
Neural Networks

Hopfield Nets and Auto Associators

Fall 2017

1



Story so far

• Neural networks for computation

• All feedforward structures

• But what about..
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Loopy network

• Each neuron is a perceptron with +1/-1 output

• Every neuron receives input from every other neuron

• Every neuron outputs signals to every other neuron

𝑦𝑖 = Θ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

The output of a neuron
affects the input to the
neuron
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• Each neuron is a perceptron with +1/-1 output

• Every neuron receives input from every other neuron

• Every neuron outputs signals to every other neuron

𝑦𝑖 = Θ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

A symmetric network:
𝑤𝑖𝑗 = 𝑤𝑗𝑖

Loopy network
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Hopfield Net

• Each neuron is a perceptron with +1/-1 output

• Every neuron receives input from every other neuron

• Every neuron outputs signals to every other neuron

𝑦𝑖 = Θ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

A symmetric network:
𝑤𝑖𝑗 = 𝑤𝑗𝑖

5



Loopy network

• Each neuron is a perceptron with a +1/-1 output

• Every neuron receives input from every other neuron

• Every neuron outputs signals to every other neuron

𝑦𝑖 = Θ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

A neuron “flips” if 
weighted sum of other 
neuron’s outputs is of 
the opposite sign

But this may cause
other neurons to flip!

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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Loopy network

• At each time each neuron receives a “field” σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• If the sign of the field matches its own sign, it does not 

respond

• If the sign of the field opposes its own sign, it “flips” to 

match the sign of the field

𝑦𝑖 = Θ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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Example

• Red edges are -1,  blue edges are +1

• Yellow nodes are +1, black nodes are -1
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Example

• Red edges are -1,  blue edges are +1

• Yellow nodes are +1, black nodes are -1
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Example

• Red edges are -1,  blue edges are +1

• Yellow nodes are +1, black nodes are -1
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Example

• Red edges are -1,  blue edges are +1

• Yellow nodes are +1, black nodes are -1
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Loopy network

• If the sign of the field at any neuron opposes 
its own sign, it “flips” to match the field

– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to 

flip…

» And so on…
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20 evolutions of a loopy net

• All neurons which do not “align” with the local 
field “flip”

𝑦𝑖 = Θ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

A neuron “flips” if 
weighted sum of other 
neuron’s outputs is of 
the opposite sign

But this may cause
other neurons to flip!

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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120 evolutions of a loopy net

• All neurons which do not “align” with the local 
field “flip”
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Loopy network

• If the sign of the field at any neuron opposes 
its own sign, it “flips” to match the field

– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to 

flip…

• Will this behavior continue for ever??
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Loopy network

• Let 𝑦𝑖
− be the output of the i-th neuron just before it responds to the 

current field

• Let 𝑦𝑖
+ be the output of the i-th neuron just after it responds to the current 

field

• If 𝑦𝑖
− = 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 ,  then 𝑦𝑖

+ = 𝑦𝑖
−

– If the sign of the field matches its own sign, it does not flip

𝑦𝑖
+ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 − 𝑦𝑖
− 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 = 0

𝑦𝑖 = Θ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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Loopy network

• If 𝑦𝑖
− ≠ 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 ,  then 𝑦𝑖

+ = −𝑦𝑖
−

𝑦𝑖
+ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 − 𝑦𝑖
− 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 = 2𝑦𝑖
+ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

– This term is always positive!

• Every flip of a neuron is guaranteed to locally increase 

𝑦𝑖 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

𝑦𝑖 = Θ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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Globally

• Consider the following sum across all nodes

𝐷 𝑦1, 𝑦2, … , 𝑦𝑁 =

𝑖

𝑦𝑖 

𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

= 

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 +

𝑖

𝑏𝑖𝑦𝑖

– Definition same as earlier, but avoids double counting and 

assumes 𝑤𝑖𝑖 = 0

• For any unit 𝑘 that “flips” because of the local field

∆𝐷 𝑦𝑘 = 𝐷 𝑦1, … , 𝑦𝑘
+, … , 𝑦𝑁 − 𝐷 𝑦1, … , 𝑦𝑘

−, … , 𝑦𝑁
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Upon flipping a single unit

∆𝐷 𝑦𝑘 = 𝐷 𝑦1, … , 𝑦𝑘
+, … , 𝑦𝑁 − 𝐷 𝑦1, … , 𝑦𝑘

−, … , 𝑦𝑁

• Expanding

∆𝐷 𝑦𝑘 = 𝑦𝑘
+ − 𝑦𝑘

− 

𝑗≠𝑖

𝑤𝑗𝑘𝑦𝑗 + 𝑦𝑘
+ − 𝑦𝑘

− 𝑏𝑘

– All other terms that do not include 𝑦𝑘 cancel out

• This is always positive!

