Greedy Layer-Wise Training of
Deep Networks

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle
NIPS 2007

Presented by
Ahmed Hefny

Story so far ...

* Deep neural nets are more expressive: Can learn wider classes of
functions with less hidden units (parameters) and training examples.

* Unfortunately they are not easy to train with randomly initialized
gradient-based methods.

Story so far ...

RBM 2 -~

RBM1 -

RBMO -

Hinton et. al. (2006) proposed greedy unsupervised layer-wise
training:
e Greedy layer-wise: Train layers sequentially starting from bottom
(input) layer.
* Unsupervised: Each layer learns a higher-level representation of
the layer below. The training criterion does not depend on the
labels.

Each layer is trained as a Restricted Boltzman Machine. (RBM is the
building block of Deep Belief Networks).

The trained model can be fine tuned using a supervised method.

This paper

e Extends the concept to:

B e Continuous variables
RBM 2 - * Uncooperative input distributions
_ e Simultaneous Layer Training
REBM1 - * Explores variations to better understand the training method:
- What if we use greedy supervised layer-wise training ?
RBMO - What if we replace RBMs with auto-encoders ?

Outline

* Review
e Restricted Boltzman Machines
* Deep Belief Networks
* Greedy layer-wise Training

e Supervised Fine-tuning

* Extensions
* Continuous Inputs
* Uncooperative Input Distributions
e Simultaneous Training

* Analysis Experiments

Outline

* Review
e Restricted Boltzman Machines
* Deep Belief Networks
* Greedy layer-wise Training

e Supervised Fine-tuning

* Extensions
* Continuous Inputs
* Uncooperative Input Distributions
e Simultaneous Training

* Analysis Experiments

Restricted Boltzman Machine

Undirected bipartite graphical model with connections between
visible nodes and hidden nodes.

Corresponds to joint probability distribution

1
P(v,h) = 7 exp(—energy(v, h))

1
= Eexp(v’Wh +b'v+c'h)

Restricted Boltzman Machine

Undirected bipartite graphical model with connections between
visible nodes and hidden nodes.

Corresponds to joint probability distribution

1
P(v,h) = Eexp(h’Wv + b'v+c'h)

¥

Factorized Conditionals

oiv) = | [Payiv) Peih) = | [Pailn
J K

Q(hj = 1|v) = sigm(c; + Z Wik Vi) P(vy = 1|h) = sigm(by + z Wi h;)
k J

Restricted Boltzman Machine (Training)
e Given input vectors V,, adjust 8 = (W, b, ¢) to increase log P(V,)

log P(vy) = logz P(vy, h) = log z exp(—energy(vy, b)) — log z exp(—energy(v, h))
n n v,h

Olog P(vo) 2 0(hlvy) 6energy(v0 h) EP(U aenergy(v h)

dlog P(UO) 6energy(v0, h) aenergy(v, h)
5o, EQ(hI vo) 35 +2P<v>hz(z<hk|v> 2.
v k

Restricted Boltzman Machine (Training)
e Given input vectors V,, adjust 8 = (W, b, ¢) to increase log P(V,)

log P(vy) = logz P(vy, h) = log z exp(—energy(vy, b)) — log z exp(—energy(v, h))
n n v,h

Olog P(vo) 2 0(hlvy) 6energy(v0 h) EP(U aenergy(v h)

dlog P(UO) 6energy(v0, h) aenergy(v, h)
5o ZQW vo) 35 +2P<v>hz(z<hk|v> 2.
4 k

Restricted Boltzman Machine (Training)
e Given input vectors V,, adjust 8 = (W, b, ¢) to increase log P(V,)

log P(vy) = logz P(vy, h) = log z exp(—energy(vy, b)) — log z exp(—energy(v, h))
n h v,h

Olog P(vo) 2 0(hlvy) 6energy(v0, h) z P(o, aenergy(v h)

dlog P(vo) aenergy(vo, h) aenergy(v, h)
5o ZQw vo) 35 +2P<v>hz(z<hk|v> 2.
4 k

Sample hy given v, Sample v4 and h4 using Gibbs sampling

Restricted Boltzman Machine (Training)

* Now we can perform stochastic gradient descent on data log-
likelihood

» Stop based on some criterion

(e.g. reconstruction error —log P(v; = x|vy = x)

