Design and Implementation of Speech Recognition Systems

Spring 2011

Class 7: Templates to HMMs
9 Feb 2011
Recap

• Thus far, we have looked at dynamic programming for string matching,
• And derived DTW from DP for isolated word recognition
• We identified the search trellis, time-synchronous search as efficient mechanisms for decoding
• We looked at ways to improve search efficiency using pruning
 – In particular, we identified beam pruning as a nearly universal pruning mechanism in speech recognition
• We looked at the limitations of DTW and template matching:
 – Ok for limited, small vocabulary applications
 – Brittle; breaks down if speakers change
Today’s Topics

• Generalize DTW based recognition
• Extend to multiple templates
• Move on to Hidden Markov Models
• Look ahead: The fundamental problems of HMMs
 – Introduce the three fundamental problems of HMMs
 • Two of the problems deal with decoding using HMMs, solved using the forward and Viterbi algorithms
 • The third dealing with estimating HMM parameters (seen later)
 – Incorporating prior knowledge into the HMM framework
 – Different types of probabilistic models for HMMs
 • Discrete probability distributions
 • Continuous, mixture Gaussian distributions
We’ve seen the DTW alignment of data to model
Limitations of A Single Template

• As noted in the previous topic, a single template cannot capture all the variations in speech

• One alternative already suggested: use multiple templates for each word, and match the input against each one
DTW with multiple templates

8 Feb 2011
DTW with multiple templates

Each template warps differently to best match the input; the best matching template is selected.
Problem With Multiple Templates

• Finding the best match requires the evaluation of many more templates (depending on the number)
 – This can be computationally expensive
 • Important for handheld devices, even for small-vocabulary applications
 • Think battery life!
 – Need a method for reducing multiple templates into a single one

• Even multiple templates do not cover the space of possible variations
 – Need mechanism of generalizing from the templates to include data not seen before

• We can achieve both objectives by averaging all the templates for a given word
Generalizing from Templates

• Generalization implies going from the given templates to one that also represents others that we have not seen

• Taking the average of all available templates may represent the recorded templates less accurately, but will represent other unseen templates more robustly

• A general template (for a word) should capture all salient characteristics of the word, and no more
 – Goal: Improving accuracy

• We will consider several steps to accomplish this
Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates represented by the reduced model

• Accounting for varying segment lengths
Template Averaging

• How can we average the templates when they’re of different lengths?
 – Somehow need to normalize them to each other

• Solution: Apply DTW (of course!)
 – Pick one template as a “master”
 – Align all other templates to it
 • Note: This requires not just finding the best cost, but the actual alignment between the template and input frame sequences, using the back-pointers described earlier
 – Use the alignments generated to compute their average

• Note: Choosing a different master template will lead to a different average template
 – Which template to choose as the master?
 • No definitive answer exists
 • Only trial and error solutions exist
DTW with multiple templates

Align T4 and T3
DTW with multiple templates

Align T4/T2 and T4/T1, similarly; then average all of them
Benefits of Template Averaging

• Obviously, we have eliminated the computational cost of having multiple templates for each word

• Using the averages of the aligned feature vectors generalizes from the samples
 – The average is representative of the templates, and more generally, assumed to be representative of future utterances of the word

• The more the number of templates, the better the generalization
Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates represented by the reduced model

• Accounting for varying segment lengths
Template Size Reduction

• Can we do better? Consider the template for “something”:

 template
 s o me th i ng

• Here, the template has been manually segmented into 6 segments, where each segment is a single phoneme

• Hence, the frames of speech that make up any single segment ought to be fairly alike

• If so, why not replace each segment by a single representative feature vector?
 – How? Again by averaging the frames within the segment

• This gives a reduction in the template size (memory size)
The feature vectors within each segment are assumed to be similar to each other.
Averaging Each Template Segment

