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Story so far … 

• Deep neural nets are more expressive: Can learn wider classes of 
functions with less hidden units (parameters) and training examples. 
 

• Unfortunately they are not easy to train with randomly initialized 
gradient-based methods. 



Story so far … 

• Hinton et. al. (2006) proposed greedy unsupervised layer-wise 
training: 
• Greedy layer-wise: Train layers sequentially starting from bottom 

(input) layer. 
• Unsupervised: Each layer learns a higher-level representation of 

the layer below. The training criterion does not depend on the 
labels. 
 

• Each layer is trained as a Restricted Boltzman Machine. (RBM is the 
building block of Deep Belief Networks). 
 

• The trained model can be fine tuned using a supervised method. 
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This paper 

• Extends the concept to: 
• Continuous variables 
• Uncooperative input distributions 
• Simultaneous Layer Training 

 
• Explores variations to better understand the training method: 

• What if we use greedy supervised layer-wise training ? 
• What if we replace RBMs with auto-encoders ? 
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Restricted Boltzman Machine 

𝑣 

ℎ 
Undirected bipartite graphical model with connections between 
visible nodes and hidden nodes. 
 
Corresponds to joint probability distribution 

𝑃 𝑣, ℎ =
1

𝑍
exp(−𝑒𝑛𝑒𝑟𝑔𝑦(𝑣, ℎ)) 

=
1

𝑍
exp(𝑣′𝑊ℎ + 𝑏′𝑣 + 𝑐′ℎ) 
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𝑗

) 

Factorized Conditionals 



Restricted Boltzman Machine (Training) 

• Given input vectors 𝑉0, adjust 𝜃 = (𝑊, 𝑏, 𝑐) to increase log  𝑃 𝑉0  

 

log 𝑃 𝑣0 = log 𝑃(𝑣0, ℎ)

ℎ

= log  exp −𝑒𝑛𝑒𝑟𝑔𝑦 𝑣0, ℎ − log  exp −𝑒𝑛𝑒𝑟𝑔𝑦 𝑣, ℎ

𝑣,ℎℎ
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 Sample ℎ0 given 𝑣0 Sample 𝑣1 and ℎ1 using Gibbs sampling 



Restricted Boltzman Machine (Training) 

• Now we can perform stochastic gradient descent on data log-
likelihood 

 

• Stop based on some criterion  

 (e.g. reconstruction error − log𝑃(𝑣1 = 𝑥|𝑣0 = 𝑥) 

 



Deep Belief Network 

• A DBN is a model of the form 

 𝑃 𝑥, 𝑔1, 𝑔2, … , 𝑔𝑙 = 𝑃(𝑥|𝑔1) P 𝑔1 𝑔2 …𝑃 𝑔𝑙−2 𝑔𝑙−1 𝑃(𝑔𝑙−1, 𝑔𝑙) 

 

𝑥 = 𝑔0  denotes input variables 

𝑔 denotes hidden layers of causal variables 
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Deep Belief Network 

• A DBN is a model of the form 
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𝑥 = 𝑔0  denotes input variables 

𝑔 denotes hidden layers of causal variables 

 

𝑃(𝑔𝑙−1, 𝑔𝑙) is an RBM 

𝑃 𝑔𝑖 𝑔𝑖+1 =  𝑃(𝑔𝑗
𝑖 |𝑔𝑖+1)𝑗   

𝑃 𝑔𝑗
𝑖 𝑔𝑖+1 = 𝑠𝑖𝑔𝑚(𝑏𝑗

𝑖 +  𝑊𝑘𝑗
𝑖 𝑔𝑘

𝑖+1)𝑛𝑖+1

𝑘   
RBM = Infinitely 
Deep network with 
tied weights 



Greedy layer-wise training 

• 𝑃(𝑔1|𝑔0) is intractable 

• Approximate with 𝑄(𝑔1|𝑔0)  
• Treat bottom two layers as an RBM 

• Fit parameters using contrastive divergence 
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• That gives an approximate 𝑃  𝑔1  

• We need to match it with 𝑃(𝑔1) 
 



Greedy layer-wise training 

• Approximate 𝑃 𝑔𝑙 𝑔𝑙−1 ≈ 𝑄(𝑔𝑙|𝑔𝑙−1)  
• Treat layers 𝑙 − 1, 𝑙 as an RBM 

• Fit parameters using contrastive divergence 

• Sample 𝑔0
𝑙−1 recursively using 𝑄 𝑔𝑖 𝑔𝑖−1  starting from 𝑔0 
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Supervised Fine Tuning (In this paper) 

• Use greedy layer-wise training to initialize weights of all layers except 
output layer. 

 

• For fine-tuning, use stochastic gradient descent of a cost function on 
the outputs where the conditional expected values of hidden nodes 
are approximated using mean-field.  

 

 𝐸 𝑔𝑖
  
𝑔𝑖−1 = 𝜇𝑖−1 = 𝜇𝑖 = 𝑠𝑖𝑔𝑚(𝑏𝑖 + 𝑊𝑖𝜇𝑖−1)  



Supervised Fine Tuning (In this paper) 

• Use greedy layer-wise training to initialize weights of all layers except 
output layer. 

