
Greedy Layer-Wise Training of
Deep Networks

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle

NIPS 2007

Presented by

Ahmed Hefny

Story so far …

• Deep neural nets are more expressive: Can learn wider classes of
functions with less hidden units (parameters) and training examples.

• Unfortunately they are not easy to train with randomly initialized
gradient-based methods.

Story so far …

• Hinton et. al. (2006) proposed greedy unsupervised layer-wise
training:
• Greedy layer-wise: Train layers sequentially starting from bottom

(input) layer.
• Unsupervised: Each layer learns a higher-level representation of

the layer below. The training criterion does not depend on the
labels.

• Each layer is trained as a Restricted Boltzman Machine. (RBM is the
building block of Deep Belief Networks).

• The trained model can be fine tuned using a supervised method.

RBM 0

RBM 1

RBM 2

This paper

• Extends the concept to:
• Continuous variables
• Uncooperative input distributions
• Simultaneous Layer Training

• Explores variations to better understand the training method:

• What if we use greedy supervised layer-wise training ?
• What if we replace RBMs with auto-encoders ?

RBM 0

RBM 1

RBM 2

Outline

• Review
• Restricted Boltzman Machines
• Deep Belief Networks
• Greedy layer-wise Training

• Supervised Fine-tuning

• Extensions
• Continuous Inputs
• Uncooperative Input Distributions
• Simultaneous Training

• Analysis Experiments

Outline

• Review
• Restricted Boltzman Machines
• Deep Belief Networks
• Greedy layer-wise Training

• Supervised Fine-tuning

• Extensions
• Continuous Inputs
• Uncooperative Input Distributions
• Simultaneous Training

• Analysis Experiments

Restricted Boltzman Machine

𝑣

ℎ
Undirected bipartite graphical model with connections between
visible nodes and hidden nodes.

Corresponds to joint probability distribution

𝑃 𝑣, ℎ =
1

𝑍
exp(−𝑒𝑛𝑒𝑟𝑔𝑦(𝑣, ℎ))

=
1

𝑍
exp(𝑣′𝑊ℎ + 𝑏′𝑣 + 𝑐′ℎ)

Restricted Boltzman Machine

𝑣

ℎ
Undirected bipartite graphical model with connections between
visible nodes and hidden nodes.

Corresponds to joint probability distribution

𝑃 𝑣, ℎ =
1

𝑍
exp(ℎ′𝑊𝑣 + 𝑏′𝑣 + 𝑐′ℎ)

𝑄 ℎ 𝑣 = 𝑃(ℎ𝑗|𝑣)

𝑗

𝑄 ℎ𝑗 = 1 𝑣 = 𝑠𝑖𝑔𝑚(𝑐𝑗 + 𝑊𝑗𝑘𝑣𝑘

𝑘

)

𝑃 𝑣 ℎ = 𝑃(𝑣𝑘|ℎ)

𝑘

𝑃 𝑣𝑘 = 1 ℎ = 𝑠𝑖𝑔𝑚(𝑏𝑘 + 𝑊𝑗𝑘ℎ𝑗
𝑗

)

Factorized Conditionals

Restricted Boltzman Machine (Training)

• Given input vectors 𝑉0, adjust 𝜃 = (𝑊, 𝑏, 𝑐) to increase log 𝑃 𝑉0

log 𝑃 𝑣0 = log 𝑃(𝑣0, ℎ)

ℎ

= log exp −𝑒𝑛𝑒𝑟𝑔𝑦 𝑣0, ℎ − log exp −𝑒𝑛𝑒𝑟𝑔𝑦 𝑣, ℎ

𝑣,ℎℎ

𝜕log 𝑃 𝑣0

𝜕𝜃
= − 𝑄 ℎ 𝑣0

ℎ

𝜕𝑒𝑛𝑒𝑟𝑔𝑦 𝑣0, ℎ

𝜕𝜃
+ 𝑃(𝑣, ℎ)

𝑣,ℎ

𝜕𝑒𝑛𝑒𝑟𝑔𝑦 𝑣, ℎ

𝜕𝜃

𝜕log 𝑃 𝑣0

𝜕𝜃𝑘
= − 𝑄 ℎ 𝑣0

ℎ

𝜕𝑒𝑛𝑒𝑟𝑔𝑦 𝑣0, ℎ

𝜕𝜃𝑘
+ 𝑃 𝑣 𝑄(ℎ𝑘|𝑣)

