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Abstract

The structural knowledge of natural languages, also known as a grammar, plays an essential
role in all machine translation (MT) systems. Usually the development of such knowledge is a
costly process involving skilled labor and prolonged period of time, and the result is difficult
to be reused in a new application domain. It is thus desirable to automate such development
processes, even only partially. In this paper I outline the key questions of incorporating gram-
mar induction (GI) techniques into an MT framework, and provide possible solutions after
surveying the representative GI techniques. Finally a highly flexible, monolingually-trained
MT system is proposed as a prototype of the MT system with GI capability.
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1 Introduction

1.1 Motivation

At an abstract level, natural language translation is a process of transforming the surface form of the
source language into that of the target language while preserving the underlying meaning. Although
the transformation process can be approached strictly at word-to-word level, it is almost impossible
to achieve an adequate accuracy without taking the structures of the languages into account. In
the rule-based machine translation (MT) paradigms, such as transfer-based and interlingua-based
MT, the structural knowledge of languages has been painstakingly developed by skilled labor in
the form of rules, over a long period of time [9, 65, 46, 40]. Not only the process is expensive, but
the produced knowledge (rule set) is often limited to a particular application domain and thus is
difficult to be ported to a new one [38]. If only the process of acquiring such structural knowledge
can be automated, even partially, the development cost of an MT system can be substantially
reduced, and the system can be more flexible and robust.

Even though the structural knowledge is encoded in numerical forms rather than in symbolic
rules for corpus-based MT techniques, the automation of acquiring the structural knowledge of
languages could benefit them as well, as some of the recent research works testified. In example-
based MT (EBMT) works have been done to generalize pattern matching by inducing and using
word clusters [12], while in statistical MT structural knowledge is proved to be useful for improving
translation accuracy for structurally distant language pairs (such as English vs. German) and
enhancing segmentation [71].

Despite the apparently different representations, the structural knowledge of languages plays
a crucial role in all MT paradigms. The word ‘grammar’ is therefore used to collectively refer to
such knowledge, and the term “grammar induction (GI)” is used to refer to the process of acquiring
such knowledge. More specifically, a grammar of a particular language is the syntactic knowledge
of that language, regardless of how it is encoded, and it is used to predict the validity of a sentence
(e.g., translation model in statistical MT), analyze a sentence (e.g., semantic analysis), generate a
sentence, etc. In particular the knowledge concerned here is not the domain knowledge or world
knowledge, as is the case for the term “knowledge acquisition” [54], although the latter can be used
to guide the acquisition of the structural knowledge, grammar, as humans always do'.

It is worth noting that by adopting various machine learning techniques of identifying generalized
patterns and forming production rules, corpus-based techniques gradually become more rule-based
alike, while at the other end of the MT spectrum, namely for the rule-based approaches, the use of
data-driven techniques to induce grammar rules makes them more and more similar to the corpus-
based techniques. The most cost-efficient and effective MT system might be the one which is able
to strike a perfect balance between the two radically different approaches.

Although it seems to be obvious that automatic GI techniques can be very useful for the devel-
opment and the deployment of MT systems, the marriage of the two (especially for the rule-based
MT) is still relatively new. In this paper I set out to investigate ways of combining the two, by first
observing a list of key considerations, surveying the theoretical and practical aspects of GI, and then
proposing ways of using GI in MT systems. The suggestions might seem somewhat unsubstantiated
at times, but this is merely a reflection that little work has been done along these lines in the MT
community.

!Later in Section 3.1 we shall see that the term “naming relation” used in [27] refers to grammar as defined in
this sense.



1.2 Grammar Induction

Automatic grammar induction (GI)%[39, 52| concerns the problem of acquiring the structural knowl-
edge of human languages automatically from data. A GI device takes language data and domain
knowledge as input, and induces the grammar of the language, which can be encoded in various
representations, as the output. The knowledge can then be utilized by a processor to analyze or
generate language data . Optionally the device can interact with a language informant (teacher)
and receive feedback from the processor to gain more insight of the underlying language structures.
The entire process is shown in Fig. 1.
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Figure 1: Grammar Induction.

In addition to the application in MT focused in this paper, GI has many other useful and
important natural language applications, such as information extraction [72, 66], speech recognition
[64], speech synthesis [7], etc. GI, in its broader sense, is even applied to the other problems such
as DNA sequencing [58] and sequence/causality learning [62].

