1𝑌2 𝑌3 𝑌64….



Optimal depth

• Two hidden layers:  608 hidden neurons

– 64 in layer 1

– 544 in layer 2 

• 609 total neurons (including output neuron)

….
….



Optimal depth

• XOR network (12 hidden layers): 253 neurons

• The difference in size between the deeper optimal (XOR) net and 
shallower nets increases with increasing pattern complexity

….….….….….….



Network size?
• In this problem the 2-layer net

was quadratic in the number of
lines

– (𝑁 + 2)2/8 neurons in 2nd hidden layer

– Not exponential

– Even though the pattern is an XOR

– Why?

• The data are two-dimensional!

– Only two fully independent features

– The pattern is exponential in the dimension of the input (two)!

• For general case of 𝑁 lines distributed over 𝐷 dimensions, we will need up 

to 
1

2

𝑁

𝐷
+ 1

𝐷

– Increasing input dimensions can increase the worst-case size of the shallower 
network exponentially, but not the XOR net
• The size of the XOR net depends only on the number of first-level linear detectors (𝑁)



Depth: Summary

• The number of neurons required in a shallow 
network is 

– Polynomial in the number of basic patterns

– Exponential in the dimensionality input

• (this is the worst case) 

• Alternately, exponential in the number of statistically 
independent features



Story so far

• Multi-layer perceptrons are Universal Boolean Machines
– Even a network with a single hidden layer is a universal Boolean machine

• Multi-layer perceptrons are Universal Classification Functions
– Even a network with a single hidden layer is a universal classifier

• But a single-layer network may require an exponentially large number 
of perceptrons than a deep one

• Deeper networks may require exponentially fewer neurons than 
shallower networks to express the same function
– Could be exponentially smaller

– Deeper networks are more expressive



Today

• Multi-layer Perceptrons as universal Boolean 
functions

– The need for depth

• MLPs as universal classifiers

– The need for depth

• MLPs as universal approximators

• A discussion of optimal depth and width

• Brief segue:  RBF networks 



MLP as a continuous-valued regression

• A simple 3-unit MLP with a “summing” output unit can 
generate a “square pulse” over an input

– Output is 1 only if the input lies between T1 and T2

– T1 and T2 can be arbitrarily specified
106
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MLP as a continuous-valued regression

• A simple 3-unit MLP can generate a “square pulse” over an input

• An MLP with many units can model an arbitrary function over an input

– To arbitrary precision
• Simply make the individual pulses narrower

• A one-layer MLP can model an arbitrary function of a single input
107

x

1
T1

T2

1

T1

T2

1

-1
T1 T2 x

f(x)
x

+× ℎ1
× ℎ2

× ℎ𝑛

ℎ1

ℎ2

ℎ𝑛



For higher dimensions

• An MLP can compose a cylinder

– 𝑁/2 in the circle,  0 outside

N/2

0

+

1

-N/2



+

MLP as a continuous-valued function

• MLPs can actually compose arbitrary functions in any number of 
dimensions!

– Even with only one layer
• As sums of scaled and shifted cylinders

– To arbitrary precision
• By making the cylinders thinner

– The MLP is a universal approximator!
109
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+

Caution: MLPs with additive output 
units are universal approximators

• MLPs can actually compose arbitrary functions

• But explanation so far only holds if the output 

unit only performs summation

– i.e. does not have an additional “activation” 
110
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“Proper” networks: Outputs with 
activations

• Output neuron may have actual “activation”

– Threshold, sigmoid, tanh, softplus, rectifier, etc.

• What is the property of such networks?

x1

x2

x3

xN

sigmoid tanh



The network as a function

• Output unit with activation function
– Threshold or Sigmoid, or any other

• The network is actually a map from the set of all possible input values to all 
possible output values
– All values the activation function of the output neuron

𝑓: 𝑅𝑁 → 0,1 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑓: 𝑅𝑁 → 0,1 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

𝑓: 𝑅𝑁 → −1,1 𝑇𝑎𝑛ℎ

𝑓: 𝑅𝑁 → 0,∞ 𝑆𝑜𝑓𝑡𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟, 𝑅𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟

𝑓: {0,1}𝑁→ 0,1 𝐵𝑜𝑜𝑙𝑒𝑎𝑛



The network as a function

• Output unit with activation function
– Threshold or Sigmoid, or any other

• The network is actually a map from the set of all possible input values to all 
possible output values
– All values the activation function of the output neuron

𝑓: 𝑅𝑁 → 0,1 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑓: 𝑅𝑁 → 0,1 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

𝑓: 𝑅𝑁 → −1,1 𝑇𝑎𝑛ℎ

𝑓: 𝑅𝑁 → 0,∞ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥, 𝑅𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟

The MLP is a Universal Approximator for the entire class of functions (maps)
it represents!