Model Vector = $\frac{1}{N} \sum_{i \in \text{segment}} \text{vector}(i)$

$m_j = \frac{1}{N_j} \sum_{i \in \text{segment}(j)} x(i)$

m_j is the model vector for the j^{th} segment

N_j is the number of vectors in the j^{th} segment

$x(i)$ is the i^{th} feature vector
Template With One Model Vector Per Segment

Just one template vector per segment
The averaged template is matched against the data string to be recognized
Select the word whose averaged template has the lowest cost of match
DTW with multiple models

Segment all templates
Average each region into a single point
DTW with multiple models

Segment all templates
Average each region into a single point
DTW with multiple models

\[m_j = \frac{1}{\sum_k N_{k,j}} \sum_{i \in \text{segment}_k(j)} x_k(i) \]

- \(\text{segment}_k(j) \) is the \(j^{th} \) segment of the \(k^{th} \) training sequence
- \(m_j \) is the model vector for the \(j^{th} \) segment
- \(N_{k,j} \) is the number of training vectors in the \(j^{th} \) segment of the \(k^{th} \) training sequence
- \(x_k(i) \) is the \(i^{th} \) vector of the \(k^{th} \) training sequence
DTW with multiple models

Segment all templates, average each region into a single point
To get a simple average model, which is used for recognition
Improving the Templates

- Generalization by averaging the templates
- Generalization by reducing template length
- Accounting for variation within templates represented by the reduced model
- Accounting for varying segment lengths
DTW with multiple models

- The inherent variation between vectors is different for the different segments
 - E.g. the variation in the colors of the beads in the top segment is greater than that in the bottom segment

- Ideally we should account for the differences in variation in the segments
 - E.g., a vector in a test sequence may actually be more matched to the central segment, which permits greater variation, although it is closer, in a Euclidean sense, to the mean of the lower segment, which permits lesser variation
We can define the covariance for each segment using the standard formula for covariance:

\[
C_j = \frac{1}{\sum_k N_{k,j}} \sum_{i \in \text{segment}_k(j)} (x_k(i) - m_j) (x_k(i) - m_j)^T
\]

- \(m_j\) is the model vector for the \(j^{th}\) segment
- \(C_j\) is the covariance of the vectors in the \(j^{th}\) segment
DTW with multiple models

- The distance function must be modified to account for the covariance
- Mahalanobis distance:
 - Normalizes contribution of all dimensions of the data
 \[d(x, m_j) = (x - m_j)^T C_j^{-1} (x - m_j) \]
 - \(x \) is a data vector, \(m_j \) is the mean of a segment, \(C_j \) is the covariance matrix for the segment
- Negative Gaussian log likelihood:
 - Assumes a Gaussian distribution for the segment and computes the probability of the vector on this distribution
 \[\text{Gaussian}(x; m_j, C_j) = \frac{1}{\sqrt{(2\pi)^D |C_j|}} e^{-0.5(x - m_j)^T C_j^{-1} (x - m_j)} \]
 \[d(x, m_j) = -\log(\text{Gaussian}(x; m_j, C_j)) = 0.5 \log\left((2\pi)^D |C_j|\right) + 0.5(x - m_j)^T C_j^{-1} (x - m_j) \]
The Covariance

- The variance that we have computed is a **full covariance matrix**
 - And the distance measure requires a matrix inversion

\[
C_j = \frac{1}{\sum_k N_k} \sum_k \sum_{i \in \text{segment}_k(j)} (x_k(i) - m_j)(x_k(i) - m_j)^T
\]

\[
d(x, m_j) = (x - m_j)^T C_j^{-1}(x - m_j)
\]

- In practice we assume that all off-diagonal terms in the matrix are 0
- This reduces our distance metric to:

\[
d(x, m_j) = \sum_l \frac{(x_l - m_{j,l})^2}{\sigma_{j,l}^2}
\]

- Where the individual variance terms \(\sigma^2 \) are

\[
\sigma_{j,l}^2 = \frac{1}{\sum_k N_k} \sum_k \sum_{i \in \text{segment}_k(j)} (x_{k,l}(i) - m_{j,l})^2
\]

