Neural Networks:
What can a network represent

Deep Learning, Fall 2017
Projects

• Everyone must do a project
 – Teams of two

• Projects must
 – Use neural networks
 – Address a well-defined problem
 – Outcomes must be objectively or subjectively evaluateable

• Quality:
 – May simply revisit already published literature
 • E.g. obtain near-state-of-art on imagenet, or speech recognition
 – Existing solutions, new problems
 • MT for a new language
 – Propose new designs or learning methods
 • E.g. use LSTMs for image recognition
 – Be entirely novel

• Objective: Demonstrate ability to implement a complex solution using neural networks
Projects

• Schedule:
 – Announce teams to TAs/myself by 15 Sep
 – Send project proposals by 21 Sep
 – Finalize project by 28 Sep

• Poster presentation: Between Dec 7 and Dec 10th
Recap: Neural networks have taken over AI

- Tasks that are made possible by NNs, aka deep learning
Recap: NNets and the brain

• In their basic form, NNets mimic the networked structure in the brain
Recap: The brain

- The Brain is composed of networks of neurons
Recap: Nnets and the brain

- Neural nets are composed of networks of computational models of neurons called perceptrons.
Recap: the perceptron

- A threshold unit
 - "Fires" if the weighted sum of inputs exceeds a threshold

\[
y = \begin{cases}
1 \text{ if } \sum_i w_i x_i \geq T \\
0 \text{ else }
\end{cases}
\]
A threshold unit

- “Fires” if the weighted sum of inputs and the “bias” T is positive
The “soft” perceptron

- A “squashing” function instead of a threshold at the output
 - The sigmoid “activation” replaces the threshold
- **Activation**: The function that acts on the weighted combination of inputs (and threshold)
Other “activations”

- Does not always have to be a squashing function
 - We will hear more about activations later
- We will continue to assume a “threshold” activation in this lecture
Recap: the multi-layer perceptron

• A network of perceptrons
 – Generally “layered”
Defining “depth”

- What is a “deep” network
Deep Structures

In any directed network of computational elements with input source nodes and output sink nodes, “depth” is the length of the longest path from a source to a sink.

Left: Depth = 2. Right: Depth = 3
Deep Structures

- *Layered* deep structure

- “Deep” \rightarrow Depth > 2
The multi-layer perceptron

- Inputs are real or Boolean stimuli
- Outputs are real or Boolean values
 - Can have multiple outputs for a single input
- **What can this network compute?**
 - What kinds of input/output relationships can it model?
MLPs approximate functions

- MLPs can compose Boolean functions
- MLPs can compose real-valued functions
- What are the limitations?
Today

• Multi-layer Perceptrons as universal Boolean functions
 – The need for depth
• MLPs as universal classifiers
 – The need for depth
• MLPs as universal approximators
• A discussion of optimal depth and width
• Brief segue: RBF networks
Today

- Multi-layer Perceptrons as universal Boolean functions
 - The need for depth

- MLPs as universal classifiers
 - The need for depth

- MLPs as universal approximators

- A discussion of optimal depth and width

- Brief segue: RBF networks
The MLP as a Boolean function

• How well do MLPs model Boolean functions?
The perceptron as a Boolean gate

- A perceptron can model any simple binary Boolean gate
Perceptron as a Boolean gate

- The universal AND gate
 - AND any number of inputs
 - Any subset of who may be negated

\[
\left(\bigwedge_{i=1}^{L} X_i \right) \land \left(\bigwedge_{i=L+1}^{N} \bar{X}_i \right)
\]

Will fire only if \(X_1 \ldots X_L\) are all 1 and \(X_{L+1} \ldots X_N\) are all 0
Perceptron as a Boolean gate

- The universal OR gate
 - OR any number of inputs
 - Any subset of who may be negated

\[
\begin{align*}
X_1 & \rightarrow 1 \\
X_2 & \rightarrow 1 \\
\vdots & \\
X_L & \rightarrow 1 \\
X_{L+1} & \rightarrow -1 \\
X_{L+2} & \rightarrow -1 \\
\vdots & \\
X_N & \rightarrow -1
\end{align*}
\]

\[
\left(\bigvee_{i=1}^{L} X_i \right) \lor \left(\bigvee_{i=L+1}^{N} \overline{X_i} \right)
\]