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2 a list of key considerations for combining
GI and MT, motivated by both theoretical results and practical concerns, are discussed and cate-
gorized into the aspects of the input and the output of the GI component, together with the other
important considerations. Section 3 then surveys the principles and practice of GI, including the
notion of language learnability, and the representative algorithms for learning regular and context-
free languages. With the list of key considerations in mind and the various learning techniques
in our arsenal, in Section 4 we then discuss relevant issues of incorporating GI techniques in an
MT framework, and suggest the idea of building an interactive, monolingually-trained MT system.
The paper is finally concluded with Section 5, where I summarize some of the important research
problems ahead toward the holy grail of building a self-adapting MT system.

2 GIl-enhanced MT: Key Considerations

Before diving into the details of various GI techniques, in this section I list the key considerations
for adopting a particular GI technique for MT from the aspects of the input required by a GI

2 Also referred to as Grammatical Inference.



technique, the output expected for various MT subtasks, and the other practical considerations.
The intersection of the answers along each dimension can then help deciding which method to
choose.

The list also motivates the discussions of various theoretical and practical results presented in
Section 3.

2.1 What Input Do We Need?

In considering the input required by a particular GI approach, which is categorized roughly into
the symbolic and non-symbolic methods, we need to ask the following questions:

1. How much data do we have?

All non-symbolic learning methods require substantial amount of data in order to converge to
an adequate grammar. This requirement imposes restrictions on selecting them as the learn-
ing techniques, since collecting data incurs cost and takes time. In most of the cases preparing
the training data is even more demanding than simply collecting the grammatical sentences.
As will be discussed in Section 3, all of the interesting languages cannot be learned by merely
observing the positive examples (grammatical sentences) without either direct or indirect neg-
ative examples (ungrammatical sentences), due to the theoretical limitations imposed by the
languages themselves. Therefore additional labor is required to add more information into the
collected data, e.g., giving (partial) phrase structures to the sentences, making sure the data
is representative enough for the unknown language, etc., in order to make learning possible.
Sometime a decision is inevitable to choose between the methods which require more but
simpler data, and the techniques which need less but ‘richer’ data.

To work around the problem of scarce data, one can adopt a symbolic learning technique, or
choose to bootstrap the desired learning method with existing knowledge, which can be either
manually developed or automatically induced. More details will be discussed in Section 4.

2. Do we have positive examples only? Or both positive and negative examples? Any additional
constraints available?
As discussed above GI without negative examples is not possible. If only positive examples
are available, one is forced to produce whatever possible from the given data as the negative
evidence. One of such methods is using the frequency of sentences as an indicator of gram-
maticality: if certain construct is used rarely enough to produce positive examples it will be
considered ungrammatical - this is essentially learning in a probabilistic setting [61]. Some
other possibilities of inducing more constraints on the pure positive examples is by exploiting
domain knowledge, as I will propose in Section 4.

3. Are the input noisy?

Although the symbolic methods usually require quantitatively less data and guarantee con-
vergence, they tend to be very sensitive to any noisy input. If the goal of adopting GI is
to assist experts developing an MT system, this is usually not a serious problem. However
if the learning process is meant to be engaged with end users, a more sophisticated gram-
mar /knowledge management mechanism needs to be in place to resolve any conflict between
the learned grammar and the existing one. Or alternatively one can switch entirely into a
non-symbolic approach.



4. Do we need language informants? By real user interaction or by data sampling?

One way to obtain negative examples for an MT system is to pose questions to the user.
Although theoretically an informant gives equally rich information to a GI device as does a
corpus tagged with grammaticality judgments, in that both information presentation methods
guarantee the learnability of most interesting formal languages [27], the use of a real human
informant gives rise to several interesting possibilities, such as question planning - asking
the most discriminating questions or ensuring the information garnered covers all important
aspects of the unknown language, or interactive ontology construction - building domain
knowledge by interacting with the end user, etc. The latter may prove useful for knowledge-
based MT (KBMT).

Alternatively an informant can be replaced by a data sampling algorithm, which operates
on the given language data and gives grammaticality judgments based on the internal reason-
ing mechanism, thus making the GI component fully automatic.

5. Do we need domain knowledge/ontology?

Although most of the conventional GI approaches use only syntactic knowledge to constrain
the learning process, using the domain knowledge can be even more beneficial in making the
learning problem tractable. Already such knowledge is proven to be very useful for disam-
biguation tasks in MT [5], however it is still not widely used in learning a grammar. In
incorporating GI in MT we might want to take advantage of the existing manually devel-
oped domain knowledge/ontology, and furthermore, augment the knowledge base online by
exploiting the power of GI. Ultimately there will be bidirectional interactions between the
domain knowledge and the grammar, making the MT system highly portable across different
application domains. More details will be discussed in Section 4.