ℎ𝑘𝑣

𝜕𝑒𝑛𝑒𝑟𝑔𝑦 𝑣, ℎ

𝜕𝜃𝑘

Restricted Boltzman Machine (Training)

• Given input vectors 𝑉0, adjust 𝜃 = (𝑊, 𝑏, 𝑐) to increase log 𝑃 𝑉0

log 𝑃 𝑣0 = log 𝑃(𝑣0, ℎ)

ℎ

= log exp −𝑒𝑛𝑒𝑟𝑔𝑦 𝑣0, ℎ − log exp −𝑒𝑛𝑒𝑟𝑔𝑦 𝑣, ℎ

𝑣,ℎℎ

𝜕log 𝑃 𝑣0

𝜕𝜃
= − 𝑄 ℎ 𝑣0

ℎ

𝜕𝑒𝑛𝑒𝑟𝑔𝑦 𝑣0, ℎ

𝜕𝜃
+ 𝑃(𝑣, ℎ)

𝑣,ℎ

𝜕𝑒𝑛𝑒𝑟𝑔𝑦 𝑣, ℎ

𝜕𝜃

𝜕log 𝑃 𝑣0

𝜕𝜃𝑘
= − 𝑄 ℎ 𝑣0

ℎ

𝜕𝑒𝑛𝑒𝑟𝑔𝑦 𝑣0, ℎ

𝜕𝜃𝑘
+ 𝑃 𝑣 𝑄(ℎ𝑘|𝑣)

ℎ𝑘𝑣

𝜕𝑒𝑛𝑒𝑟𝑔𝑦 𝑣, ℎ

𝜕𝜃𝑘

Restricted Boltzman Machine (Training)

• Given input vectors 𝑉0, adjust 𝜃 = (𝑊, 𝑏, 𝑐) to increase log 𝑃 𝑉0

log 𝑃 𝑣0 = log 𝑃(𝑣0, ℎ)

ℎ

= log exp −𝑒𝑛𝑒𝑟𝑔𝑦 𝑣0, ℎ − log exp −𝑒𝑛𝑒𝑟𝑔𝑦 𝑣, ℎ

𝑣,ℎℎ

𝜕log 𝑃 𝑣0

𝜕𝜃
= − 𝑄 ℎ 𝑣0

ℎ

𝜕𝑒𝑛𝑒𝑟𝑔𝑦 𝑣0, ℎ

𝜕𝜃
+ 𝑃(𝑣, ℎ)

𝑣,ℎ

𝜕𝑒𝑛𝑒𝑟𝑔𝑦 𝑣, ℎ

𝜕𝜃

𝜕log 𝑃 𝑣0

𝜕𝜃𝑘
= − 𝑄 ℎ 𝑣0

ℎ

𝜕𝑒𝑛𝑒𝑟𝑔𝑦 𝑣0, ℎ

𝜕𝜃𝑘
+ 𝑃 𝑣 𝑄(ℎ𝑘|𝑣)

ℎ𝑘𝑣

𝜕𝑒𝑛𝑒𝑟𝑔𝑦 𝑣, ℎ

𝜕𝜃𝑘

 Sample ℎ0 given 𝑣0 Sample 𝑣1 and ℎ1 using Gibbs sampling

Restricted Boltzman Machine (Training)

• Now we can perform stochastic gradient descent on data log-
likelihood

• Stop based on some criterion

 (e.g. reconstruction error − log𝑃(𝑣1 = 𝑥|𝑣0 = 𝑥)

Deep Belief Network

• A DBN is a model of the form

 𝑃 𝑥, 𝑔1, 𝑔2, … , 𝑔𝑙 = 𝑃(𝑥|𝑔1) P 𝑔1 𝑔2 …𝑃 𝑔𝑙−2 𝑔𝑙−1 𝑃(𝑔𝑙−1, 𝑔𝑙)

𝑥 = 𝑔0 denotes input variables

𝑔 denotes hidden layers of causal variables

Deep Belief Network

• A DBN is a model of the form

 𝑃 𝑥, 𝑔1, 𝑔2, … , 𝑔𝑙 = 𝑃(𝑥|𝑔1) P 𝑔1 𝑔2 …𝑃 𝑔𝐿−2 𝑔𝐿−1 𝑃(𝑔𝐿−1, 𝑔𝐿)

