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Abstract—Faces represent complex multidimensional mean-
ingful visual stimuli and developing a computational model for
face recognition is difficult. We present a hybrid neural-network
solution which compares favorably with other methods. The
system combines local image sampling, a self-organizing map
(SOM) neural network, and a convolutional neural network.
The SOM provides a quantization of the image samples into a
topological space where inputs that are nearby in the original
space are also nearby in the output space, thereby providing
dimensionality reduction and invariance to minor changes in the
image sample, and the convolutional neural network provides for
partial invariance to translation, rotation, scale, and deformation.
The convolutional network extracts successively larger features
in a hierarchical set of layers. We present results using the
Karhunen–Loève (KL) transform in place of the SOM, and
a multilayer perceptron (MLP) in place of the convolutional
network. The KL transform performs almost as well (5.3% error
versus 3.8%). The MLP performs very poorly (40% error versus
3.8%). The method is capable of rapid classification, requires
only fast approximate normalization and preprocessing, and
consistently exhibits better classification performance than the
eigenfaces approach on the database considered as the number
of images per person in the training database is varied from
one to five. With five images per person the proposed method
and eigenfaces result in 3.8% and 10.5% error, respectively. The
recognizer provides a measure of confidence in its output and
classification error approaches zero when rejecting as few as 10%
of the examples. We use a database of 400 images of 40 individuals
which contains quite a high degree of variability in expression,
pose, and facial details. We analyze computational complexity and
discuss how new classes could be added to the trained recognizer.

Index Terms—Face recognition, convolutional neural networks,
self-organizing feature maps, Karhunen–Lòeve transforms,
hybrid systems, access control, pattern recognition, image
classification.

I. INTRODUCTION

T HE REQUIREMENT for reliable personal identification
in computerized access control has resulted in an in-

creased interest in biometrics.1 Biometrics being investigated
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1Physiological or behavioral characteristics which uniquely identify us.

include fingerprints [4], speech [7], signature dynamics [36],
and face recognition [8]. Sales of identity verification products
exceed $100 million [29]. Face recognition has the benefit of
being a passive, nonintrusive system for verifying personal
identity. The techniques used in the best face recognition
systems may depend on the application of the system. We
can identify at least two broad categories of face recognition
systems.

1) We want to find a person within a large database of
faces (e.g., in a police database). These systems typically
return a list of the most likely people in the database
[34]. Often only one image is available per person. It
is usually not necessary for recognition to be done in
real-time.

2) We want to identify particular people in real-time (e.g.,
in a security monitoring system, location tracking sys-
tem, etc.), or we want to allow access to a group of
people and deny access to all others (e.g., access to a
building, computer, etc.) [8]. Multiple images per person
are often available for training and real-time recognition
is required.

In this paper, we are primarily interested in the second
case.2 We are interested in recognition with varying facial
detail, expression, pose, etc. We do not consider invariance to
high degrees of rotation or scaling—we assume that a minimal
preprocessing stage is available if required. We are interested
in rapid classification and hence we do not assume that time is
available for extensive preprocessing and normalization. Good
algorithms for locating faces in images can be found in [37],
[40], and [43].

The remainder of this paper is organized as follows. The
data we used is presented in Section II and related work
with this and other databases is discussed in Section III.
The components and details of our system are described in
Sections IV and V, respectively. We present and discuss our
results in Sections VI and VII. Computational complexity is
considered in Section VIII, Section IX lists avenues for further
research, and we draw conclusions in Section X.

II. DATA

We have used the ORL database, which contains a set of
faces taken between April 1992 and April 1994 at the Olivetti

2However, we have not performed any experiments where we have required
the system to reject people that are not in a select group (important, for
example, when allowing access to a building).
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Fig. 1. The ORL face database. There are ten images each of the 40 subjects.

Research Laboratory in Cambridge, U.K.3 There are ten differ-
ent images of 40 distinct subjects. For some of the subjects, the
images were taken at different times. There are variations in
facial expression (open/closed eyes, smiling/nonsmiling), and
facial details (glasses/no glasses). All the images were taken
against a dark homogeneous background with the subjects in
an upright frontal position, with tolerance for some tilting and
rotation of up to about 20 degrees. There is some variation in
scale of up to about 10%. Thumbnails of all of the images are
shown in Fig. 1 and a larger set of images for one subject is
shown in Fig. 2. The images are greyscale with a resolution
of 92 112.

3The ORL database is available free of charge, see http://www.cam-
orl.co.uk/facedatabase.html.

III. RELATED WORK

A. Geometrical Features

Many people have explored geometrical feature based meth-
ods for face recognition. Kanade [17] presented an automatic
feature extraction method based on ratios of distances and
reported a recognition rate of between 45–75% with a database
of 20 people. Brunelli and Poggio [6] compute a set of
geometrical features such as nose width and length, mouth
position, and chin shape. They report a 90% recognition rate
on a database of 47 people. However, they show that a simple
template matching scheme provides 100% recognition for the
same database. Coxet al. [9] have recently introduced a
mixture-distancetechnique which achieves a recognition rate
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Fig. 2. The set of ten images for one subject. Considerable variation can be seen.

of 95% using a query database of 95 images from a total
of 685 individuals. Each face is represented by 30manually
extracted distances.