• Every flip of a unit results in an increase in 𝐷
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Hopfield Net

• Flipping a unit will result in an increase (non-decrease) of 

𝐷 = 

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 +

𝑖

𝑏𝑖𝑦𝑖

• 𝐷 is bounded

𝐷𝑚𝑎𝑥 = 

𝑖,𝑗<𝑖

𝑤𝑖𝑗 +

𝑖

𝑏𝑖

• The minimum increment of 𝐷 in a flip is

∆𝐷𝑚𝑖𝑛= min
𝑖, {𝑦𝑖, 𝑖=1..𝑁}

2 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• Any sequence of flips must converge in a finite number of steps 20



The Energy of a Hopfield Net

• Define the Energy of the network as

𝐸 = − 

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 −

𝑖

𝑏𝑖𝑦𝑖

– Just the negative of 𝐷

• The evolution of a Hopfield network 

constantly decreases its energy

• Where did this “energy” concept suddenly sprout 

from?
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Analogy: Spin Glasses

• Magnetic diploes

• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles

– Which may flip

• Which changes the field at the current dipole…
22



Analogy: Spin Glasses

• 𝑝𝑖 is vector position of 𝑖-th dipole

• The field at any dipole is the sum of the field contributions of all other dipoles

• The contribution of a dipole to the field at any point falls off inversely with 
square of distance

Total field at current dipole:

𝑓 𝑝𝑖 =

𝑗≠𝑖

𝑟𝑥𝑗

𝑝𝑖 − 𝑝𝑗
2 + 𝑏𝑖

intrinsic external
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Analogy: Spin Glasses

• A Dipole flips if it is misaligned with the field 
in its location

Total field at current dipole:

Response of current diplose

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓 𝑝𝑖 =

𝑗≠𝑖

𝑟𝑥𝑗

𝑝𝑖 − 𝑝𝑗
2 + 𝑏𝑖
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Analogy: Spin Glasses

Total field at current dipole:

Response of current diplose

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Dipoles will keep flipping
– A flipped dipole changes the field at other dipoles

• Some of which will flip

– Which will change the field at the current dipole
• Which may flip

– Etc..

𝑓 𝑝𝑖 =

𝑗≠𝑖

𝑟𝑥𝑗

𝑝𝑖 − 𝑝𝑗
2 + 𝑏𝑖
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Analogy: Spin Glasses

• When will it stop???

Total field at current dipole:

Response of current diplose

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓 𝑝𝑖 =

𝑗≠𝑖

𝑟𝑥𝑗

𝑝𝑖 − 𝑝𝑗
2 + 𝑏𝑖
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Analogy: Spin Glasses

• The total potential energy of the system

𝐸 = 𝐶 −
1

2


𝑖

𝑥𝑖𝑓 𝑝𝑖 = 𝐶 −

𝑖



𝑗>𝑖

𝑟𝑥𝑖𝑥𝑗

𝑝𝑖 − 𝑝𝑗
2 −

𝑖

𝑏𝑖𝑥𝑗

• The system evolves to minimize the PE

– Dipoles stop flipping if any flips result in increase of PE

Total field at current dipole:

𝑓 𝑝𝑖 =

𝑗≠𝑖

𝑟𝑥𝑗

𝑝𝑖 − 𝑝𝑗
2 + 𝑏𝑖

Response of current diplose

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Spin Glasses

• The system stops at one of its stable configurations

– Where PE is a local minimum

• Any small jitter from this stable configuration returns it to the stable 
configuration

– I.e. the system remembers its stable state and returns to it

state

PE
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Hopfield Network

𝐸 = − 

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 −

𝑖

𝑏𝑖𝑦𝑖

• This is analogous to the potential energy of a spin glass

– The system will evolve until the energy hits a local minimum

𝑦𝑖 = Θ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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Hopfield Network