2.2 What Output Do We Expect?

Given that the produced grammar will be used internally in an MT system, the following consid-
erations are important in deciding ways of producing it in an appropriate form:

1. What is the intrinsic complexity of the language to be learned?
The complexity of the language to be learned directly affects the choice of the underlying
‘model’ for the learning task. Conventionally natural languages are modeled by one of the
formal languages: regular languages, context-free languages (CFL), etc, with each having its
place in the continuum of the ‘richness’ (more in Section 3). The chosen models should be
rich enough to be able to encode the desired knowledge of the language to be learned, while
constrained enough so the learning problem can be made tractable.

Although context-free grammar (CFG) is the one most frequently used to model natural
languages, studies have shown that human languages are not necessarily context-free [17, 59].
On the other hand for certain subtasks in an MT system we do not actually need the full
power of CFG, e.g., regular languages work just fine for morphological analysis [34] and lex-
icon access [41]. Even for the tasks where traditionally CFG is used, regular languages, in
their equivalent forms of finite state automata (FSA), are shown to be able to approximate
what can be done in CFG [35, 68]. Other alternatives include learning a subset of CFL, as
will be discussed in Section 3.3.



In one of the classical works in statistical MT [11], Brown et al proposed five statistical
translation models, with each model having an increasing complexity over the previous one.
The training starts from the simplest model and uses the result to bootstrap the training of
the next more complex model. This same idea of bootstrapping the learning of more powerful
model using the trained simpler one can well be applied to the realm of GI, where one can
learn multiple FSAs efficiently and then try to generalize upon them to induce a full CFG.
However at this point I am not aware of any such attempt.

2. What are the appropriate representations for the task?

Almost all of the interesting formal languages have several equivalent forms. Examples in-
clude FSA and hidden Markov Model (HMM) for regular languages, and push-down automata
(PDA), definite clause grammars [53], recursive transition networks (RTN), augmented tran-
sition networks (ATN) [73] and wunification-based grammars® [60] for CFL. For non-symbolic
GI techniques sometime a grammar is encoded in an even more different form, such as recur-
rent neural networks (RNN) [45], binary dinigt strings in genetic algorithms (GA) [29], and
conditional probabilities in n-gram language models. The key concerns for picking the right
representation are:

(a) If some integration between the existing knowledge and the learned grammar is necessary,
the representation should be chosen such that it can work hand in hand with the other
components. E.g., other things being equal, in a rule-based MT system a GI component
based on a connectionist representation would be more difficult to use since extra effort
is required to extract the encoded symbolic knowledge from a neural network.

(b) In particular if a hybrid machine/human development of the MT system is desired, the
representation chosen must be human-understandable. One of the possible scenarios
would be machine-aided grammar development, where human post-editing is part of the
development process. Another reason for requiring a human-understandable represen-
tation is to allow the MT system the ability to ezplain the translation. The idea is to
treat an MT system as a reasoning system, and interaction is possible in every step of
the reasoning process in order to make the system more adaptable (more in Section 4).

(c¢) Finally one should take into account whether the learned grammar will be used for
analysis, generation, or transformation. Since analysis grammars are used in the first
step of a complete translation process, the discussions in 2a is particularly true. On
the other hand it is possible to treat the generation module in an MT system as a
standalone blackbox, thus one has more freedom in choosing the representation used in
the generation GI component. In Section 4.2 this idea is further developed into building
an example-based generation component in order to make a monolingually-trained MT
system possible.

2.3 Other Considerations

Still several questions regarding the other aspects of using GI in MT are worth pondering;:

3Note without restrictions posed on the feature structures and unifications, a unification-based grammar becomes
Turing equivalent.



1. When does the learning take place? Online or offline?
Training an MT system offline means that the system can update its internal knowledge only
during a certain period of time, and most likely it does this with a more controlled source of
input (such as the new linguistic data collected by human experts), e.g., during the develop-
ment stage of the system, or during the periodic maintenance of the system.

If learning can take place online, i.e., the MT system or a user can initiate a learning episode
anytime after the system is deployed, we can no longer have a tight control over the context
of the learning processes. For one, this implies that we cannot assume that the input of the
GI component is noise-free, since any end user with different level of language competence
can shape the system the ways she/he likes. This consideration along requires a more sophis-
ticated design of the knowledge management within the MT system, which is addressed in
the following question.