Systems which employ precisely measured distances be-
tween features may be most useful for finding possible matches
in a large mugshot database.4 For other applications, automatic
identification of these points would be required and the result-
ing system would be dependent on the accuracy of the feature
location algorithm. Current algorithms for automatic location
of feature points do not provide a high degree of accuracy and
require considerable computational capacity [41].

B. Eigenfaces

High-level recognition tasks are typically modeled with
many stages of processing as in the Marr paradigm of progress-
ing from images to surfaces to three-dimensional (3-D) models
to matched models [28]. However, Turk and Pentland [43]
argue that it is likely that there is also a recognition process
based on low-level two-dimensional (2-D) image processing.
Their argument is based on the early development and extreme
rapidity of face recognition in humans and on physiological
experiments in a monkey cortex which claim to have isolated
neurons that respond selectively to faces [35]. However, it is
not clear that these experiments exclude the sole operation of
the Marr paradigm.

Turk and Pentland [43] present a face recognition scheme in
which face images are projected onto the principal components
of the original set of training images. The resultingeigenfaces
are classified by comparison with known individuals.

Turk and Pentland present results on a database of 16
subjects with various head orientation, scaling, and lighting.
Their images appear identical otherwise with little variation
in facial expression, facial details, pose, etc. For lighting,
orientation, and scale variation their system achieves 96%,
85%, and 64% correct classification, respectively. Scale is
renormalized to the eigenface size based on an estimate of the
head size. The middle of the faces is accentuated, reducing
any negative affect of changing hairstyle and backgrounds.

In Pentlandet al. [33], [34] good results are reported on
a large database (95% recognition of 200 people from a

4A mugshot database typically contains side views where the performance
of feature point methods is known to improve [8].

database of 3000). It is difficult to draw broad conclusions
as many of the images of the same people look very similar,
and the database has accurate registration and alignment [30].
In Moghaddam and Pentland [30], very good results are
reported with the FERET database—only one mistake was
made in classifying 150 frontal view images. The system used
extensive preprocessing for head location, feature detection,
and normalization for the geometry of the face, translation,
lighting, contrast, rotation, and scale.

Swets and Weng [42] present a method of selecting discrim-
inant eigenfeatures using multidimensional linear discriminant
analysis. They present methods for determining the most ex-
pressive features (MEF) and the most discriminatory features
(MDF). We are not currently aware of the availability of results
which are comparable with those of eigenfaces (e.g., on the
FERET database as in Moghaddam and Pentland [30]).

In summary, it appears that eigenfaces is a fast, simple,
and practical algorithm. However, it may be limited because
optimal performance requires a high degree of correlation be-
tween the pixel intensities of the training and test images. This
limitation has been addressed by using extensive preprocessing
to normalize the images.

C. Template Matching

Template matching methods such as [6] operate by perform-
ing direct correlation of image segments. Template matching
is only effective when the query images have the same scale,
orientation, and illumination as the training images [9].

D. Graph Matching

Another approach to face recognition is the well known
method of graph matching. In [21], Ladeset al. present
a dynamic link architecture for distortion invariant object
recognition which employs elastic graph matching to find
the closest stored graph. Objects are represented with sparse
graphs whose vertices are labeled with a multiresolution
description in terms of a local power spectrum, and whose
edges are labeled with geometrical distances. They present
good results with a database of 87 people and test images
composed of different expressions and faces turned 15. The
matching process is computationally expensive, taking roughly
25 s to compare an image with 87 stored objects when using
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Fig. 3. A depiction of the local image sampling process. A window is stepped over the image and a vector is created at each location.

a parallel machine with 23 transputers. Wiskottet al. [45] use
an updated version of the technique and compare 300 faces
against 300 different faces of the same people taken from the
FERET database. They report a recognition rate of 97.3%. The
recognition time for this system was not given.

E. Neural-Network Approaches

Much of the present literature on face recognition with
neural networks presents results with only a small number
of classes (often below 20). We briefly describe a couple of
approaches.

In [10] the first 50 principal components of the images are
extracted and reduced to five dimensions using an autoassocia-
tive neural network. The resulting representation is classified
using a standard multilayer perceptron (MLP). Good results
are reported but the database is quite simple: the pictures are
manually aligned and there is no lighting variation, rotation,
or tilting. There are 20 people in the database.

A hierarchical neural network which is grown automatically
and not trained with gradient descent was used for face
recognition by Weng and Huang [44]. They report good results
for discrimination of ten distinctive subjects.

F. The ORL Database

In [39] a hidden Markov model (HMM)-based approach is
used for classification of the ORL database images. The best
model resulted in a 13% error rate. Samaria also performed
extensive tests using the popular eigenfaces algorithm [43] on
the ORL database and reported a best error rate of around 10%
when the number of eigenfaces was between 175 and 199.
We implemented the eigenfaces algorithm and also observed
around 10% error. In [38] Samaria extends the top–down
HMM of [39] with pseudo 2-D HMM’s. The error rate reduces
to 5% at the expense of high computational complexity—a sin-
gle classification takes 4 min on a Sun Sparc II. Samaria notes
that although an increased recognition rate was achieved the
segmentation obtained with the pseudo 2-D HMM’s appeared
quite erratic. Samaria uses the same training and test set sizes
as we do (200 training images and 200 test images with no
overlap between the two sets). The 5% error rate is the best

error rate previously reported for the ORL database that we
are aware of.

