Greedy Layer-Wise Training of Deep Networks

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle NIPS 2007

Presented by

Ahmed Hefny

Story so far ...

- Deep neural nets are more expressive: Can learn wider classes of functions with less hidden units (parameters) and training examples.
- Unfortunately they are not easy to train with **randomly initialized** gradient-based methods.

Story so far ...

- Hinton et. al. (2006) proposed greedy unsupervised layer-wise training:
 - Greedy layer-wise: Train layers sequentially starting from bottom (input) layer.
 - Unsupervised: Each layer learns a higher-level representation of the layer below. The training criterion does not depend on the labels.
- Each layer is trained as a Restricted Boltzman Machine. (RBM is the building block of Deep Belief Networks).
- The trained model can be fine tuned using a supervised method.

This paper

- Extends the concept to:
 - Continuous variables
 - *Uncooperative* input distributions
 - Simultaneous Layer Training
- Explores variations to better understand the training method:
 - What if we use greedy **supervised** layer-wise training ?
 - What if we replace RBMs with auto-encoders ?

Outline

• Review

- Restricted Boltzman Machines
- Deep Belief Networks
- Greedy layer-wise Training
- Supervised Fine-tuning
- Extensions
 - Continuous Inputs
 - Uncooperative Input Distributions
 - Simultaneous Training
- Analysis Experiments

Outline

Review

- Restricted Boltzman Machines
- Deep Belief Networks
- Greedy layer-wise Training
- Supervised Fine-tuning
- Extensions
 - Continuous Inputs
 - Uncooperative Input Distributions
 - Simultaneous Training
- Analysis Experiments

Restricted Boltzman Machine

Undirected bipartite graphical model with connections between **visible** nodes and **hidden** nodes.

Corresponds to joint probability distribution

$$P(v,h) = \frac{1}{Z} \exp(-energy(v,h))$$
$$= \frac{1}{Z} \exp(v'Wh + b'v + c'h)$$

Restricted Boltzman Machine

Undirected bipartite graphical model with connections between **visible** nodes and **hidden** nodes.

Corresponds to joint probability distribution

$$P(v,h) = \frac{1}{Z} \exp(h'Wv + b'v + c'h)$$

$$Q(h|v) = \prod_{j} P(h_{j}|v) \qquad P(v|h) = \prod_{k} P(v_{k}|h)$$
$$Q(h_{j} = 1|v) = sigm(c_{j} + \sum_{k} W_{jk}v_{k}) \qquad P(v_{k} = 1|h) = sigm(b_{k} + \sum_{j} W_{jk}h_{j})$$

• Given input vectors V_0 , adjust $\theta = (W, b, c)$ to increase log $P(V_0)$

$$\log P(v_0) = \log \sum_{h} P(v_0, h) = \log \sum_{h} \exp\left(-energy(v_0, h)\right) - \log \sum_{v, h} \exp\left(-energy(v, h)\right)$$

$$\frac{\partial \log P(v_0)}{\partial \theta} = -\sum_{h} Q(h|v_0) \frac{\partial energy(v_0,h)}{\partial \theta} + \sum_{v,h} P(v,h) \frac{\partial energy(v,h)}{\partial \theta}$$
$$\frac{\partial \log P(v_0)}{\partial \theta_k} = -\sum_{h} Q(h|v_0) \frac{\partial energy(v_0,h)}{\partial \theta_k} + \sum_{v} P(v) \sum_{h_k} Q(h_k|v) \frac{\partial energy(v,h)}{\partial \theta_k}$$