𝑥 = 𝑔0 denotes input variables

𝑔 denotes hidden layers of causal variables

Deep Belief Network

• A DBN is a model of the form

 𝑃 𝑥, 𝑔1, 𝑔2, … , 𝑔𝑙 = 𝑃(𝑥|𝑔1) P 𝑔1 𝑔2 …𝑃 𝑔𝑙−2 𝑔𝑙−1 𝑃(𝑔𝑙−1, 𝑔𝑙)

𝑥 = 𝑔0 denotes input variables

𝑔 denotes hidden layers of causal variables

𝑃(𝑔𝑙−1, 𝑔𝑙) is an RBM

𝑃 𝑔𝑖 𝑔𝑖+1 = 𝑃(𝑔𝑗
𝑖 |𝑔𝑖+1)𝑗

𝑃 𝑔𝑗
𝑖 𝑔𝑖+1 = 𝑠𝑖𝑔𝑚(𝑏𝑗

𝑖 + 𝑊𝑘𝑗
𝑖 𝑔𝑘

𝑖+1)𝑛𝑖+1

𝑘
RBM = Infinitely
Deep network with
tied weights

Greedy layer-wise training

• 𝑃(𝑔1|𝑔0) is intractable

• Approximate with 𝑄(𝑔1|𝑔0)
• Treat bottom two layers as an RBM

• Fit parameters using contrastive divergence

Greedy layer-wise training

• 𝑃(𝑔1|𝑔0) is intractable

• Approximate with 𝑄(𝑔1|𝑔0)
• Treat bottom two layers as an RBM

• Fit parameters using contrastive divergence

• That gives an approximate 𝑃 𝑔1

• We need to match it with 𝑃(𝑔1)

Greedy layer-wise training

• Approximate 𝑃 𝑔𝑙 𝑔𝑙−1 ≈ 𝑄(𝑔𝑙|𝑔𝑙−1)
• Treat layers 𝑙 − 1, 𝑙 as an RBM

• Fit parameters using contrastive divergence

• Sample 𝑔0
𝑙−1 recursively using 𝑄 𝑔𝑖 𝑔𝑖−1 starting from 𝑔0

Outline

• Review
• Restricted Boltzman Machines
• Deep Belief Networks
• Greedy layer-wise Training

• Supervised Fine-tuning

• Extensions
• Continuous Inputs
• Uncooperative Input Distributions
• Simultaneous Training

• Analysis Experiments

Supervised Fine Tuning (In this paper)

• Use greedy layer-wise training to initialize weights of all layers except
output layer.

• For fine-tuning, use stochastic gradient descent of a cost function on
the outputs where the conditional expected values of hidden nodes
are approximated using mean-field.

 𝐸 𝑔𝑖

𝑔𝑖−1 = 𝜇𝑖−1 = 𝜇𝑖 = 𝑠𝑖𝑔𝑚(𝑏𝑖 + 𝑊𝑖𝜇𝑖−1)

Supervised Fine Tuning (In this paper)

• Use greedy layer-wise training to initialize weights of all layers except
output layer.

• Use backpropagation

Outline

• Review
• Restricted Boltzman Machines
• Deep Belief Networks
• Greedy layer-wise Training

• Supervised Fine-tuning

• Extensions
• Continuous Inputs
• Uncooperative Input Distributions
• Simultaneous Training

• Analysis Experiments

Continuous Inputs

• Recall RBMs:

• 𝑄 ℎ𝑗 𝑣 ∝ 𝑄 ℎ𝑗 , 𝑣 ∝ exp ℎ𝑗𝑤′𝑣 + 𝑏𝑗ℎ𝑗 ∝ exp (𝑤′𝑣 + 𝑏𝑗) ℎ𝑗 = exp(𝑎 𝑣 ℎ𝑗)

• If we restrict ℎ𝑗 ∈ 𝐼 = {0,1} then normalization gives us binomial with
𝑝 given by sigmoid.

• Instead, if 𝐼 = [0,∞] we get exponential density

• If 𝐼 is closed interval then we get truncated exponential

Continuous Inputs (Case for truncated
exponential [0,1])
• Sampling

 For truncated exponential, inverse CDF can be used

 hj = 𝐹−1 𝑈 =
log(1−𝑈×(1−exp 𝑎 𝑣)

𝑎(𝑣)

 where 𝑈 is sampled uniformly from [0,1]

• Conditional Expectation

 𝐸 ℎ𝑗 𝑣 =
1

1−exp (−𝑎 𝑣)
−

1

𝑎(𝑣)

Continuous Inputs

• To handle Gaussian inputs, we need to augment the energy function
with a term quadratic in ℎ.