𝐸 = − 

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 −

𝑖

𝑏𝑖𝑦𝑖

• This is analogous to the potential energy of a spin glass

– The system will evolve until the energy hits a local minimum

𝑦𝑖 = Θ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

Typically will not utilize bias:  The bias is similar to having
a single extra neuron that is pegged to 1.0

Removing the bias term does not affect the rest of the
discussion in any manner

But not RIP,  we will bring it back later in the discussion
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Hopfield Network

𝐸 = − 

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗

• This is analogous to the potential energy of a spin glass

– The system will evolve until the energy hits a local minimum

𝑦𝑖 = Θ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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Evolution

• The network will evolve until it arrives at a 

local minimum in the energy contour

𝐸 = − 

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗

state
PE
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Content-addressable memory

• Each of the minima is a “stored” pattern

– If the network is initialized close to a stored pattern, it 
will inevitably evolve to the pattern

• This is a content addressable memory

– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE
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Evolution

• The network will evolve until it arrives at a 

local minimum in the energy contour

Image pilfered from
unknown source

𝐸 = − 

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗
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Evolution

• The network will evolve until it arrives at a local minimum in the 
energy contour

• We proved that every change in the network will result in decrease 
in energy

– So path to energy minimum is monotonic

𝐸 = − 

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗
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Evolution

• For threshold activations the energy contour is only 
defined on a lattice

– Corners of a unit cube on [-1,1]N

• For tanh activations it will be a continuous function

𝐸 = − 

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗
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Evolution

• For threshold activations the energy contour is only 
defined on a lattice

– Corners of a unit cube on [-1,1]N

• For tanh activations it will be a continuous function

𝐸 = − 

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗
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Evolution

• For threshold activations the energy contour is only 
defined on a lattice

– Corners of a unit cube

• For tanh activations it will be a continuous function

𝐸 = −
1

2
𝐲𝑇𝐖𝐲

In matrix form

Note the 1/2
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“Energy”contour for a 2-neuron net

• Two stable states (tanh activation)
– Symmetric, not at corners

– Blue arc shows a typical trajectory for sigmoid activation
39



“Energy”contour for a 2-neuron net

• Two stable states (tanh activation)
– Symmetric, not at corners

– Blue arc shows a typical trajectory for sigmoid activation

Why symmetric?

Because −
1

2
𝐲𝑇𝐖𝐲 = −

1

2
(−𝐲)𝑇𝐖(−𝐲)

If ො𝐲 is a local minimum, so is −ො𝐲
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3-neuron net

• 8 possible states

• 2 stable states (hard thresholded network)
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Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/42



Hopfield net examples
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Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

𝐸 = −

𝑖



𝑗>𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖

does not change significantly any more

1. Initialize network with initial pattern

𝑦𝑖 0 = 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

2. Iterate until convergence

𝑦𝑖 𝑡 + 1 = Θ 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 , 0 ≤ 𝑖 ≤ 𝑁 − 1
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Issues

• How do we make the network store a specific 
pattern or set of patterns?

• How many patterns can we store?
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Issues

• How do we make the network store a specific 
pattern or set of patterns?

• How many patterns can we store?
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How do we remember a specific 
pattern?

• How do we teach a network
to “remember” this image

• For an image with 𝑁 pixels we need a network 
with 𝑁 neurons

• Every neuron connects to every other neuron

• Weights are symmetric (not mandatory)

•
𝑁(𝑁−1)

2
weights in all

47



Storing patterns: Training a network

• A network that stores pattern 𝑃 also naturally stores –𝑃

– Symmetry  𝐸(𝑃) = 𝐸(−𝑃) since 𝐸 is a function of yiyj

𝐸 = −

𝑖



𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖

-1

1

1

1 -1

1

-1

-1

-1 1
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A network can store multiple patterns

• Every stable point is a stored pattern

• So we could design the net to store multiple patterns

– Remember that every stored pattern 𝑃 is actually two stored patterns, 
𝑃 and −𝑃

state

PE

1

-1

-1

-1 1

1

1

-1

1 -1
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Storing a pattern

• Design {𝑤𝑖𝑗} such that the energy is a local 
minimum at the desired 𝑃 = {𝑦𝑖}

𝐸 = −

𝑖



𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖
1

-1

-1

-1 1

1

1

-1

1 -1
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Storing specific patterns