IV. SYSTEM COMPONENTS

A. Overview

In the following sections we introduce the techniques which
form the components of our system and describe our motiva-
tion for using them. Briefly, we explore the use of local image
sampling and a technique for partial lighting invariance, a self-
organizing map (SOM) for projection of the image sample
representation into a quantized lower dimensional space, the
Karhunen-Lòeve (KL) transform for comparison with the
SOM, a convolutional network (CN) for partial translation and
deformation invariance, and an MLP for comparison with the
convolutional network.

B. Local Image Sampling

We have evaluated two different methods of representing
local image samples. In each method a window is scanned
over the image as shown in Fig. 3.

1) The first method simply creates a vector from a
local window on the image using the intensity
values at each point in the window. Let be
the intensity at the th column and the th row of
the given image. If the local window is a square
of sides long, centered on , then
the vector associated with this window is simply

2) The second method creates a representation of the local
sample by forming a vector out of 1) the intensity of
the center pixel and 2) the difference in intensity
between the center pixel and all other pixels within
the square window. The vector is given by

The resulting rep-
resentation becomes partially invariant to variations
in intensity of the complete sample. The degree of
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invariance can be modified by adjusting the weight
connected to the central intensity component.

C. The Self-Organizing Map

1) Introduction: Maps are an important part of both natural
and artificial neural information processing systems [2]. Exam-
ples of maps in the nervous system are retinotopic maps in the
visual cortex [31], tonotopic maps in the auditory cortex [18],
and maps from the skin onto the somatosensoric cortex [32].
The SOM, introduced by Kohonen [19], [20], is an unsuper-
vised learning process which learns the distribution of a set of
patterns without any class information. A pattern is projected
from an input space to a position in the map—information is
coded as the location of an activated node. The SOM is unlike
most classification or clustering techniques in that it provides a
topological ordering of the classes. Similarity in input patterns
is preserved in the output of the process. The topological
preservation of the SOM process makes it especially useful
in the classification of data which includes a large number of
classes. In the local image sample classification, for example,
there may be a very large number of classes in which the
transition from one class to the next is practically continuous
(making it difficult to define hard class boundaries).

2) Algorithm: We give a brief description of the SOM
algorithm, for more details see [20]. The SOM defines a
mapping from an input space onto a topologically ordered
set of nodes, usually in a lower dimensional space. An example
of a 2-D SOM is shown in Fig. 4. A reference vector in the
input space, is assigned to
each node in the SOM. During training, each input vector,
is compared to all of the obtaining the location of the
closest match (given by where

denotes the norm of vector The input point is mapped
to this location in the SOM. Nodes in the SOM are updated
according to

(1)

where is the time during learning and is theneighbor-
hood function, a smoothing kernel which is maximum at
Usually, , where and represent
the location of the nodes in the SOM output space.is the
node with the closest weight vector to the input sample and
ranges over all nodes. approaches 0 as increases
and also as approaches A widely applied neighborhood
function is

(2)

where is a scalar valued learning rate and defines
the width of the kernel. They are generally both monotonically
decreasing with time [20]. The use of the neighborhood
function means that nodes which are topographically close in
the SOM structure are moved toward the input pattern along
with the winning node. This creates a smoothing effect which
leads to a global ordering of the map. Note that should not
be reduced too far as the map will lose its topographical order
if neighboring nodes are not updated along with the closest

Fig. 4. A 2-D SOM showing a square neighborhood function which starts
ashci(t1) and reduces in size tohci(t3) over time.

node. The SOM can be considered a nonlinear projection of
the probability density, [20].

3) Improving the Basic SOM:The original SOM is com-
putationally expensive due to the following.

1) In the early stages of learning, many nodes are adjusted
in a correlated manner. Luttrel [27] proposed a method,
which is used here, that starts by learning in a small
network, and doubles the size of the network periodically
during training. When doubling, new nodes are inserted
between the current nodes. The weights of the new
nodes are set equal to the average of the weights of
the immediately neighboring nodes.

2) Each learning pass requires computation of the distance
of the current sample to all nodes in the network, which
is . However, this may be reduced to
using a hierarchy of networks which is created from the
above node doubling strategy.5

D. KL Transform

The optimal linear method6 for reducing redundancy in
a dataset is the KL transform or eigenvector expansion via
principle components analysis (PCA) [12]. PCA generates a
set of orthogonal axes of projections known as the principal
components, or the eigenvectors, of the input data distribution
in the order of decreasing variance. The KL transform is
a well-known statistical method for feature extraction and
multivariate data projection and has been used widely in
pattern recognition, signal processing, image processing, and
data analysis. Points in an-dimensional input space are
projected into an -dimensional space, . The KL
transform is used here for comparison with the SOM in the
dimensionality reduction of the local image samples. The KL
transform is also used in eigenfaces, however in that case it

5This assumes that the topological order is optimal prior to each doubling
step.

6In the least mean squared error sense.
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Fig. 5. A typical convolutional network.