• For a diagonal covariance matrix
𝑃 ℎ𝑗 𝑣 = 𝑎 𝑣 ℎ𝑗 + 𝑑𝑗ℎ𝑗

2

Giving
𝐸 ℎ𝑗 𝑧 = 𝑎(𝑥)/2𝑑2

Continuous Hidden Nodes ?

Continuous Hidden Nodes ?

• Truncated Exponential

𝐸 ℎ𝑗 𝑣 =
1

1 − exp (−𝑎 𝑣)
−

1

𝑎(𝑣)

• Gaussian
𝐸 ℎ𝑗 𝑣 = 𝑎(𝑣)/2𝑑2

Uncooperative Input Distributions

• Setting

 𝑥~𝑝 𝑥

 𝑦 = 𝑓 𝑥 + 𝑛𝑜𝑖𝑠𝑒

• No particular relation between p and f, (e.g. Gaussian and sinus)

Uncooperative Input Distributions

• Setting

 𝑥~𝑝 𝑥

 𝑦 = 𝑓 𝑥 + 𝑛𝑜𝑖𝑠𝑒

• No particular relation between p and f, (e.g. Gaussian and sinus)

• Problem: Unsupvervised pre-training may not help prediction

Outline

• Review
• Restricted Boltzman Machines

• Deep Belief Networks

• Greedy layer-wise Training

• Supervised Fine-tuning

• Extensions

• Analysis Experiments

Uncooperative Input Distributions

• Proposal: Mix unsupervised and supervised training for each layer

Temp. Ouptut Layer

Stochastic Gradient of input log likelihood
by Contrastive Divergence

Stochastic Gradient of prediction error

Combined Update

Simultaneous Layer Training

• Greedy Layer-wise Training

• For each layer
• Repeat Until Criterion Met

• Sample layer input (by recursively applying trained layers to data)

• Update parameters using contrastive divergence

Simultaneous Layer Training

• Simultaneous Training

• Repeat Until Criterion Met
• Sample input to all layers

• Update parameters of all layers using contrastive divergence

• Simpler: One criterion for the entire network

• Takes more time

Outline

• Review
• Restricted Boltzman Machines
• Deep Belief Networks
• Greedy layer-wise Training

• Supervised Fine-tuning

• Extensions
• Continuous Inputs
• Uncooperative Input Distributions
• Simultaneous Training

• Analysis Experiments

Experiments

• Does greedy unsupervised pre-training help ?

• What if we replace RBM with auto-encoders ?

• What if we do greedy supervised pre-training ?

• Does continuous variable modeling help ?

• Does partially supervised pre-training help ?

Experiment 1

• Does greedy unsupervised pre-training help ?

• What if we replace RBM with auto-encoders ?

• What if we do greedy supervised pre-training ?

• Does continuous variable modeling help ?

• Does partially supervised pre-training help ?

Experiment 1

Experiment 1

Experiment 1(MSE and Training Errors)

Partially Supervised < Unsupervised Pre-training < No Pre-training

Gaussian < Binomial

Experiment 2

• Does greedy unsupervised pre-training help ?

• What if we replace RBM with auto-encoders ?

• What if we do greedy supervised pre-training ?

• Does continuous variable modeling help ?

• Does partially supervised pre-training help ?

Experiment 2

• Auto Encoders

• Learn a compact representation to reconstruct X
𝑝 𝑥 = 𝑠𝑖𝑔𝑚 𝑐 + 𝑊𝑠𝑖𝑔𝑚 𝑏 + 𝑊′𝑥

• Trained to minimize reconstruction cross-entropy

𝑅 = − 𝑥𝑖 log 𝑝 𝑥𝑖 +

𝑖

(1 − 𝑥𝑖) log 𝑝 1 − 𝑥𝑖

X X

Experiment 2

(500~1000) layer width 20 nodes in last two layers

Experiment 2

• Auto-encoder pre-training outperforms supervised pre-training but is
still outperformed by RBM.

• Without pre-training, deep nets do not generalize well, but they can
still fit the data if the output layers are wide enough.

Conclusions

• Unsupervised pre-training is important for deep networks.

• Partial supervision further enhances results, especially when input
distribution and the function to be estimated are not closely related.

• Explicitly modeling conditional inputs is better than using binomial
models.

Thanks