• Given input vectors V_0 , adjust $\theta = (W, b, c)$ to increase log $P(V_0)$

$$\log P(v_0) = \log \sum_{h} P(v_0, h) = \log \sum_{h} \exp\left(-energy(v_0, h)\right) - \log \sum_{v, h} \exp\left(-energy(v, h)\right)$$

$$\frac{\partial \log P(v_0)}{\partial \theta} = -\sum_{h} Q(h|v_0) \frac{\partial energy(v_0,h)}{\partial \theta} + \sum_{v,h} P(v,h) \frac{\partial energy(v,h)}{\partial \theta}$$
$$\frac{\partial \log P(v_0)}{\partial \theta_k} = -\sum_{h} Q(h|v_0) \frac{\partial energy(v_0,h)}{\partial \theta_k} + \sum_{v} P(v) \sum_{h_k} Q(h_k|v) \frac{\partial energy(v,h)}{\partial \theta_k}$$

• Given input vectors V_0 , adjust $\theta = (W, b, c)$ to increase log $P(V_0)$

$$\log P(v_0) = \log \sum_{h} P(v_0, h) = \log \sum_{h} \exp\left(-energy(v_0, h)\right) - \log \sum_{v, h} \exp\left(-energy(v, h)\right)$$

$$\frac{\partial \log P(v_0)}{\partial \theta} = -\sum_{h} Q(h|v_0) \frac{\partial energy(v_0,h)}{\partial \theta} + \sum_{v,h} P(v,h) \frac{\partial energy(v,h)}{\partial \theta}$$
$$\frac{\partial \log P(v_0)}{\partial \theta_k} = -\sum_{h} Q(h|v_0) \frac{\partial energy(v_0,h)}{\partial \theta_k} + \sum_{v} P(v) \sum_{h_k} Q(h_k|v) \frac{\partial energy(v,h)}{\partial \theta_k}$$

Sample h_0 given v_0

Sample v_1 and h_1 using Gibbs sampling

- Now we can perform stochastic gradient descent on data loglikelihood
- Stop based on some criterion

(e.g. reconstruction error $-\log P(v_1 = x | v_0 = x)$)

Deep Belief Network

• A DBN is a model of the form

 $P(x, g^1, g^2, \dots, g^l) = P(x|g^1) P(g^1|g^2) \dots P(g^{l-2}|g^{l-1}) P(g^{l-1}, g^l)$

 $x = g^0$ denotes input variables

g denotes hidden layers of causal variables

Deep Belief Network

• A DBN is a model of the form

 $P(x, g^1, g^2, \dots, g^l) = P(x|g^1) P(g^1|g^2) \dots P(g^{L-2}|g^{L-1}) P(g^{L-1}, g^L)$

 $x = g^0$ denotes input variables

g denotes hidden layers of causal variables

Deep Belief Network

• A DBN is a model of the form

 $P(x, g^1, g^2, \dots, g^l) = P(x|g^1) P(g^1|g^2) \dots P(g^{l-2}|g^{l-1}) P(g^{l-1}, g^l)$

 $x = g^0$ denotes input variables g denotes hidden layers of causal variables

$$P(g^{l-1}, g^l) \text{ is an RBM}$$

$$P(g^i | g^{i+1}) = \prod_j P(g^i_j | g^{i+1})$$

$$P(g^i_j | g^{i+1}) = sigm(b^i_j + \sum_k^{n^{i+1}} W^i_{kj} g^{i+1}_k)$$

RBM = Infinitely Deep network with tied weights

Greedy layer-wise training

- $P(g^1|g^0)$ is intractable
- Approximate with $Q(g^1|g^0)$
 - Treat bottom two layers as an RBM
 - Fit parameters using contrastive divergence

Greedy layer-wise training

- $P(g^1|g^0)$ is intractable
- Approximate with $Q(g^1|g^0)$
 - Treat bottom two layers as an RBM
 - Fit parameters using contrastive divergence

- That gives an approximate $\hat{P}\left(g^{1}
 ight)$
- We need to match it with $P(g^1)$

Greedy layer-wise training

- Approximate $P(g^{l}|g^{l-1}) \approx Q(g^{l}|g^{l-1})$
 - Treat layers l 1, l as an RBM
 - Fit parameters using contrastive divergence
 - Sample g_0^{l-1} recursively using $Q(g^i|g^{i-1})$ starting from g^0