• Storing 1 pattern:  We want

𝑠𝑖𝑔𝑛 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 = 𝑦𝑖 ∀ 𝑖

• This is a stationary pattern

1

-1

-1

-1 1
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Storing specific patterns

• Storing 1 pattern:  We want

𝑠𝑖𝑔𝑛 

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 = 𝑦𝑖 ∀ 𝑖

• This is a stationary pattern

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖1

-1

-1

-1 1
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Storing specific patterns

• 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 = 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖 𝑦𝑗𝑦𝑖𝑦𝑗

= 𝑠𝑖𝑔𝑛 

𝑗≠𝑖

𝑦𝑗
2𝑦𝑖 = 𝑠𝑖𝑔𝑛 𝑦𝑖 = 𝑦𝑖

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1
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Storing specific patterns

• 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 = 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖 𝑦𝑗𝑦𝑖𝑦𝑗

= 𝑠𝑖𝑔𝑛 

𝑗≠𝑖

𝑦𝑗
2𝑦𝑖 = 𝑠𝑖𝑔𝑛 𝑦𝑖 = 𝑦𝑖

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1

The pattern is stationary
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Storing specific patterns

𝐸 = −

𝑖



𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖 = −

𝑖



𝑗<𝑖

𝑦𝑖
2𝑦𝑗

2

= −

𝑖



𝑗<𝑖

1 = −0.5𝑁(𝑁 − 1)

• This is the lowest possible energy value for the network

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1
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Storing specific patterns

𝐸 = −

𝑖



𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖 = −

𝑖



𝑗<𝑖

𝑦𝑖
2𝑦𝑗

2

= −

𝑖



𝑗<𝑖

1 = −0.5𝑁(𝑁 − 1)

• This is the lowest possible energy value for the network

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1

The pattern is STABLE
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Storing multiple patterns

𝑤𝑗𝑖 = 

𝑝∈{𝑦𝑝}

𝑦𝑖
𝑝
𝑦𝑗
𝑝

• {𝑦𝑝} is the set of patterns to store

• Superscript 𝑝 represents the specific pattern

1

-1

-1

-1 1

1

1

-1

1 -1
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Storing multiple patterns

• Let 𝐲𝑝 be the vector representing 𝑝-th pattern
• Let 𝐘 = 𝐲1 𝐲2 … be a matrix with all the stored pattern
• Then..

𝐖 =

𝒑

(𝐲𝑝𝐲𝑝
𝑇 − I) = 𝐘𝐘𝑇 −𝑁𝑝𝐈

1

-1

-1

-1 1

1

1

-1

1 -1
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Storing multiple patterns

• Note behavior of 𝐄 𝐲 = 𝐲𝑇𝐖𝐲 with

𝐖 = 𝐘𝐘𝑇 −𝑁𝑝𝐈

• Is identical to behavior with

𝐖 = 𝐘𝐘𝑇

• Since 

𝐲𝑇 𝐘𝐘𝑇 −𝑁𝑝𝐈 𝐲 = 𝐲𝑇𝐘𝐘𝑇𝐲 − 𝑁𝑁𝑝

• But the latter 𝐖 = 𝐘𝐘𝑇 is easier to analyze. Hence in 

the following slides we will use 𝐖 = 𝐘𝐘𝑇
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Storing multiple patterns

• Let 𝐲𝑝 be the vector representing 𝑝-th pattern

• Let 𝐘 = 𝐲1 𝐲2 … be a matrix with all the stored 
pattern

• Then..
𝐖 = 𝐘𝐘𝑇

1

-1

-1

-1 1

1

1

-1

1 -1
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Issues

• How do we make the network store a specific 
pattern or set of patterns?

• How many patterns can we store?
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Consider the energy function

• Reinstating the bias term for completeness sake

– Remember that we don’t actually use it in a Hopfield 

net

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲
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Consider the energy function

• Reinstating the bias term for completeness sake

– Remember that we don’t actually use it in a Hopfield 

net

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

This is a quadratic!

W is positive semidefinite
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Consider the energy function

• Reinstating the bias term for completeness sake

– Remember that we don’t actually use it in a Hopfield 

net

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

This is a quadratic!