𝑓: {0,1}𝑁→ 0,1 𝐵𝑜𝑜𝑙𝑒𝑎𝑛



Today

• Multi-layer Perceptrons as universal Boolean 
functions

– The need for depth

• MLPs as universal classifiers

– The need for depth

• MLPs as universal approximators

• A discussion of optimal depth and width

• Brief segue:  RBF networks 



The issue of depth

• Previous discussion showed that a single-layer MLP is a 
universal function approximator

– Can approximate any function to arbitrary precision

– But may require infinite neurons in the layer

• More generally, deeper networks will require far fewer 
neurons for the same approximation error

– The network is a generic map
• The same principles that apply for Boolean networks apply here

– Can be exponentially fewer than the 1-layer network



Sufficiency of architecture

• A neural network can represent any function provided 

it has sufficient capacity

– I.e. sufficiently broad and deep to represent the function

• Not all architectures can represent any function

A network with 16 or more
neurons in the first layer is 
capable of representing the 
figure to the right perfectly

A network with less than 
16 neurons  in the first 
layer cannot represent 
this pattern exactly
 With caveats..

…..

A 2-layer network with 16 
neurons  in the first layer 
cannot represent the 
pattern with less than 41
neurons in the second layer



Sufficiency of architecture

• The capacity of a network has various definitions
– Information or Storage capacity: how many patterns can it remember

– VC dimension

• bounded by the square of the number of weights in the network

– From our perspective: largest number of disconnected convex regions it can represent

• A network with insufficient capacity cannot exactly model a function that requires 
a greater minimal number of convex hulls than the capacity of the network
– But can approximate it with error



The “capacity” of a network

• VC dimension

• A separate lecture

– Koiran and Sontag (1998): For “linear” or threshold units, VC 
dimension is proportional to the number of weights

• For units with piecewise linear activation it is proportional to the 
square of the number of weights

– Harvey, Liaw, Mehrabian “Nearly-tight VC-dimension bounds for 
piecewise linear neural networks” (2017): 

• For any 𝑊, 𝐿 s.t. 𝑊 > 𝐶𝐿 > 𝐶2, there exisits a RELU network with ≤ 𝐿

layers, ≤ 𝑊 weights with VC dimension ≥
𝑊𝐿

𝐶
log2(

𝑊

𝐿
)

– Friedland, Krell, “A Capacity Scaling Law for Artificial Neural 
Networks” (2017):

• VC dimension of a linear/threshold net is 𝒪(𝑀𝐾), 𝑀 is the overall 
number of hidden neurons, 𝐾 is the weights per neuron



Today

• Multi-layer Perceptrons as universal Boolean 
functions

– The need for depth

• MLPs as universal classifiers

– The need for depth

• MLPs as universal approximators

• A discussion of optimal depth and width

• Brief segue:  RBF networks 



Perceptrons so far

• The output of the neuron is a function of a 
linear combination of the inputs and a bias

𝑦 = 𝑓(𝑧)

+.....
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An alternate type of neural unit: 
Radial Basis Functions

• The output is a function of the distance of the input from a “center”

– The “center” 𝐰 is the parameter specifying the unit

– The most common activation is the exponent

• 𝛽 is a “bandwidth” parameter

– But other similar activations may also be used

• Key aspect is radial symmetry, instead of linear symmetry

∙ 2.....
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𝑧 = 𝐱 − 𝐰 2

𝑓 𝑧 = exp(−𝛽𝑧)

Typical activation



An alternate type of neural unit: 
Radial Basis Functions

• Radial basis functions can compose cylinder-like outputs with just a 
single unit with appropriate choice of bandwidth (or activation 
function)

– As opposed to 𝑁 → ∞ units for the linear perceptron

∙ 2.....
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RBF networks as universal 
approximators

• RBF networks are more effective 
approximators of continuous-valued functions
– A one-hidden-layer net only requires one unit per 

“cylinder”

+
ℎ1 ℎ2

ℎ𝑁

ℎ1 ℎ2

ℎ3

ℎ𝑁



RBF networks as universal 
approximators

• RBF networks are more effective 
approximators of continuous-valued functions
– A one-hidden-layer net only requires one unit per 

“cylinder”
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RBF networks

• More effective than conventional linear 
perceptron networks in some problems

• We will revisit this topic, time permitting



Lessons today

• MLPs are universal Boolean function

• MLPs are universal classifiers

• MLPs are universal function approximators

• A single-layer MLP can approximate anything to arbitrary precision

– But could be exponentially or even infinitely wide in its inputs size

• Deeper MLPs can achieve the same precision with far fewer 
neurons

– Deeper networks are more expressive

• RBFs are good,  now lets get back to linear perceptrons… 



Next up

• We know MLPs can emulate any function

• But how do we make them emulate a specific 
desired function

– E.g. a function that takes an image as input and 
outputs the labels of all objects in it

– E.g. a function that takes speech input and outputs 
the labels of all phonemes in it

– Etc…

• Training an MLP