Outline

• Review

- Restricted Boltzman Machines
- Deep Belief Networks
- Greedy layer-wise Training
- Supervised Fine-tuning
- Extensions
 - Continuous Inputs
 - Uncooperative Input Distributions
 - Simultaneous Training
- Analysis Experiments

Supervised Fine Tuning (In this paper)

- Use greedy layer-wise training to initialize weights of all layers except output layer.
- For fine-tuning, use stochastic gradient descent of a cost function on the outputs where the conditional expected values of hidden nodes are approximated using mean-field.

$$E(g^{i} | g^{i-1} = \mu^{i-1}) = \mu^{i} = sigm(b^{i} + W^{i}\mu^{i-1})$$

Supervised Fine Tuning (In this paper)

- Use greedy layer-wise training to initialize weights of all layers except output layer.
- Use backpropagation

Outline

• Review

- Restricted Boltzman Machines
- Deep Belief Networks
- Greedy layer-wise Training
- Supervised Fine-tuning
- Extensions
 - Continuous Inputs
 - Uncooperative Input Distributions
 - Simultaneous Training
- Analysis Experiments

Continuous Inputs

- Recall RBMs:
- $Q(h_j|v) \propto Q(h_j, v) \propto \exp(h_j w'v + b_j h_j) \propto \exp((w'v + b_j) h_j) = \exp(a(v)h_j)$
- If we restrict $h_j \in I = \{0,1\}$ then normalization gives us binomial with p given by sigmoid.
- Instead, if $I = [0, \infty]$ we get exponential density
- If *I* is closed interval then we get truncated exponential

Continuous Inputs (Case for truncated exponential [0,1])

• Sampling

For truncated exponential, inverse CDF can be used

$$h_j = F^{-1}(U) = \frac{\log(1 - U \times (1 - \exp(a(v))))}{a(v)}$$

where U is sampled uniformly from [0,1]

Conditional Expectation

$$E[h_j|v] = \frac{1}{1 - \exp(-a(v))} - \frac{1}{a(v)}$$

Continuous Inputs

- To handle Gaussian inputs, we need to augment the energy function with a term quadratic in *h*.
- For a diagonal covariance matrix

$$P(h_j|v) = a(v)h_j + d_j h_j^2$$

Giving

$$E\big[h_j\big|z\big] = a(x)/2d^2$$

Continuous Hidden Nodes ?

Continuous Hidden Nodes ?

- Truncated Exponential $E[h_j|v] = \frac{1}{1 - \exp(-a(v))} - \frac{1}{a(v)}$
- Gaussian

$$E[h_j|v] = a(v)/2d^2$$

Uncooperative Input Distributions

Setting

$$x \sim p(x)$$
$$y = f(x) + noise$$

• No particular relation between p and f, (e.g. Gaussian and sinus)

Uncooperative Input Distributions

- Setting
 - $x \sim p(x)$ y = f(x) + noise
- No particular relation between p and f, (e.g. Gaussian and sinus)
- Problem: Unsupvervised pre-training may not help prediction

Outline

• Review

- Restricted Boltzman Machines
- Deep Belief Networks
- Greedy layer-wise Training
- Supervised Fine-tuning
- Extensions
- Analysis Experiments

Uncooperative Input Distributions

• Proposal: Mix unsupervised and supervised training for each layer

Stochastic Gradient of input log likelihood by Contrastive Divergence

Temp. Ouptut Layer

Stochastic Gradient of prediction error

Combined Update

Simultaneous Layer Training

- Greedy Layer-wise Training
- For each layer
 - Repeat Until Criterion Met
 - Sample layer input (by recursively applying trained layers to data)
 - Update parameters using contrastive divergence

Simultaneous Layer Training

- Simultaneous Training
- Repeat Until Criterion Met
 - Sample input to all layers
 - Update parameters of all layers using contrastive divergence
- Simpler: One criterion for the entire network
- Takes more time

Outline

• Review

- Restricted Boltzman Machines
- Deep Belief Networks
- Greedy layer-wise Training
- Supervised Fine-tuning
- Extensions
 - Continuous Inputs
 - Uncooperative Input Distributions
 - Simultaneous Training
- Analysis Experiments

- Does greedy unsupervised pre-training help ?
- What if we replace RBM with auto-encoders ?
- What if we do greedy *supervised* pre-training ?
- Does continuous variable modeling help ?
- Does partially supervised pre-training help ?