2. When and how is the learned grammar integrated into the existing one?

If the input to a GI component is noise-free, the learned grammar will always be correct?
and can be readily merged with the existing grammar. However if the input is polluted with
noise, the integrity of either the existing or the newly learned grammar is no longer certain.
This uncertainty calls for a more conservative strategy in integrating the learned grammars -
e.g., the integration may take place only periodically, or only if some verification criteria are
satisfied. One of the other possibilities is running a controlled online verification of the new
grammar, and alert the user whenever a conflict arises between the existing knowledge and
the newly acquired grammar - although one must ensure that the verification can be engaged
with more limited resource, as is usually the case in most online learning scenarios. More
details will be discussed in Section 4.

3. If the GI component needs to interact with language informants, what is the appropriate way
for interactions?
Depending on a particular application domain and the expertise of the informants, the inter-
face for interactions can range from a simple point-n-click GUI for editing complex grammat-
ical objects (such as derivation trees, rules, state machines, etc.) [33], to a full-blown natural
language dialog system which requires little even none of the linguistic expertise from the
informants. In between an MT system can choose (or be instructed) to present examples of
translations and awaits a user to correct them [10], or ask yes/no question for deciding proper
grammatical inferences [24].

In the following section we shall turn our attention to the principles and practice of GI itself, while
keeping the list of the considerations listed here in mind. Later in Section 4 we then come back to
consider various issues of incorporating GI techniques into an MT system.

3 Principles and Practice of GI

This entire section is devoted to the survey of important theoretical results and representative com-
putational realizations of GI. In particular the survey will answer the following important questions:
(a) what is the mathematical conception of “learning a language”; (b) what kind of languages are

4But it is not necessarily optimal, in the sense that it might over-generalize /overfit over the training data.



learnable given the definition of language learnability; and (c) what are the conventional practice in
learning languages? The knowledge developed here is pivotal in answering all of the key questions
presented in the previous section.

In giving the mathematical rigor to the subjects so that their characteristics can be easier to
understand, natural languages are usually modeled by a set of formal languages, which are artificial
languages designed to possess different levels of power. Table 1 illustrates the spectrum of the
formal languages. A language shown in the table properly includes the one appears in the lower
row, and thus is said to be more powerful or richer. Each language can be completely specified in
a corresponding grammar formalism, or alternatively can be generated/recognized by an abstract
machine, which is a mathematical computation model. Among the languages studied the most
interesting ones for our purposes are regular languages and context-free languages (CFL), although
as models they are not necessarily capable of capturing all observed linguistic phenomena.

| Language | Grammar | Machine | Chomsky Hierarchy |

Non-
computable
Recursively enumerable (RE) | Unrestricted Turing machines 0

. Turing machines that al-
Recursive

ways halt
Con"ce.xt— Context-sensitive Linear-bounded automata | 1
sensitive grammar
Context-free gram- | Non-deterministic push-

Context-free mar (CFG) down automata (NPDA) 2
Regular Regular expressions a}%ljze) State  Automata 3

Table 1: Power spectrum of different formal languages.

In the rest of the section we then turn our attention from learning a natural language to learning
an abstract formal language so that concrete theoretical conclusions can be obtained®. But it is
important to realize the difference between the two - we can always fine-tune the theoretical model
to better match the particular natural language at hand.

3.1 Language Learnability

In his 1967 paper [27], Gold addressed two of the most important questions in learning a formal
language: he defined the notion of learnability models, and examined the learnability of many
formal languages. The results he obtained has great impact on the design and use of a particular
GI technique.

A learnability model consists of the following three components:

1. A definition of learnability:
This answers the question of “what do you mean by successfully learning a language?”. Three
definitions were suggested, and among them language identification in the limit was adopted

5Thus in the rest of this section the term ‘language’ is used to refer to a formal language.



for the rest of the investigation®. A language is identifiable in the limit if and only if there
exists a learning device which is able to guess the correct language at some finite point of
time, and never changes its guess from that point on no matter what additional information it
receives. This definition is of interest because once a language is shown that it is not possible
to be identified it in the limit under a certain learnability model, then there is no hope in
learning it under the model, since the most general condition is already granted and it is still
not identifiable. On the other hand, if a language can be identified in this sense, it may still
not be practical to do so.

2. A method of information presentation:
This concerns the way the information of the language is conveyed to a learning device.
There are two major categories of presentation: text and informants. In the former only
the grammatical sentences (positive examples) are presented to the learner”, and in the lat-
ter all possible sentences accompanied by their corresponding grammaticality judgments are
presented (hence the information includes both positive and negative examples).