Fig. 6. A high-level block diagram of the system we have used for face recognition.

is used on the entire images, whereas it is only used on small
local image samples in this work.

E. Convolutional Networks

The problem of face recognition from 2-D images is typ-
ically very ill-posed, i.e., there are many models which fit
the training points well but do not generalize well to unseen
images. In other words, there are not enough training points in
the space created by the input images in order to allow accurate
estimation of class probabilities throughout the input space.
Additionally, for MLP networks with 2-D images as input,
there is no invariance to translation or local deformation of
the images [23].

Convolutional networks (CN) incorporate constraints and
achieve some degree of shift and deformation invariance using
three ideas: local receptive fields, shared weights, and spatial
subsampling. The use of shared weights also reduces the
number of parameters in the system aiding generalization.
Convolutional networks have been successfully applied to
character recognition [3], [5], [22]–[24].

A typical convolutional network is shown in Fig. 5 [24].
The network consists of a set of layers each of which contains
one or more planes. Approximately centered and normalized
images enter at the input layer. Each unit in a plane receives
input from a small neighborhood in the planes of the previous
layer. The idea of connecting units to local receptive fields
dates back to the 1960’s with the perceptron and Hubel
and Wiesel’s [15] discovery of locally sensitive orientation-
selective neurons in the cat’s visual system [23]. The weights
forming the receptive field for a plane are forced to be equal
at all points in the plane. Each plane can be considered
as a feature map which has a fixed feature detector that is
convolved with a local window which is scanned over the

planes in the previous layer. Multiple planes are usually used
in each layer so that multiple features can be detected. These
layers are called convolutional layers. Once a feature has
been detected, its exact location is less important. Hence,
the convolutional layers are typically followed by another
layer which does a local averaging and subsampling operation
(e.g., for a subsampling factor of two:

where is the output of
a subsampling plane at position and is the output of the
same plane in the previous layer). The network is trained with
the usual backpropagation gradient-descent procedure [13].
A connection strategy can be used to reduce the number of
weights in the network. For example, with reference to Fig. 5,
Le Cun et al. [24] connect the feature maps in the second
convolutional layer only to one or two of the maps in the
first subsampling layer (the connection strategy was chosen
manually).

V. SYSTEM DETAILS

The system we have used for face recognition is a com-
bination of the preceding parts—a high-level block diagram
is shown in Figs. 6 and 7 shows a breakdown of the various
subsystems that we experimented with or discuss.

Our system works as follows (we give complete details of
dimensions etc. later).

1) For the images in the training set, a fixed size window
(e.g., 5 5) is stepped over the entire image as shown
in Fig. 3 and local image samples are extracted at each
step. At each step the window is moved by four pixels.

2) An SOM (e.g., with three dimensions and five nodes
per dimension, total nodes) is trained on the
vectors from the previous stage. The SOM quantizes
the 25-dimensional input vectors into 125 topologically
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Fig. 7. A diagram of the system we have used for face recognition showing alternative methods which we consider in this paper. The top “MLP style
classifier” represents the final MLP style fully connected layer of the convolutional network. We have shown this decomposition of the convolutional
network in order to highlight the possibility of replacing the final layer (or layers) with a different type of classifier. The nearest-neighbor style classifier
is potentially interesting because it may make it possible to add new classes with minimal extra training time. The bottom MLP shows that the entire
convolutional network can be replaced with an MLP. We present results with either a SOM or the KL transform used for dimensionality reduction, and
either a convolutional neural network or an MLP for classification.

ordered values. The three dimensions of the SOM can
be thought of as three features. We also experimented
with replacing the SOM with the KL transform. In this
case, the KL transform projects the vectors in the 25-
dimensional space into a 3-D space.

3) The same window as in the first step is stepped over
all of the images in the training and test sets. The local
image samples are passed through the SOM at each step,
thereby creating new training and test sets in the output
space created by the SOM. (Each input image is now
represented by three maps, each of which corresponds
to a dimension in the SOM. The size of these maps is
equal to the size of the input image (92112) divided
by the step size (for a step size of four, the maps are
23 28).

4) A convolutional neural network is trained on the newly
created training set. We also experimented with training
a standard MLP for comparison.

A. Simulation Details

In this section we give the details of one of the best
performing systems.

For the SOM, training is split into two phases as recom-
mended by Kohonen [20]—an ordering phase and a fine-
adjustment phase. In the first phase 100 000 updates are
performed, and in the second 50 000 are performed. In the first
phase, the neighborhood radius starts at two-thirds of the size
of the map and reduces linearly to one. The learning rate during
this phase is: where is the current update
number, and is the total number of updates. In the second
phase, the neighborhood radius starts at two and is reduced to

one. The learning rate during this phase is .
The convolutional network contained five layers excluding

the input layer. A confidence measure was calculated for each
classification: where is the maximum output
and is the second maximum output (for outputs which
have been transformed using thesoftmaxtransformation

where are the original outputs, are the transformed
outputs, and is the number of outputs). The number of
planes in each layer, the dimensions of the planes, and the
dimensions of the receptive fields are shown in Table I. The
network was trained with backpropagation [13] for a total of
20 000 updates. Weights in the network were updated after
each pattern presentation, as opposed to batch update where
weights are only updated once per pass through the training
set. All inputs were normalized to lie in the range1 to
1. All nodes included a bias input which was part of the
optimization process. The best of ten random weight sets was
chosen for the initial parameters of the network by evaluating
the performance on the training set. Weights were initialized
on a node by node basis as uniformly distributed random
numbers in the range where is the fan-in
of neuron [13]. Target outputs were 0.8 and 0.8 using the

output activation function.7 The quadratic cost function

7This helps avoid saturating the sigmoid function. If targets were set to the
asymptotes of the sigmoid this would tend to: 1) drive the weights to infinity;
2) cause outlier data to produce very large gradients due to the large weights;
and 3) produce binary outputs even when incorrect—leading to decreased
reliability of the confidence measure.
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Fig. 8. The learning rate as a function of the epoch number.