Will fire only if any of \(X_1 \ldots X_L\) are 1
or any of \(X_{L+1} \ldots X_N\) are 0
Perceptron as a Boolean Gate

- Universal OR:
 - Fire if any K-subset of inputs is “ON”

Will fire only if the total number of of $X_1 \ldots X_L$ that are 1 or $X_{L+1} \ldots X_N$ that are 0 is at least K
The perceptron is not enough

• Cannot compute an XOR
Multi-layer perceptron

- MLPs can compute the XOR

The diagram shows a 2-layer perceptron with inputs X and Y, a hidden layer, and an output layer. The XOR function is computed by the following connections:

1. The input X connects to a neuron with a weight of 1.
2. The input Y connects to a neuron with a weight of 1.
3. The hidden neuron with weight -1 outputs $\overline{X} \lor \overline{Y}$.
4. The hidden neuron with weight 1 outputs $X \lor Y$.
5. The output neuron with weight 1 computes the XOR of the hidden layer's outputs.

The diagram illustrates how the MLP computes the XOR function.
Multi-layer perceptron

- MLPs can compute more complex Boolean functions
- MLPs can compute any Boolean function
 - Since they can emulate individual gates
- MLPs are universal Boolean functions

\[
((A \land \bar{X} \land Z) \lor (A \land \bar{Y})) \land ((X \land Y) \lor (X \land Z))
\]
MLP as Boolean Functions

- MLPs are universal Boolean functions
 - Any function over any number of inputs and any number of outputs
- But how many “layers” will they need?
How many layers for a Boolean MLP?

- Expressed in disjunctive normal form

Truth table shows *all* input combinations for which output is 1

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>X₅</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
How many layers for a Boolean MLP?

Truth Table

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>X₅</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth table shows all input combinations for which output is 1

\[Y = \bar{X}_1 \bar{X}_2 X_3 X_4 \bar{X}_5 + \bar{X}_1 X_2 \bar{X}_3 X_4 X_5 + \bar{X}_1 X_2 X_3 \bar{X}_4 \bar{X}_5 + \bar{X}_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + \bar{X}_1 X_2 X_3 X_4 X_5 + X_1 X_2 \bar{X}_3 \bar{X}_4 X_5 \]

• Expressed in disjunctive normal form
How many layers for a Boolean MLP?

Truth Table

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>X₅</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth table shows all input combinations for which output is 1

\[Y = \bar{X}_1 \bar{X}_2 X_3 X_4 \bar{X}_5 + \bar{X}_1 X_2 \bar{X}_3 X_4 X_5 + \bar{X}_1 X_2 X_3 \bar{X}_4 \bar{X}_5 + X_1 \bar{X}_2 X_3 X_4 X_5 + X_1 \bar{X}_2 X_3 X_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 \]

- Expressed in disjunctive normal form
How many layers for a Boolean MLP?

Truth Table shows all input combinations for which output is 1

Truth Table

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>X₅</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Y = \overline{X_1} \overline{X_2} X_3 X_4 \overline{X_5} + X_1 X_2 \overline{X_3} X_4 X_5 + \overline{X_1} X_2 X_3 \overline{X_4} \overline{X_5} + X_1 \overline{X_2} \overline{X_3} \overline{X_4} X_5 + X_1 X_2 X_3 X_4 X_5 + \overline{X_1} X_2 \overline{X_3} \overline{X_4} X_5 + X_1 X_2 \overline{X_3} \overline{X_4} X_5 \]

• Expressed in disjunctive normal form
How many layers for a Boolean MLP?

• Expressed in disjunctive normal form

Truth Table

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>X₅</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth table shows all input combinations for which output is 1

\[Y = \overline{X}_1 \overline{X}_2 \overline{X}_3 X_4 \overline{X}_5 + \overline{X}_1 X_2 \overline{X}_3 X_4 X_5 + \overline{X}_1 X_2 X_3 \overline{X}_4 \overline{X}_5 + \overline{X}_1 X_2 X_3 \overline{X}_4 X_5 + X_1 \overline{X}_2 X_3 X_4 X_5 + X_1 \overline{X}_2 X_3 X_4 X_5 \]
How many layers for a Boolean MLP?