For Hebbian learning
W is positive semidefinite

E is convex
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The energy function

• 𝐸 is a convex quadratic

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲
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The energy function

• 𝐸 is a convex quadratic

– Shown from above (assuming 0 bias)

• But components of 𝑦 can only take values ±1

– I.e 𝑦 lies on the corners of the unit hypercube

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲
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The energy function

• 𝐸 is a convex quadratic

– Shown from above (assuming 0 bias)

• But components of 𝑦 can only take values ±1

– I.e 𝑦 lies on the corners of the unit hypercube

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲
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The energy function

• The stored values of 𝐲 are the ones where all 

adjacent corners are higher on the quadratic

– Hebbian learning attempts to make the quadratic 

steep in the vicinity of stored patterns

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

Stored patterns
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Patterns you can store

• 4-bit patterns

• Stored patterns would be the corners where the 
value of the quadratic energy is lowest
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Patterns you can store

• Ideally must be maximally separated on the hypercube

– The number of patterns we can store depends on the 

actual distance between the patterns

Stored patterns
Ghosts (negations)
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How many patterns can we store?

• Hopfield: For a network of 𝑁 neurons can 
store up to 0.15𝑁 patterns

– Provided the patterns are random and “far apart”
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How many patterns can we store?

• Problem with Hebbian learning:  Focuses on patterns 
that must be stored
– What about patterns that must not be stored?

• More recent work: can actually store up to 𝑁 patterns
• Non Hebbian learning

• 𝑾 loses positive semi-definiteness
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Storing N patterns

• Non Hebbian

• Requirement: Given 𝐲1, 𝐲2, … , 𝐲𝑃
– Design 𝐖 such that 

• 𝑠𝑖𝑔𝑛 𝐖𝐲𝑝 = 𝐲𝑝 for all target patterns

• There are no other binary vectors for which this holds

• I.e. 𝐲1, 𝐲2, … , 𝐲𝑃 are the only binary 
Eigenvectors of 𝐖, and the corresponding 
eigen values are positive
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Storing N patterns
• Simple solution:  Design 𝐖 such that 𝐲1, 𝐲2, … , 𝐲𝑃 are the Eigen 

vectors of 𝐖

• Easily achieved if 𝐲1, 𝐲2, … , 𝐲𝑃 are orthogonal to one another

– Let 𝑌 = 𝐲1 𝐲2…𝐲𝑃 𝐫𝑃+1…𝐫𝑁
– 𝑁 is the number of bits

– 𝐫𝑃+1…𝐫𝑁 are “synthetic” non-binary vectors

– 𝐲1 𝐲2…𝐲𝑃 𝐫𝑃+1…𝐫𝑁 are all orthogonal to one another

𝑊 = 𝑌Λ𝑌𝑇

• Eigen values 𝜆 in diagonal matrix Λ determine the steepness of the 
energy function around the stored values

– What must the Eigen values corresponding to the 𝐲𝑃s be?

– What must the Eigen values corresponding to the “𝐫”s be?

• Under no condition can more than 𝑁 values be stored
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Storing N patterns

• For non-orthogonal 𝐖, solution is less simple

• 𝐲1, 𝐲2, … , 𝐲𝑃 can no longer be Eigen values, but now 

represent quantized Eigen directions

𝑠𝑖𝑔𝑛 𝐖𝐲𝑝 = 𝐲𝑝

– Note that this is not an exact Eigen value equation

• Optimization algorithms can provide 𝐖s for many 

patterns

• Under no condition can we store more than N patterns
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Alternate Approach to Estimating the 
Network

• Estimate 𝐖 (and 𝐛) such that 

– 𝐸 is minimized for 𝐲1, 𝐲2, … , 𝐲𝑃

– 𝐸 is maximized for all other 𝐲

• We will encounter this solution again soon

• Once again, cannot store more than 𝑁 patterns

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲
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Storing more than N patterns

• How do we even solve the problem of storing 
N patterns in the first place

• How do we increase the capacity of the 
network

– Store more patterns

• Common answer to both problems..
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Lookahead..

• Adding capacity to a Hopfield network
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Expanding the network

• Add a  large number of neurons whose actual 
values you don’t care about!

N Neurons
K Neurons
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Expanded Network

• New capacity:   ~(N+K)  patterns

– Although we only care about the pattern of the first N 
neurons

– We’re interested in N-bit patterns

N Neurons
K Neurons
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Introducing…

• The Boltzmann machine…

• Next regular class…

N Neurons
K Neurons
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