TABLE I
DIMENSIONS FOR THECONVOLUTIONAL NETWORK. THE CONNECTION

PERCENTAGE REFERS TO THEPERCENTAGE OFNODES IN THE PREVIOUS LAYER

TO WHICH EACH NODE IN THE CURRENT LAYER IS CONNECTED—A VALUE

LESS THAN 100% REDUCES THETOTAL NUMBER OF WEIGHTS IN THE NETWORK

AND MAY IMPROVE GENERALIZATION. THE CONNECTION STRATEGY USED HERE

IS SIMILAR TO THAT USED BY LE CUN ET AL. [24] FOR CHARACTER

RECOGNITION. HOWEVER, AS OPPOSED TO THEMANUAL CONNECTION STRATEGY

USED BY LE CUN ET AL., THE CONNECTIONS BETWEEN LAYERS 2 AND 3 ARE

CHOSEN RANDOMLY . AS AN EXAMPLE OF HOW THE PRECISECONNECTIONSCAN

BE DETERMINED FROM THE TABLE—THE SIZE OF THE FIRST-LAYER PLANES (21
� 26) IS EQUAL TO THE TOTAL NUMBER OF WAYS OF POSITIONING A

3 � 3 RECEPTIVE FIELD ON THE INPUT-LAYER PLANES (23� 28)

was used. A search then converge learning rate schedule was
used8

where learning rate, initial learning rate 0.1,
total training epochs, current training epoch,

and The schedule is shown in Fig. 8.
Total training time was around four hours on an SGI Indy
100Mhz MIPS R4400 system.

VI. EXPERIMENTAL RESULTS

We performed various experiments and present the results
here. Except when stated otherwise, all experiments were
performed with five training images and five test images per
person for a total of 200 training images and 200 test images.
There was no overlap between the training and test sets. We
note that a system which guesses the correct answer would be
right one out of 40 times, giving an error rate of 97.5%. For the

8Relatively high learning rates are typically used in order to help avoid
slow convergence and local minima. However, a constant learning rate results
in significant parameter and performance fluctuation during the entire training
cycle such that the performance of the network can alter significantly from
the beginning to the end of the final epoch. Moody and Darkin have proposed
“search then converge” learning rate schedules. We have found that these
schedules still result in considerable parameter fluctuation and hence we have
added another term to further reduce the learning rate over the final epochs (a
simpler linear schedule also works well). We have found the use of learning
rate schedules to improve performance considerably.

following sets of experiments, we vary only one parameter in
each case. The error bars shown in the graphs represent plus or
minus one standard deviation of the distribution of results from
a number of simulations.9 We note that ideally we would like to
have performed more simulations per reported result, however,
we were limited in terms of computational capacity available
to us. The constants used in each set of experiments were:
number of classes: 40, dimensionality reduction method: SOM,
dimensions in the SOM: three, number of nodes per SOM
dimension: five, image sample extraction: original intensity
values, training images per class: five. Note that the constants
in each set of experiments may not give the best possible
performance as the current best performing system was only
obtained as a result of these experiments. The experiments are
as follows.

1) Variation of the number of output classes—Table II and
Fig. 9 show the error rate of the system as the number
of classes is varied from ten to 20 to 40. We made no
attempt to optimize the system for the smaller numbers
of classes. As we expect, performance improves with
fewer classes to discriminate between.

2) Variation of the dimensionality of the SOM—Table III
and Fig. 10 show the error rate of the system as the
dimension of the SOM is varied from one to four. The
best performing value is three dimensions.

3) Variation of the quantization level of the SOM—Table
IV and Fig. 11 show the error rate of the system as
the size of the SOM is varied from four to ten nodes
per dimension. The SOM has three dimensions in each
case. The best average error rate occurs for eight or nine
nodes per dimension. This is also the best average error
rate of all experiments.

4) Variation of the image sample extraction
algorithm—Table V shows the result of using the
two local image sample representations described
earlier. We found that using the original intensity values
gave the best performance. We investigated altering the
weight assigned to the central intensity value in the
alternative representation but were unable to improve
the results.

5) Substituting the SOM with the KL transform—Table VI
shows the results of replacing the SOM with the KL

9We ran multiple simulations in each experiment where we varied the
selection of the training and test images (out of a total of10!=5! = 30240

possibilities) and the random seed used to initialize the weights in the
convolutional neural network.
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Fig. 9. The error rate as a function of the number of classes. We did not modify the network from that used for the 40 class case.

transform. We investigated using the first one, two,
or three eigenvectors for projection. Surprisingly, the
system performed best with only one eigenvector. The
best SOM parameters we tried produced slightly better
performance. The quantization inherent in the SOM
could provide a degree of invariance to minor image
sample differences and quantization of the PCA projec-
tions may improve performance.