Truth Table

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>X₅</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth table shows all input combinations for which output is 1

\[Y = \bar{X}_1 \bar{X}_2 X_3 X_4 \bar{X}_5 + \bar{X}_1 X_2 \bar{X}_3 X_4 X_5 + \bar{X}_1 X_2 X_3 \bar{X}_4 \bar{X}_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 X_2 X_3 X_4 X_5 + X_1 X_2 \bar{X}_3 \bar{X}_4 \bar{X}_5 \]

• Expressed in disjunctive normal form
How many layers for a Boolean MLP?

Truth Table

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth table shows *all* input combinations for which output is 1

$$Y = \bar{X}_1\bar{X}_2X_3X_4\bar{X}_5 + \bar{X}_1X_2\bar{X}_3X_4X_5 + \bar{X}_1X_2X_3\bar{X}_4\bar{X}_5 + \bar{X}_1\bar{X}_2\bar{X}_3\bar{X}_4X_5 + X_1\bar{X}_2X_3X_4X_5 + X_1X_2\bar{X}_3\bar{X}_4X_5$$

- Expressed in disjunctive normal form
How many layers for a Boolean MLP?

Truth Table

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth table shows all input combinations for which output is 1

\[
Y = \overline{X}_1 \overline{X}_2 X_3 X_4 \overline{X}_5 + \overline{X}_1 X_2 \overline{X}_3 X_4 X_5 + \overline{X}_1 X_2 X_3 \overline{X}_4 \overline{X}_5 + \overline{X}_1 X_2 \overline{X}_3 \overline{X}_4 X_5 + X_1 X_2 \overline{X}_3 \overline{X}_4 X_5
\]

- Expressed in disjunctive normal form
How many layers for a Boolean MLP?

- Truth Table shows all input combinations for which output is 1

$$Y = X_1 X_2 X_3 X_4 X_5 + X_1 X_2 X_3 X_4 X_5$$

- Expressed in disjunctive normal form
How many layers for a Boolean MLP?

• Any truth table can be expressed in this manner!
• A one-hidden-layer MLP is a Universal Boolean Function

Truth table shows all input combinations for which output is 1

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Y = \bar{X}_1 \bar{X}_2 X_3 X_4 \bar{X}_5 + \bar{X}_1 X_2 \bar{X}_3 X_4 X_5 + \bar{X}_1 X_2 X_3 \bar{X}_4 \bar{X}_5 + \bar{X}_1 X_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 X_3 X_4 X_5 + X_1 X_2 \bar{X}_3 \bar{X}_4 X_5 \]

But what is the largest number of perceptrons required in the single hidden layer for an N-input-variable function?
Reducing a Boolean Function

- DNF form:
 - Find groups
 - Express as reduced DNF

This is a “Karnaugh Map”

It represents a truth table as a grid
Filled boxes represent input combinations for which output is 1; blank boxes have output 0

Adjacent boxes can be “grouped” to reduce the complexity of the DNF formula for the table
Reducing a Boolean Function

<table>
<thead>
<tr>
<th></th>
<th>YZ</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>WX</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basic DNF formula will require 7 terms
Reducing a Boolean Function

Reduced DNF form:

- Find groups
- Express as reduced DNF

\[O = \overline{Y} \overline{Z} + \overline{W} X \overline{Y} + \overline{X} Y \overline{Z} \]
Reducing a Boolean Function

• Reduced DNF form:
 – Find groups
 – Express as reduced DNF

\[O = \overline{Y}\overline{Z} + \overline{W}XY\overline{Y} + \overline{X}YZ \]
Largest irreducible DNF?

What arrangement of ones and zeros simply cannot be reduced further?
Largest irreducible DNF?

<table>
<thead>
<tr>
<th>WX</th>
<th>YZ</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• What arrangement of ones and zeros simply cannot be reduced further?
Largest irreducible DNF?

• What arrangement of ones and zeros simply cannot be reduced further?

How many neurons in a DNF (one-hidden-layer) MLP for this Boolean function?

• What arrangement of ones and zeros simply cannot be reduced further?
How many neurons in a DNF (one-hidden-layer) MLP for this Boolean function of 6 variables?
How many neurons in a DNF (one-hidden-layer) MLP for this Boolean function

Can be generalized: Will require 2^{N-1} perceptrons in hidden layer

Exponential in N

- How many neurons in a DNF (one-hidden-layer) MLP for this Boolean function
How many neurons in a DNF (one-hidden-layer) MLP for this Boolean function?

Can be generalized: Will require 2^{N-1} perceptrons in hidden layer

Exponential in N

How many units if we use *multiple layers*?