- If we use a negative log Gaussian instead, the modified score (with the diagonal covariance) is

\[
d(x, m_j) = 0.5 \sum_l \log(2\pi\sigma_{j,l}^2) + 0.5 \sum_l \frac{(x_l - m_{j,l})^2}{\sigma_{j,l}^2}
\]
Segmental K-means

• Simple uniform segmentation of training instances is not the most effective method of grouping vectors in the training sequences

• A better segmentation strategy is to segment the training sequences such that the vectors within any segment are most alike
 – The total distance of vectors within each segment from the model vector for that segment is minimum
 – For a global optimum, the total distance of all vectors from the model for their respective segments must be minimum

• This segmentation must be estimated

• The segmental K-means procedure is an iterative procedure to estimate the optimal segmentation
Alignment for training a model from multiple vector sequences

Initialize by uniform segmentation

9 Feb 2011
Alignment for training a model from multiple vector sequences

Initialize by uniform segmentation

9 Feb 2011
Alignment for training a model from multiple vector sequences

Initialize by uniform segmentation
Align each template to the averaged model to get new segmentations
Alignment for training a model from multiple vector sequences
Alignment for training a model from multiple vector sequences
Alignment for training a model from multiple vector sequences
Alignment for training a model from multiple vector sequences
Alignment for training a model from multiple vector sequences

Initialize by uniform segmentation
Align each template to the averaged model to get new segmentations
Recompute the average model from new segmentations

98Feb 2011
Alignment for training a model from multiple vector sequences

99Feb 2011
Alignment for training a model from multiple vector sequences

The procedure can be continued until convergence.

Convergence is achieved when the total best-alignment error for all training sequences does not change significantly with further refinement of the model.
Improving the Templates

- Generalization by averaging the templates
- Generalization by reducing template length
- Accounting for variation within templates represented by the reduced model
- Accounting for varying segment lengths
The converged models can be used to score / align data sequences
Model structure in incomplete.
DTW with multiple models

- Some segments are naturally longer than others
 - E.g., in the example the initial (yellow) segments are usually longer than the second (pink) segments

- This difference in segment lengths is different from the *variation* within a segment
 - Segments with small variance could still persist very long for a particular sound or word

- The DTW algorithm must account for these natural differences in typical segment length

- This can be done by having a state specific insertion penalty
 - States that have lower insertion penalties persist longer and result in longer segments
Transition structures in models

State specific insertion penalties are represented as self transition arcs for model vectors. Horizontal edges within the trellis will incur a penalty associated with the corresponding arc. Every transition within the model can have its own penalty.
State specific insertion penalties are represented as self transition arcs for model vectors. Horizontal edges within the trellis will incur a penalty associated with the corresponding arc. Every transition within the model can have its own penalty or score.
This structure also allows the inclusion of arcs that permit the central state to be skipped (deleted). Other transitions such as returning to the first state from the last state can be permitted by inclusion of appropriate arcs.
What should the transition scores be?

- Transition behavior can be expressed with probabilities
 - For segments that are typically long, if a data vector is within that segment, the probability that the next vector will also be within it is high.
 - If the i^{th} segment is typically followed by the j^{th} segment, but also rarely by the k^{th} segment, then, if a data vector is within the i^{th} segment, the probability that the next data vector lies in the j^{th} segment is greater than the probability that it lies in the k^{th} segment.

- A good choice for transition scores are the negative logarithm of the probabilities of the appropriate transitions
 - T_{ii} is the negative of the log of the probability that if the current data vector belongs to the i^{th} state, the next data vector will also belong to the i^{th} state.
 - T_{ij} is the negative of the log of the probability that if the current data vector belongs to the i^{th} state, the next data vector belongs to the j^{th} state.
 - More probable transitions are less penalized. Impossible transitions are infinitely penalized.
Modified segmental K-means AKA Viterbi training

- Transition scores can be easily computed by a simple extension of the segmental K-means algorithm.

- Probabilities can be counted by simple counting:

\[
P_{ij} = \frac{\sum_k N_{k,i,j}}{\sum_k N_{k,i}} \quad T_{ij} = -\log(P_{ij})
\]

- \(N_{k,i}\) is the number of vectors in the \(i^{th}\) segment (state) of the \(k^{th}\) training sequence.
- \(N_{k,i,j}\) is the number of vectors in the \(i^{th}\) segment (state) of the \(k^{th}\) training sequence that were followed by vectors from the \(j^{th}\) segment (state).