 

• Use backpropagation 
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Continuous Inputs 

• Recall RBMs: 

• 𝑄 ℎ𝑗 𝑣 ∝ 𝑄 ℎ𝑗 , 𝑣 ∝ exp ℎ𝑗𝑤′𝑣 + 𝑏𝑗ℎ𝑗 ∝ exp (𝑤′𝑣 + 𝑏𝑗) ℎ𝑗 = exp(𝑎 𝑣 ℎ𝑗) 

 

• If we restrict ℎ𝑗 ∈ 𝐼 = {0,1} then normalization gives us binomial with 
𝑝 given by sigmoid. 

• Instead, if  𝐼 = [0,∞] we get exponential density 

• If 𝐼 is closed interval then we get truncated exponential 



Continuous Inputs (Case for truncated 
exponential [0,1]) 
• Sampling 

 For truncated exponential, inverse CDF can be used 

 hj = 𝐹−1 𝑈 =
log(1−𝑈×(1−exp 𝑎 𝑣 )

𝑎(𝑣)
 

 where 𝑈 is sampled uniformly from [0,1] 

 

• Conditional Expectation 

 𝐸 ℎ𝑗 𝑣 =
1

1−exp (−𝑎 𝑣 )
−

1

𝑎(𝑣)
 



Continuous Inputs 

• To handle Gaussian inputs, we need to augment the energy function 
with a term quadratic in ℎ. 

• For a diagonal covariance matrix 
𝑃 ℎ𝑗 𝑣 = 𝑎 𝑣 ℎ𝑗 + 𝑑𝑗ℎ𝑗

2 

Giving 
𝐸 ℎ𝑗 𝑧 = 𝑎(𝑥)/2𝑑2 

 

   



Continuous Hidden Nodes ? 

 



Continuous Hidden Nodes ? 

• Truncated Exponential 

𝐸 ℎ𝑗 𝑣 =
1

1 − exp (−𝑎 𝑣 )
−

1

𝑎(𝑣)
 

 

• Gaussian 
𝐸 ℎ𝑗 𝑣 = 𝑎(𝑣)/2𝑑2 

 



Uncooperative Input Distributions 

• Setting 

 𝑥~𝑝 𝑥  

 𝑦 = 𝑓 𝑥 + 𝑛𝑜𝑖𝑠𝑒 

 

• No particular relation between p and f, (e.g. Gaussian and sinus) 
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• Setting 

 𝑥~𝑝 𝑥  

 𝑦 = 𝑓 𝑥 + 𝑛𝑜𝑖𝑠𝑒 

 

• No particular relation between p and f, (e.g. Gaussian and sinus) 

 

• Problem: Unsupvervised pre-training may not help prediction 
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Uncooperative Input Distributions 

• Proposal: Mix unsupervised and supervised training for each layer 

  

  
Temp. Ouptut Layer 

Stochastic Gradient of input log likelihood  
by Contrastive Divergence 

Stochastic Gradient of prediction error 

Combined Update 



Simultaneous Layer Training 

• Greedy Layer-wise Training 

• For each layer 
• Repeat Until Criterion Met 

• Sample layer input (by recursively applying trained layers to data) 

• Update parameters using contrastive divergence 



Simultaneous Layer Training 

• Simultaneous Training 

• Repeat Until Criterion Met 
• Sample input to all layers 

• Update parameters of all layers using contrastive divergence 

 

• Simpler: One criterion for the entire network 

• Takes more time 
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Experiments 

• Does greedy unsupervised pre-training help ? 

• What if we replace RBM with auto-encoders ? 

• What if we do greedy supervised pre-training ? 

 

• Does continuous variable modeling help ? 

• Does partially supervised pre-training help ? 
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Experiment 1(MSE and Training Errors) 

Partially Supervised <  Unsupervised Pre-training < No Pre-training 

Gaussian <  Binomial 



Experiment 2 

• Does greedy unsupervised pre-training help ? 

• What if we replace RBM with auto-encoders ? 

• What if we do greedy supervised pre-training ? 

 

• Does continuous variable modeling help ? 

• Does partially supervised pre-training help ? 

 



Experiment 2 

• Auto Encoders 

• Learn a compact representation to reconstruct X 
𝑝 𝑥 = 𝑠𝑖𝑔𝑚 𝑐 + 𝑊𝑠𝑖𝑔𝑚 𝑏 + 𝑊′𝑥  

 

• Trained to minimize reconstruction cross-entropy 

𝑅 = − 𝑥𝑖 log 𝑝 𝑥𝑖 +

𝑖

(1 − 𝑥𝑖) log 𝑝 1 − 𝑥𝑖  

 

X X 



Experiment 2 

(500~1000) layer width 20 nodes in last two layers 



Experiment 2 

• Auto-encoder pre-training outperforms supervised pre-training but is 
still outperformed by RBM. 

 

• Without pre-training, deep nets do not generalize well, but they can 
still fit the data if the output layers are wide enough. 



Conclusions 

• Unsupervised pre-training is important for deep networks. 

 

• Partial supervision further enhances results, especially when input 
distribution and the function to be estimated are not closely related. 

 

• Explicitly modeling conditional inputs is better than using binomial 
models. 



 
 
 
 
 

Thanks 