- How many neurons in a DNF (one-hidden-layer) MLP for this Boolean function
Width of a deep MLP

\[O = W \oplus X \oplus Y \oplus Z \]

\[O = U \oplus V \oplus W \oplus X \oplus Y \oplus Z \]
Multi-layer perceptron XOR

- An XOR takes three perceptrons

\[X \oplus Y \]

\[X \lor Y \]

\[\overline{X} \lor \overline{Y} \]
• An XOR needs 3 perceptrons
• This network will require $3 \times 3 = 9$ perceptrons
An XOR needs 3 perceptrons

This network will require $3 \times 5 = 15$ perceptrons

$$O = U \oplus V \oplus W \oplus X \oplus Y \oplus Z$$
An XOR needs 3 perceptrons

This network will require $3 \times 5 = 15$ perceptrons

More generally, the XOR of N variables will require $3(N-1)$ perceptrons!
How many neurons in a DNF (one hidden layer) MLP for this Boolean function?

00 01 11 10

YZ
WX

Width of a single-layer Boolean MLP

Single hidden layer: Will require $2^{N-1}+1$ perceptrons in all (including output unit)
Exponential in N

Will require $3(N-1)$ perceptrons in a deep network
Linear in N!!!
Can be arranged in only $2\log_2(N)$ layers
A better representation

- Only $2 \log_2 N$ layers
 - By pairing terms
 - 2 layers per XOR

$$O = X_1 \oplus X_2 \oplus \cdots \oplus X_N$$
The challenge of depth

- Using only K hidden layers will require $O(2^{(N-K/2)})$ neurons in the Kth layer
 - Because the output can be shown to be the XOR of all the outputs of the K-1th hidden layer
 - I.e. reducing the number of layers below the minimum will result in an exponentially sized network to express the function fully
 - A network with fewer than the required number of neurons cannot model the function

\[
O = X_1 \oplus X_2 \oplus \cdots \oplus X_N \\
= Z_1 \oplus Z_2 \oplus \cdots \oplus Z_M
\]
Recap: The need for depth

- *Deep* Boolean MLPs that scale *linearly* with the number of inputs ...
- ... can become exponentially large if recast using only one layer
- It gets worse..
The need for depth

- The wide function can happen at any layer
- Having a few extra layers can greatly reduce network size
Network size: summary

- An MLP is a universal Boolean function

- But can represent a given function only if
 - It is sufficiently wide
 - It is sufficiently deep
 - Depth can be traded off for (sometimes) exponential growth of the width of the network

- Optimal width and depth depend on the number of variables and the complexity of the Boolean function
 - Complexity: *minimal* number of terms in DNF formula to represent it
Story so far

• Multi-layer perceptrons are *Universal Boolean Machines*

• Even a network with a *single* hidden layer is a universal Boolean machine
 – But a single-layer network may require an exponentially large number of perceptrons

• Deeper networks may require far fewer neurons than shallower networks to express the same function
 – Could be *exponentially* smaller
Today

• Multi-layer Perceptrons as universal Boolean functions
 – The need for depth

• MLPs as universal classifiers
 – The need for depth

• MLPs as universal approximators

• A discussion of optimal depth and width

• Brief segue: RBF networks
The MLP as a classifier

- MLP as a function over real inputs
- MLP as a function that finds a complex “decision boundary” over a space of reals

784 dimensions (MNIST)
A Perceptron on Reals

A perceptron operates on real-valued vectors – This is a linear classifier
Boolean functions with a real perceptron

- Boolean perceptrons are also linear classifiers
 - Purple regions are 1
Composing complicated “decision” boundaries

• Build a network of units with a single output that fires if the input is in the coloured area

Can now be composed into “networks” to compute arbitrary classification “boundaries”
Booleans over the reals

• The network must fire if the input is in the coloured area
Booleans over the reals

• The network must fire if the input is in the coloured area
Booleans over the reals

- The network must fire if the input is in the coloured area
Booleans over the reals

• The network must fire if the input is in the coloured area
Booleans over the reals

- The network must fire if the input is in the coloured area
Booleans over the reals

- The network must fire if the input is in the coloured area
More complex decision boundaries

- Network to fire if the input is in the yellow area
 - “OR” two polygons
 - A third layer is required
Complex decision boundaries