- E.g., No. of vectors in the 1st (yellow) state = 20
 - No. of vectors from the 1st state that were followed by vectors from the 1st state = 16
 - \(P_{11} = 16/20 = 0.8\); \(T_{11} = -\log(0.8)\)
Modified segmental K-means AKA Viterbi training

- A special score is the penalty associated with *starting* at a particular state
- In our examples we always begin at the first state
- Enforcing this is equivalent to setting $T_{01} = 0$, $T_{0j} = \infty$ for $j \neq 1$
- It is sometimes useful to permit entry directly into later states
 - i.e. permit deletion of initial states
- The score for direct entry into any state can be computed as

\[
P_j = \frac{N_{0j}}{N} \quad T_{0j} = -\log(P_j)
\]

- N is the total number of training sequences
- N_{0j} is the number of training sequences for which the first data vector was in the j^{th} state
Modified segmental K-means AKA Viterbi training

- Initializing state parameters
 - Segment all training instances uniformly, learn means and variances

- Initializing T_{0j} scores
 - Count the number of permitted initial states
 - Let this number be M_0
 - Set all permitted initial states to be equiprobable: $P_j = 1/M_0$
 - $T_{0j} = -\log(P_j) = \log(M_0)$

- Initializing T_{ij} scores
 - For every state i, count the number of states that are permitted to follow
 - i.e. the number of arcs out of the state, in the specification
 - Let this number be M_i
 - Set all permitted transitions to be equiprobable: $P_{ij} = 1/M_i$
 - Initialize $T_{ij} = -\log(P_{ij}) = \log(M_i)$

- This is only one technique for initialization
 - You may choose to initialize parameters differently, e.g. by random values

9 Feb 2011
Modified segmental K-means AKA
Viterbi training

• The entire segmental K-means algorithm:
 1. Initialize all parameters
 • State means and covariances
 • Transition scores
 • Entry transition scores
 2. Segment all training sequences
 3. Reestimate parameters from segmented training sequences
 4. If not converged, return to 2
Alignment for training a model from multiple vector sequences

The procedure can be continued until convergence.

Convergence is achieved when the total best-alignment error for all training sequences does not change significantly with further refinement of the model.
The resulting model structure is also known as an HMM!
DTW and Hidden Markov Models (HMMs)

- This structure is a generic representation of a statistical model for processes that generate time series.
- The “segments” in the time series are referred to as states.
 - The process passes through these states to generate time series.
- The entire structure may be viewed as *one* generalization of the DTW models we have discussed thus far.
- In this example -- strict left-to-right topology.
 - Commonly used for speech recognition.
DTW -- Reversing Sense of “Cost”

• **Use “Score” instead of “Cost”**

 – The same cost function but with the sign changed (*i.e.* negative Euclidean distance (*=* $-\sqrt{\sum(x_i - y_i)^2}$; *X* and *Y* being vectors))

 – $-\sum(x_i - y_i)^2$; *i.e.* –ve Euclidean distance squared

 – Other terms possible:

 • Remember the Gaussian
Likelihood Functions for Scores

- HMM – inference equivalent to DTW modified to use a probabilistic function, for the local node or edge “costs” in the trellis
 - Edges have transition probabilities
 - Nodes have output or observation probabilities
 - They provide the probability of the observed input
 - The output probability may be a Gaussian
 - Again, the goal is to find the template with highest probability of matching the input

- Probability values as “costs” are also called likelihoods
Log Likelihoods

• May use probabilities or likelihoods instead of cost
 – Scores combines multiplicatively along a path – cost of a path = Product_over_nodes(cost of node) * Product_over_edges(cost of edge)

• May use log probabilities
 – Scores add as in DTW
 • Max instead of Min

• May use negative log probabilities
 – Cost adds as in DTW
 – More on this later