6) Replacing the CN with an MLP—Table VII shows the
results of replacing the convolutional network with an
MLP. Performance is very poor. This result was ex-
pected because the MLP does not have the inbuilt
invariance to minor translation and local deformation
which is created in the convolutional network using
the local receptive fields, shared weights, and spatial
subsampling. As an example, consider when a feature is
shifted in a test image in comparison with the training
image(s) for the individual. We expect the MLP to have
difficulty recognizing a feature which has been shifted in
comparison to the training images because the weights
connected to the new location were not trained for the
feature.

The MLP contained one hidden layer. We investigated
the following hidden layer sizes for the MLP: 20, 50,
100, 200, and 500. The best performance was obtained
with 200 hidden nodes and a training time of two days.
The learning rate schedule and initial learning rate were
the same as for the original network. Note that the
best performing KL parameters were used while the
best performing SOM parameters were not. We note
that it may be considered fairer to compare against an
MLP with multiple hidden layers [14], however selection
of the appropriate number of nodes in each layer is
difficult (e.g., we have tried a network with two hidden
layers containing 100 and 50 nodes, respectively, which
resulted in an error rate of 90%).

7) The tradeoff between rejection threshold and recognition
accuracy—Fig. 12 shows a histogram of the recog-
nizer’s confidence for the cases when the classifier
is correct and when it is wrong for one of the best
performing systems. From this graph we expect that
classification performance will increase significantly if
we reject cases below a certain confidence threshold.

Fig. 13 shows the system performance as the rejection
threshold is increased. We can see that by rejecting
examples with low confidence we can significantly in-
crease the classification performance of the system. If
we consider a system which used a video camera to
take a number of pictures over a short period, we could
expect that a high performance would be attainable with
an appropriate rejection threshold.

8) Comparison with other known results on the same
database—Table VIII shows a summary of the per-
formance of the systems for which we have results
using the ORL database. In this case, we used a
SOM quantization level of eight. Our system is the
best performing system10 and performs recognition
roughly 500 times faster than the second best performing
system—the pseudo 2-D HMM’s of Samaria. Fig. 14
shows the images which were incorrectly classified for
one of the best performing systems.

9) Variation of the number of training images per person.
Table IX shows the results of varying the number of
images per class used in the training set from one to
five for and also for the eigen-
faces algorithm. We implemented two versions of the
eigenfaces algorithm—the first version creates vectors
for each class in the training set by averaging the
results of the eigenface representation over all images
for the same person. This corresponds to the algorithm
as described by Turk and Pentland [43]. However,
we found that using separate training vectors for each
training image resulted in better performance. We found
that using between 40 to 100 eigenfaces resulted in
similar performance. We can see that the and

methods are both superior to the eigenfaces
technique even when there is only one training image
per person. The SOM+CN method consistently performs
better than the method.

VII. D ISCUSSION

The results indicate that a convolutional network can be
more suitable in the given situation when compared with a

10The 4% error rate reported is an average of multiple simula-
tions—individual simulations have given error rates as low as 1.5%.
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Fig. 10. The error rate as a function of the number of dimensions in the SOM.

Fig. 11. The error rate as a function of the number of nodes per dimension in the SOM.

Fig. 12. A histogram depicting the confidence of the classifier when it turns out to be correct, and the confidence when it is wrong. The graph suggests that
we can improve classification performance considerably by rejecting cases where the classifier has a low confidence.

TABLE II
ERROR RATE OF THE FACE RECOGNITION SYSTEM WITH VARYING NUMBER OF

CLASSES (SUBJECTS). EACH RESULT IS THE AVERAGE OF THREE SIMULATIONS

standard MLP. This correlates with the common belief that the
incorporation of prior knowledge is desirable for MLP style
networks (the CN incorporates domain knowledge regarding
the relationship of the pixels and desired invariance to a degree
of translation, scaling, and local deformation).

TABLE III
ERROR RATE OF THE FACE RECOGNITION SYSTEM WITH VARYING

NUMBER OF DIMENSIONS IN THE SELF-ORGANIZING MAP. EACH

RESULT GIVEN IS THE AVERAGE OF THREE SIMULATIONS

Convolutional networks have traditionally been used on raw
images without any preprocessing. Without the preprocessing
we have used, the resulting convolutional networks are larger,
more computationally intensive, and have not performed as
well in our experiments [e.g., using no preprocessing and the
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Fig. 13. The test set classification performance as a function of the percentage of samples rejected. Classification performance can be improved significantly
by rejecting cases with low confidence.

Fig. 14. Test images. The images with a thick white border were incorrectly classified by one of the best performing systems.