Deep Belief Network

e A DBN is a model of the form
P(x, g%, g% ...g') = P(x|g") P(g*lg?) ... P(g'2|g""1)P(g'™L, gY)

x = g° denotes input variables
g denotes hidden layers of causal variables

Deep Belief Network

e A DBN is a model of the form
P(x,g%, g% ...g') = P(x|g") P(g*lg?) ... P(g~2|gt")P(g*~1, g%)

x = g° denotes input variables
g denotes hidden layers of causal variables

Deep Belief Network

* A DBN is a model of the form
P(x, g%, g% ...g') = P(x|g") P(g*lg?) ... P(g'2|g""1)P(g'~1, gY)

x = g° denotes input variables
g denotes hidden layers of causal variables

P(g'~1, g% is an RBM
P(g'g"*t) =1, P(gtlg"™)
P(gjlg™*?) = sigm(bj + X}

i+1

Wi . i+1
kjigk) RBM = Infinitely
Deep network with

tied weights

Greedy layer-wise training

* P(gllg?) is intractable
* Approximate with Q(g!|g*)

* Treat bottom two layers as an RBM
* Fit parameters using contrastive divergence

Greedy layer-wise training

* P(gllg?) is intractable
* Approximate with Q(g!|g*)

* Treat bottom two layers as an RBM
* Fit parameters using contrastive divergence

* That gives an approximate p (gl)
 We need to match it with P(g?1)

Greedy layer-wise training

: Ll A1-1Y) o Ly 41—1
* Approximate P(g ‘g) ~ Q(g"lg™")
* Treat layers [— 1,1 as an RBM
* Fit parameters using contrastive divergence

* Sample g5~ recursively using Q(gi|gi‘1) starting from g°

Outline

* Review
* Restricted Boltzman Machines
* Deep Belief Networks
* Greedy layer-wise Training

e Supervised Fine-tuning

* Extensions
* Continuous Inputs
* Uncooperative Input Distributions
e Simultaneous Training

* Analysis Experiments

Supervised Fine Tuning (In this paper)

* Use greedy layer-wise training to initialize weights of all layers except
output layer.

* For fine-tuning, use stochastic gradient descent of a cost function on
the outputs where the conditional expected values of hidden nodes
are approximated using mean-field.

E(gl |gi—1 — ‘ui—l) — ‘ui — Sigm(bi 1 Wi/,ti_l)

Supervised Fine Tuning (In this paper)

* Use greedy layer-wise training to initialize weights of all layers except
output layer.

* Use backpropagation

Outline

* Review
* Restricted Boltzman Machines
* Deep Belief Networks
* Greedy layer-wise Training
e Supervised Fine-tuning
* Extensions
* Continuous Inputs

* Uncooperative Input Distributions
e Simultaneous Training

* Analysis Experiments

Continuous Inputs

* Recall RBMs:
* Q(hy|v) < Q(hj,v) o« exp(hyw'v + bjh;) < exp((W'v + b;) h;) = exp(a(v)h;)

* If we restrict h; € I = {0,1} then normalization gives us binomial with
p given by sigmoid.

* Instead, if I = |0, c0] we get exponential density
 If I is closed interval then we get truncated exponential

Continuous Inputs (Case for truncated
exponential [0,1])

e Sampling
For truncated exponential, inverse CDF can be used

-1 _ log(1-Ux(1—exp(a(®)))
hj =F (U) = o
where U is sampled uniformly from [0,1]

* Conditional Expectation

1 1
E[hllv] - 1—exp(—a(v)) B a(v)

Continuous Inputs

* To handle Gaussian inputs, we need to augment the energy function
with a term quadratic in h.

* For a diagonal covariance matrix
P(hi|lv) = a(w)h; + d;h}
Giving
E|hi|z] = a(x)/2d?

Continuous Hidden Nodes ?

Continuous Hidden Nodes ?

* Truncated Exponential

1 1
Elhj|v] =

—exp(—a(v)) a(v)

* Gaussian
E[hi|v] = a(v)/24d?

Uncooperative Input Distributions
* Setting

x~p(x)

y = f(x) + noise

* No particular relation between p and f, (e.g. Gaussian and sinus)

Uncooperative Input Distributions

* Setting
x~p(x)
y = f(x) + noise

* No particular relation between p and f, (e.g. Gaussian and sinus)

* Problem: Unsupvervised pre-training may not help prediction

Outline

* Review
* Restricted Boltzman Machines
* Deep Belief Networks
* Greedy layer-wise Training