- Can compose \textit{arbitrarily} complex decision boundaries
Complex decision boundaries

• Can compose *arbitrarily* complex decision boundaries
Complex decision boundaries

• Can compose arbitrarily complex decision boundaries
 – With only one hidden layer!
 – How?
Exercise: compose this with one hidden layer

• How would you compose the decision boundary to the left with only one hidden layer?
Composing a Square decision boundary

• The polygon net

\[\sum_{i=1}^{4} y_i \geq 4? \]
Composing a pentagon

- The polygon net

\[\sum_{i=1}^{5} y_i \geq 5? \]
Composing a hexagon

• The polygon net
How about a heptagon

• What are the sums in the different regions?
 – A pattern emerges as we consider \(N > 6 \).
Composing a polygon

- The polygon net
- Increasing the number of sides reduces the area outside the polygon that have $N/2 < \text{Sum} < N$
Composing a circle

- The circle net
 - Very large number of neurons
 - \(\text{Sum is } N \text{ inside the circle, } N/2 \text{ outside everywhere} \)
 - Circle can be of arbitrary diameter, at any location
Composing a circle

- The circle net
 - Very large number of neurons
 - *Sum is* $N/2$ *inside the circle, 0 outside everywhere*
 - Circle can be of arbitrary diameter, at any location
Adding circles

- The “sum” of two circles sub nets is exactly $\frac{N}{2}$ inside either circle, and 0 outside.

$$\sum_{i=1}^{2N} y_i - \frac{N}{2} > 0?$$
Composing an arbitrary figure

• Just fit in an arbitrary number of circles
 – More accurate approximation with greater number of smaller circles
 – Can achieve arbitrary precision

\[\sum_{i=1}^{KN} y_i - \frac{N}{2} > 0? \]

\[K \to \infty \]
MLP: Universal classifier

- MLPs can capture *any* classification boundary
- A *one-layer MLP* can model any classification boundary
- *MLPs are universal classifiers*
Depth and the universal classifier

- Deeper networks can require far fewer neurons
Special case: Sum-product nets

“Shallow vs deep sum-product networks,” Oliver Dellaleau and Yoshua Bengio

- For networks where layers alternately perform either sums or products, a deep network may require an exponentially fewer number of layers than a shallow one.
Depth in sum-product networks

Theorem 5
A certain class of functions F of n inputs can be represented using a deep network with $O(n)$ units, whereas it would require $O(2^{\sqrt{n}})$ units for a shallow network.

Theorem 6
For a certain class of functions G of n inputs, the deep sum-product network with depth k can be represented with $O(nk)$ units, whereas it would require $O((n - 1)^k)$ units for a shallow network.
Optimal depth in *generic* nets

- We look at a different pattern:
 - “worst case” decision boundaries

- For *threshold-activation* networks
 - Generalizes to other nets
Optimal depth

- A one-hidden-layer neural network will required infinite hidden neurons
Optimal depth

- Two layer network: 56 hidden neurons
Optimal depth

- Two layer network: 56 hidden neurons
 - 16 neurons in hidden layer 1
Optimal depth

- Two-layer network: 56 hidden neurons
 - 16 in hidden layer 1
 - 40 in hidden layer 2
 - 57 total neurons, including output neuron
Optimal depth

- But this is just $Y_1 \oplus Y_2 \oplus \cdots \oplus Y_{16}$
Optimal depth

- But this is just $Y_1 \oplus Y_2 \oplus \cdots \oplus Y_{16}$
 - The XOR net will require $16 + 15 \times 3 = 61$ neurons
- Greater than the 2-layer network with only 52 neurons
Optimal depth

- A one-hidden-layer neural network will required infinite hidden neurons

\[\sum_{i=1}^{KN} y_i - \frac{N}{2} > 0? \]

\[K \rightarrow \infty \]
Actual linear units

- 64 basic linear feature detectors
Optimal depth

- Two hidden layers: 608 hidden neurons
 - 64 in layer 1
 - 544 in layer 2
- 609 total neurons (including output neuron)
Optimal depth

- XOR network (12 hidden layers): 253 neurons
- The difference in size between the deeper optimal (XOR) net and shallower nets increases with increasing pattern complexity
Network size?

• In this problem the 2-layer net was *quadratic* in the number of lines
 – \([(N + 2)^2 / 8] \) neurons in 2\(^{nd}\) hidden layer
 – Not exponential
 – Even though the pattern is an XOR
 – Why?