TABLE IV
ERROR RATE OF THE FACE RECOGNITION SYSTEM WITH VARYING

NUMBER OF NODES PERDIMENSION IN THE SOM. EACH

RESULT GIVEN IS THE AVERAGE OF THREE SIMULATIONS

TABLE V
ERROR RATE OF THE FACE RECOGNITION SYSTEM WITH VARYING IMAGE SAMPLE

REPRESENTATION. EACH RESULT IS THE AVERAGE OF THREE SIMULATIONS

TABLE VI
ERROR RATE OF THE FACE RECOGNITION SYSTEM WITH LINEAR

PCA AND SOM FEATURE EXTRACTION MECHANISMS.
EACH RESULT IS THE AVERAGE OF THREE SIMULATIONS

TABLE VII
ERROR RATE COMPARISON OF THEVARIOUS FEATURE

EXTRACTION AND CLASSIFICATION METHODS. EACH

RESULT IS THE AVERAGE OF THREE SIMULATIONS

same CN architecture except initial receptive fields of 88
resulted in approximately two times greater error (for the case
of five images per person)].

Fig. 15 shows the randomly chosen initial local image
samples corresponding to each node in a 2-D SOM, and
the final samples to which the SOM converges. Scanning
across the rows and columns we can see that the quantized
samples represent smoothly changing shading patterns. This is
the initial representation from which successively higher level
features are extracted using the convolutional network. Fig. 16
shows the activation of the nodes in a sample convolutional
network for a particular test image.
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TABLE VIII
ERROR RATE OF THE VARIOUS SYSTEMS. 1On a Sun Sparc II.2ON AN SGI
INDY MIPS R4400 100MHZ SYSTEM. ACCORDING TO THESPECINT92

AND SPECFP92 RATINGS AT http://hpwww.epfl.ch/bench/spec.html
THE SGI MACHINE IS APPROXIMATELY THREE TIMES FASTER THAN

THE SUN SPARC II, MAKING THE SOM+CN APPROXIMATELY 160
TIMES FASTER THAN THE PSEUDO 2-D HMM’S FOR CLASSIFICATION

TABLE IX
ERROR RATE FOR THE EIGENFACES ALGORITHM AND THE SOM+CN AS THE

SIZE OF THE TRAINING SET IS VARIED FROM ONE TO FIVE IMAGES PERPERSON.
AVERAGED OVER TWO DIFFERENTSELECTIONS OF THETRAINING AND TEST SETS

Fig. 15. SOM image samples before training (a random set of image
samples) and after training.

Fig. 17 shows the results of sensitivity analysis in order to
determine which parts of the input image are most important
for classification. Using the method of Baluja and Pomerleau
as described in [37], each of the input planes to the convo-
lutional network was divided into 2 2 segments (the input
planes are 23 28). Each of 168 (12 14) segments was
replaced with random noise, one segment at a time. The test
performance was calculated at each step. The error of the
network when replacing parts of the input with random noise
gives an indication of how important each part of the image is
for the classification task. From the figure it can be observed
that, as expected, the eyes, nose, mouth, chin, and hair regions
are all important to the classification task.

Can the convolutional network feature extraction form the
optimal set of features? The answer is negative—it is unlikely
that the network could extract an optimal set of features for all
images. Although the exact process of human face recognition
is unknown, there are many features which humans may use
but our system is unlikely to discover optimally—e.g., 1)
knowledge of the 3-D structure of the face; 2) knowledge
of the nose, eyes, mouth, etc.; 3) generalization to glasses/no
glasses, different hair growth, etc.; and 4) knowledge of facial
expressions.

VIII. C OMPUTATIONAL COMPLEXITY

The SOM takes considerable time to train. This is not a
drawback of the approach however, as the system can be
extended to cover new classes without retraining the SOM.
All that is required is that the image samples originally used
to train the SOM are sufficiently representative of the image
samples used in new images. For the experiments we have
reported here, the quantized output of the SOM is very similar
if we train it with only 20 classes instead of 40. In addition,
the KL transform can be used in place of the SOM with a
minimal impact on system performance.

It also takes a considerable amount of time to train a con-
volutional network; how significant is this? The convolutional
network extracts features from the image. It is possible to use
fixed feature extraction. Consider if we separate the convo-
lutional network into two parts: the initial feature extraction
layers and the final feature extraction and classification layers.
Given a well-chosen sample of the complete distribution of
faces which we want to recognize, the features extracted from
the first section could be expected to also be useful for the
classification of new classes. These features could then be
considered fixed features and the first part of the network may
not need to be retrained when adding new classes. The point
at which the convolutional network is broken into two would
depend on how well the features at each stage are useful for
the classification of new classes (the larger features in the
final layers are less likely to be a good basis for classification
of new examples). We note that it may be possible to replace
the second part with another type of classifier—e.g., a nearest-
neighbors classifier. In this case the time required for retraining
the system when adding new classes is minimal (the extracted
feature vectors are simply stored for the training images).

To give an idea of the computational complexity of each
part of the system we define:

the number of classes;
the number of nodes in the SOM;
the number of weights in the convolutional net-
work;
the number of weights in the classifier;
the number of training examples;
the number of nodes in the neighborhood function;
the total number of next nodes used to backpropa-
gate the error in the CN;
the total number of next nodes used to backpropa-
gate the error in the MLP classifier;
the output dimension of the KL projection;
the input dimension of the KL projection;
the number of training samples for the SOM or the
KL projection;
the number of local image samples per image.