* Supervised Fine-tuning
* Extensions
* Analysis Experiments

Uncooperative Input Distributions

* Proposal: Mix unsupervised and supervised training for each layer

soo

Temp. Ouptut Layer

Stochastic Gradient of input log likelihood Stochastic Gradient of prediction error

by Contrastive Divergence /

Simultaneous Layer Training

* Greedy Layer-wise Training

* For each layer

* Repeat Until Criterion Met
» Sample layer input (by recursively applying trained layers to data)
* Update parameters using contrastive divergence

Simultaneous Layer Training

* Simultaneous Training

e Repeat Until Criterion Met
* Sample input to all layers
* Update parameters of all layers using contrastive divergence

e Simpler: One criterion for the entire network

 Takes more time

Outline

* Review
e Restricted Boltzman Machines
* Deep Belief Networks
* Greedy layer-wise Training

e Supervised Fine-tuning

* Extensions
* Continuous Inputs
* Uncooperative Input Distributions
e Simultaneous Training

* Analysis Experiments

Experiments

* Does greedy unsupervised pre-training help ?
* What if we replace RBM with auto-encoders ?
 What if we do greedy supervised pre-training ?

* Does continuous variable modeling help ?
* Does partially supervised pre-training help ?

Experiment 1

* Does greedy unsupervised pre-training help ?
* What if we replace RBM with auto-encoders ?
 What if we do greedy supervised pre-training ?

* Does continuous variable modeling help ?
* Does partially supervised pre-training help ?

Experiment 1

0.6
- - -Deep Network with no pre—training
— DBN with partially supervised pre—training
0.55F - DBN with unsupervised pre-training
0.5}

0.45(tn |

©
N

0.35

classification error on training set

bt
w

025 | | | | | | | J
0 50 100 150 200 250 300 350 400

Experiment 1

Abalone Cotton
train. valid. test. train. valid. test.
1. Deep Network with no pre-training 423 443 42 452% 429% 43.0%
2. Logistic regression : : : 44.0% 42.6% 45.0%
3. DBN, binomial inputs, unsupervised 459 460 447 440% 42.6% 45.0%
4. DBN, binomial inputs, partially supervised 4.39 445 428 433% 41.1% 43.7%
5. DBN, Gaussian inputs, unsupervised 425 442 419 357% 349% 35.8%
6. DBN, Gaussian inputs, partially supervised 4.23 443 418 27.5% 28.4% 31.4%

Experiment 1(MSE and Training Errors)

Abalone Cotton
train. valid. test. train. valid. test.
1. Deep Network with no pre-training 423 443 42 452% 429% 43.0%
2. Logistic regression : : : 44.0% 42.6% 45.0%
3. DBN, binomial inputs, unsupervised 459 460 447 440% 42.6% 45.0%
4. DBN, binomial inputs, partially supervised 4.39 445 428 433% 41.1% 43.7%
5. DBN, Gaussian inputs, unsupervised 425 442 419 357% 349% 35.8%
6. DBN, Gaussian inputs, partially supervised 4.23 443 418 27.5% 28.4% 31.4%

Partially Supervised < Unsupervised Pre-training < No Pre-training

Gaussian < Binomial

Experiment 2

* Does greedy unsupervised pre-training help ?
 What if we replace RBM with auto-encoders ?
 What if we do greedy supervised pre-training ?

* Does continuous variable modeling help ?
* Does partially supervised pre-training help ?

Experiment 2

e Auto Encoders

* Llearn a compact representation to reconstruct X
p(x) = Sigm(c + Wsigm(b + W’x))

* Trained to minimize reconstruction cross-entropy

R = _Z x;logp(x;) + (1 — x;) logp(1 — x;)

l

Experiment 2

(500~1000) layer width 20 nodes in last two layers

Experiment 2 Experiment 3
train. valid. test train. valid. test
DBN, unsupervised pre-training 0% 1.2% 12% 0% 1.5% 1.5%
Deep net, auto-associator pre-training 0% 14% 14% 0% 1.4% 1.6%
Deep net, supervised pre-training 0% 1.7% 2.0% 0% 1.8% 1.9%
Deep net, no pre-training 004% 2.1% 24% S9% 2.1% 2.2%
Shallow net, no pre-training 004% 18% 19% 3.6% 4.7% 5.0%

Experiment 2

* Auto-encoder pre-training outperforms supervised pre-training but is
still outperformed by RBM.

* Without pre-training, deep nets do not generalize well, but they can
still fit the data if the output layers are wide enough.

Conclusions

e Unsupervised pre-training is important for deep networks.

 Partial supervision further enhances results, especially when input
distribution and the function to be estimated are not closely related.

e Explicitly modeling conditional inputs is better than using binomial
models.

Thanks