• The data are two-dimensional!
 – Only two *fully independent* features
 – The pattern is exponential in the *dimension of the input (two)!*

• For general case of \(N \) lines distributed over \(D \) dimensions, we will need up to \(\frac{1}{2} \left(\frac{N}{D} + 1 \right)^D \)
 – Increasing input dimensions can increase the worst-case size of the shallower network exponentially, but not the XOR net
 • The size of the XOR net depends only on the number of first-level linear detectors (\(N \))
Depth: Summary

• The number of neurons required in a shallow network is
 – Polynomial in the number of basic patterns
 – Exponential in the dimensionality input
 • (this is the worst case)
 • Alternately, exponential in the number of statistically independent features
Story so far

- Multi-layer perceptrons are *Universal Boolean Machines*
 - Even a network with a *single* hidden layer is a universal Boolean machine

- Multi-layer perceptrons are *Universal Classification Functions*
 - Even a network with a single hidden layer is a universal classifier

- But a single-layer network may require an exponentially large number of perceptrons than a deep one

- Deeper networks may require exponentially fewer neurons than shallower networks to express the same function
 - Could be *exponentially* smaller
 - Deeper networks are more *expressive*
Today

- Multi-layer Perceptrons as universal Boolean functions
 - The need for depth
- MLPs as universal classifiers
 - The need for depth
- MLPs as universal approximators
 - A discussion of optimal depth and width
- Brief segue: RBF networks
MLP as a continuous-valued regression

- A simple 3-unit MLP with a “summing” output unit can generate a “square pulse” over an input
 - Output is 1 only if the input lies between T_1 and T_2
 - T_1 and T_2 can be arbitrarily specified
MLP as a continuous-valued regression

- A simple 3-unit MLP can generate a “square pulse” over an input
- **An MLP with many units can model an arbitrary function over an input**
 - To arbitrary precision
 - Simply make the individual pulses narrower
- **A one-layer MLP can model an arbitrary function of a single input**
An MLP can compose a cylinder

- \(N/2 \) in the circle, 0 outside
MLP as a continuous-valued function

- MLPs can actually compose arbitrary functions in any number of dimensions!
 - Even with only one layer
 - As sums of scaled and shifted cylinders
 - To arbitrary precision
 - By making the cylinders thinner
 - The MLP is a universal approximator!
Caution: MLPs with additive output units are universal approximators

- MLPs can actually compose arbitrary functions
- But explanation so far only holds if the output unit only performs summation
 - i.e. does not have an additional “activation”
“Proper” networks: Outputs with activations

- Output neuron may have actual “activation”
 - Threshold, sigmoid, tanh, softplus, rectifier, etc.
- What is the property of such networks?
The network as a function

\[f: \{0,1\}^N \rightarrow \{0,1\} \quad \text{Boolean} \]

\[f: \mathbb{R}^N \rightarrow \{0,1\} \quad \text{Threshold} \]

\[f: \mathbb{R}^N \rightarrow (0,1) \quad \text{Sigmoid} \]

\[f: \mathbb{R}^N \rightarrow (-1,1) \quad \text{Tanh} \]

\[f: \mathbb{R}^N \rightarrow (0,\infty) \quad \text{Softrectifier, Rectifier} \]

- Output unit with activation function
 - Threshold or Sigmoid, or any other
- The network is actually a map from the set of all possible input values to all possible output values
 - All values the activation function of the output neuron
The network as a function

- Output unit with activation function
 - Threshold or Sigmoid, or any other

- The network is actually a map from the set of all possible input values to all possible output values
 - All values the activation function of the output neuron

\[f: \{0,1\}^N \rightarrow \{0,1\} \quad \text{Boolean} \]

\[f: \mathbb{R}^N \rightarrow \{0,1\} \quad \text{Threshold} \]

\[f: \mathbb{R}^N \rightarrow (0,1) \quad \text{Sigmoid} \]

\[f: \mathbb{R}^N \rightarrow (-1,1) \quad \text{Tanh} \]

\[f: \mathbb{R}^N \rightarrow (0,\infty) \quad \text{Softmax, Rectifier} \]

The MLP is a *Universal Approximator* for the entire class of functions (maps) it represents!
Today