- Does greedy unsupervised pre-training help ?
- What if we replace RBM with auto-encoders ?
- What if we do greedy *supervised* pre-training ?
- Does continuous variable modeling help ?
- Does partially supervised pre-training help ?

	Abalone			Cotton			
	train.	valid.	test.	train.	valid.	test.	
1. Deep Network with no pre-training	4.23	4.43	4.2	45.2%	42.9%	43.0%	
2. Logistic regression	•	•	•	44.0%	42.6%	45.0%	
3. DBN, binomial inputs, unsupervised	4.59	4.60	4.47	44.0%	42.6%	45.0%	
4. DBN, binomial inputs, partially supervised	4.39	4.45	4.28	43.3%	41.1%	43.7%	
5. DBN, Gaussian inputs, unsupervised	4.25	4.42	4.19	35.7%	34.9%	35.8%	
6. DBN, Gaussian inputs, partially supervised	4.23	4.43	4.18	27.5%	28.4%	31.4%	

Experiment 1(MSE and Training Errors)

	Abalone			Cotton			
	train.	valid.	test.	train.	valid.	test.	
1. Deep Network with no pre-training	4.23	4.43	4.2	45.2%	42.9%	43.0%	
2. Logistic regression	·	•	•	44.0%	42.6%	45.0%	
3. DBN, binomial inputs, unsupervised	4.59	4.60	4.47	44.0%	42.6%	45.0%	
4. DBN, binomial inputs, partially supervised	4.39	4.45	4.28	43.3%	41.1%	43.7%	
5. DBN, Gaussian inputs, unsupervised	4.25	4.42	4.19	35.7%	34.9%	35.8%	
6. DBN, Gaussian inputs, partially supervised	4.23	4.43	4.18	27.5%	28.4%	31.4%	

Partially Supervised < Unsupervised Pre-training < No Pre-training

Gaussian < Binomial

- Does greedy unsupervised pre-training help ?
- What if we replace RBM with auto-encoders ?
- What if we do greedy supervised pre-training ?
- Does continuous variable modeling help ?
- Does partially supervised pre-training help ?

- Auto Encoders
- Learn a compact representation to reconstruct X p(x) = sigm(c + Wsigm(b + W'x))
- Trained to minimize reconstruction cross-entropy $R = -\sum_{i} x_i \log p(x_i) + (1 - x_i) \log p(1 - x_i)$

	(500~1000) layer width Experiment 2			20 nodes in last two layers			
				Experiment 3			
	train.	valid.	test	train.	valid.	test	
DBN, unsupervised pre-training	0%	1.2%	1.2%	0%	1.5%	1.5%	
Deep net, auto-associator pre-training	0%	1.4%	1.4%	0%	1.4%	1.6%	
Deep net, supervised pre-training	0%	1.7%	2.0%	0%	1.8%	1.9%	
Deep net, no pre-training	.004%	2.1%	2.4%	.59%	2.1%	2.2%	
Shallow net, no pre-training	.004%	1.8%	1.9%	3.6%	4.7%	5.0%	

- Auto-encoder pre-training outperforms supervised pre-training but is still outperformed by RBM.
- Without pre-training, deep nets do not generalize well, but they can still fit the data if the output layers are wide enough.

Conclusions

- Unsupervised pre-training is important for deep networks.
- Partial supervision further enhances results, especially when input distribution and the function to be estimated are not closely related.
- Explicitly modeling conditional inputs is better than using binomial models.

Thanks