Tables X and XI show the approximate complexity of the
various parts of the system during training and classification.
We show the complexity for both the SOM and KL alternatives
for dimensionality reduction and for both the neural network
(MLP) and a nearest-neighbors classifier (as the last part of the
convolutional network—not as a complete replacement, i.e.,
this is not the same as the earlier MLP experiments). We note
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Fig. 16. A depiction of the node maps in a sample convolutional network showing the activation values for a particular test image. The input image
is shown on the left. In this case the image is correctly classified with only one activated output node (the top node). From left to right after the input
image, the layers are: the input layer, convolutional layer 1, subsampling layer 1, convolutional layer 2, subsampling layer 2, and the output layer.The
three planes in the input layer correspond to the three dimensions of the SOM.

Fig. 17. Sensitivity to various parts of the input image. It can be observed
that the eyes, mouth, nose, chin, and hair regions are all important for the
classification. Thez axis corresponds to the mean squared error rather than
the classification error (the mean squared error is preferable because it varies in
a smoother fashion as the input images are perturbed). The image orientation
corresponds to upright face images.

that the constant associated with the log factors may increase
exponentially in the worst case (cf. neighbor searching in high-
dimensional spaces [1]). We have aimed to show how the
computational complexity scales according to the number of
classes, e.g., for the training complexity of the MLP classifier:
although may be larger than both and

scale roughly according to .

TABLE X
TRAINING COMPLEXITY. k1 AND k3 REPRESENT THE

NUMBER OF TIMES THE TRAINING SET IS PRESENTED TO

THE NETWORK FOR THESOM AND THE CN, RESPECTIVELY

TABLE XI
CLASSIFICATION COMPLEXITY. k2 REPRESENTS

THE DEGREE OFSHARED WEIGHT REPLICATION

With reference to Table XI, consider, for example, the main
architecture in recognition mode. The complexity

of the SOM module is independent of the number of classes.
The complexity of the CN scales according to the number of
weights in the network. When the number of feature maps in
the internal layers is constant, the number of weights scales
roughly according to the number of output classes (the number
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of weights in the output layer dominates the weights in the
initial layers).

In terms of computation time, the requirements of real-time
tasks varies. The system we have presented should be suitable
for a number of real-time applications. The system is capable
of performing a classification in less than half a second for 40
classes. This speed is sufficient for tasks such as access control
and room monitoring when using 40 classes. It is expected that
an optimized version could be significantly faster.

IX. FURTHER RESEARCH

We can identify the following avenues for improving per-
formance.

1) More careful selection of the convolutional network
architecture, e.g., by using the optimal brain damage
algorithm [25] as used by Le Cunet al. [24] to improve
generalization and speedup handwritten digit recogni-
tion.

2) More precise normalization of the images to account
for translation, rotation, and scale changes. Any nor-
malization would be limited by the desired recognition
speed.

3) The various facial features could be ranked according
to their importance in recognizing faces and separate
modules could be introduced for various parts of the
face, e.g., the eye region, the nose region, and the
mouth region (Brunelli and Poggio [6] obtain very good
performance using a simple template matching strategy
on precisely these regions).

4) An ensemble of recognizers could be used. These could
be combined via simple methods such as a linear com-
bination based on the performance of each network, or
via a gating network and the expectation-maximization
algorithm [11], [16]. Examination of the errors made
by networks trained with different random seeds and by
networks trained with the SOM data versus networks
trained with the KL data shows that a combination
of networks should improve performance (the set of
common errors between the recognizers is often much
smaller than the total number of errors).

5) Invariance to a group of desired transformations could be
enhanced with the addition of pseudo-data to the training
database—i.e., the addition of new examples created
from the current examples using translation, etc. Leen
[26] shows that adding pseudodata can be equivalent
to adding a regularizer to the cost function where the
regularizer penalizes changes in the output when the
input goes under a transformation for which invariance
is desired.

X. CONCLUSIONS

We have presented a fast, automatic system for face recog-
nition which is a combination of a local image sample rep-
resentation, an SOM network, and a convolutional network
for face recognition. The SOM provides a quantization of the
image samples into a topological space where inputs that are
nearby in the original space are also nearby in the output

space, which results in invariance to minor changes in the
image samples, and the convolutional neural network pro-
vides for partial invariance to translation, rotation, scale, and
deformation. Substitution of the KL transform for the SOM
produced similar but slightly worse results. The method is
capable of rapid classification, requires only fast approximate
normalization and preprocessing, and consistently exhibits
better classification performance than the eigenfaces approach
[43] on the database considered as the number of images
per person in the training database is varied from one to
five. With five images per person the proposed method and
eigenfaces result in 3.8% and 10.5% error, respectively. The
recognizer provides a measure of confidence in its output and
classification error approaches zero when rejecting as few as
10% of the examples. We have presented avenues for further
improvement.

There are no explicit 3-D models in our system, however
we have found that the quantized local image samples used
as input to the convolutional network represent smoothly
changing shading patterns. Higher level features are con-
structed from these building blocks in successive layers of
the convolutional network. In comparison with the eigenfaces
approach, we believe that the system presented here is able to
learn more appropriate features in order to provide improved
generalization. The system is partially invariant to changes in
the local image samples, scaling, translation and deformation
by design.
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