• Multi-layer Perceptrons as universal Boolean functions
 – The need for depth
• MLPs as universal classifiers
 – The need for depth
• MLPs as universal approximators

• A discussion of optimal depth and width

• Brief segue: RBF networks
The issue of depth

• Previous discussion showed that a single-layer MLP is a universal function approximator
 – Can approximate any function to arbitrary precision
 – But may require infinite neurons in the layer

• More generally, deeper networks will require far fewer neurons for the same approximation error
 – The network is a generic map
 • The same principles that apply for Boolean networks apply here
 – Can be exponentially fewer than the 1-layer network
Sufficiency of architecture

A neural network can represent any function provided it has sufficient capacity—i.e. sufficiently broad and deep to represent the function.

Not all architectures can represent any function.

A network with 16 or more neurons in the first layer is capable of representing the figure to the right perfectly.

A network with less than 16 neurons in the first layer cannot represent this pattern exactly. With caveats...

A 2-layer network with 16 neurons in the first layer cannot represent the pattern with less than 41 neurons in the second layer.
Sufficiency of architecture

- The *capacity* of a network has various definitions
 - *Information* or *Storage* capacity: how many patterns can it remember
 - VC dimension
 - bounded by the square of the number of weights in the network
 - From our perspective: largest number of disconnected convex regions it can represent

- A network with insufficient capacity *cannot* exactly model a function that requires a greater minimal number of convex hulls than the capacity of the network
 - But can approximate it with error
The “capacity” of a network

• VC dimension

• A separate lecture
 – Koiran and Sontag (1998): For “linear” or threshold units, VC dimension is proportional to the number of weights
 • For units with piecewise linear activation it is proportional to the square of the number of weights
 • For any W, L s.t. $W > CL > C^2$, there exists a RELU network with $\leq L$ layers, $\leq W$ weights with VC dimension $\geq \frac{WL}{C} \log_2 \left(\frac{W}{L} \right)$
 – Friedland, Krell, “A Capacity Scaling Law for Artificial Neural Networks” (2017):
 • VC dimension of a linear/threshold net is $O(MK)$, M is the overall number of hidden neurons, K is the weights per neuron
Today

• Multi-layer Perceptrons as universal Boolean functions
 – The need for depth
• MLPs as universal classifiers
 – The need for depth
• MLPs as universal approximators
• A discussion of optimal depth and width

• Brief segue: RBF networks
Perceptrons so far

- The output of the neuron is a function of a linear combination of the inputs and a bias.

Mathematical expression:
\[y = f(z) \]

where:
\[z = \sum_i w_i x_i - T \]
An alternate type of neural unit: Radial Basis Functions

- The output is a function of the distance of the input from a “center”
 - The “center” \(w \) is the parameter specifying the unit
 - The most common activation is the exponent
 - \(\beta \) is a “bandwidth” parameter
 - But other similar activations may also be used
 - Key aspect is radial symmetry, instead of linear symmetry

\[
z = ||x - w||^2
\]

\[
y = f(z)
\]

Typical activation

\[
f(z) = \exp(-\beta z)
\]
An alternate type of neural unit:
Radial Basis Functions

• Radial basis functions can compose cylinder-like outputs with just a single unit with appropriate choice of bandwidth (or activation function)
 – As opposed to $N \to \infty$ units for the linear perceptron
RBF networks as universal approximators

• RBF networks are more effective approximators of continuous-valued functions
 – A one-hidden-layer net only requires one unit per “cylinder”
RBF networks as universal approximators

- RBF networks are more effective approximators of continuous-valued functions
 - A one-hidden-layer net only requires one unit per “cylinder”
RBF networks

• More effective than conventional linear perceptron networks in some problems

• We will revisit this topic, time permitting
Lessons today

• MLPs are universal Boolean function
• MLPs are universal classifiers
• MLPs are universal function approximators

• A single-layer MLP can approximate anything to arbitrary precision
 – But could be exponentially or even infinitely wide in its inputs size
• Deeper MLPs can achieve the same precision with far fewer neurons
 – Deeper networks are more expressive

• RBFs are good, now let’s get back to linear perceptrons... 😊
Next up

• We know MLPs can emulate any function
• But how do we make them emulate a specific desired function
 – E.g. a function that takes an image as input and outputs the labels of all objects in it
 – E.g. a function that takes speech input and outputs the labels of all phonemes in it
 – Etc...
• Training an MLP