3. A naming relation:
A name of a language is a handle through which we can uniquely identify the language. One
possible representation of names is via rule-based grammars, but we do not rule out the other
possibilities. The relation between names and languages is thus an onto mapping, and the
problem of language learning is reduced to finding a name such that it maps to the correct
language. Two naming relations are considered: tester is for language analysis/comprehension
and generator is for language generation/production®.

Under the combinations of six different information presentation methods (three for each possibil-
ity) and two possible naming relations, Gold then investigated the learnability of a set of formal
languages with respect to the total 12 models. The result is shown in Table 2.

Perhaps not surprisingly, with positive examples (text) the only learnable language is the one
with finite cardinality, which is probably never useful in any natural language application. However
in some situations learning via text is the only possibility®, and there are at least three possible
ways to work around the theoretical limitation:

1. Have more structural information added into the positive examples, or posit more constraints
on the input data. The structural information could range from fully labeled parse trees to
unlabeled partial bracketing strings.

2. Restrict the class of the languages to be learned. Depending on the application domain we
might only need to learn a subset of CFL, for example, whose learnability is not rejected

(yet).

3. Switch to a probabilistic framework. This is essentially a way to infer the indirect negative
evidence from the frequency of occurrences of the training data.

8From this point on the term ‘identification’ is used interchangeably with the term ‘learning’.

"In the original paper a text contains all grammatical sentences of the target language. This is reasonable given
that we are concerned with the learnability in the limit. The same is true for informants.

81t is interesting to note that the learnability of an analysis grammar entails the learnability of the corresponding
generation grammar, but not vice versa.

9With human infants learning their mother tongues being one of the ‘situations’ mentioned here. It is commonly
believed that infants do not receive any direct negative evidence, at least a reliable one, during the learning process,
yet they still manage to pick up their languages at an amazing rate [8, 30].

10



Learnability model Class of languages
Anomalous text

>

RE
Recursive

Informant (all 6 models) _

Primitive recursive

Context-sensitive
Context-free
Regular

Superfinite (all Ings of finite card. & at least one Ing
of infinite card.)

Text (5/6 models)

Finite cardinality languages

Table 2: The learnability of formal languages [27].

As will be discussed in the rest of the section, all learning approaches either use a language informant
(sometime in the form of having explicit negative examples), or adopt one of the strategies listed
above.

3.2 Learning Regular Languages

Being the first language with infinite cardinality, regular languages are probably the easiest ones to
learn, and as argued in Section 2.2 they are useful even when the ultimate goal is to learn a CFG.
However it has been shown that even learning regular languages is an NP-hard problem [28]. Clever
tricks thus are still necessary to restrict the search space in order to make the problem tractable.

Most of the learning approaches adopt deterministic finite automata (DFA) as their underlying
representation, out of the other equivalent representations such as regular expressions and non-
deterministic finite automata. The reason is that for DFA a unique automaton with minimal number
of states exists, and there also exist polynomial-time algorithms for equivalence/subsumption tests
and minimization of DFAs [31].

In the rest of this sub-section the surveyed approaches are categorized based on the information
presentation method it requires (text or informant), and the characteristics of the approaches
themselves (symbolic, numeric or hybrid). This is summarized in Table 3.

A recurrent theme among all of the surveyed learning approaches is the construction of the most
specific DFA according to the positive examples and the use of state merging/splitting operations.
This can be summarized as follows:

1. From a set of positive examples ST construct the most specific DFA.

2. Generalize/specialize a more specific/general DFA by considering a set of negative examples
S-.

We illustrate this with a simple example (see Fig. 2). Let L = {b, aa, aaaa} be the target'? language

10In this paper sometime the term “target language” refers to the language to be learned, instead of the language

11



Leamning

thod
Info gefe Symbolic Hybrid Numeric

presentation

Learning Stochastic FSA
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Models by Bayesian
Model Merging

Version space Genetic Recurrent Neural

Regular positive and algorithms Networks (RNN)

Informant negative inference Learning RNN with
. Evolutionary
§
L* algorithm Programming

Table 3: Approaches for learning regular languages.

and ST = L. The most specific DFA, a prefiz tree automaton (PTA), is first constructed trivially
by adding an accepting transition sequence for each positive example in ST. The PTA only accepts
strings in STand nothing more, and it essentially hypothesizes a partitioning of the state space @
where each state forms a single partition. At the other end we can trivially construct the most
general DFA - the universal DFA - by merging all states into one accepting state, which in effect
accepts all possible strings. We then form different partitionings of the state space by merging states
(bottom-up) or splitting states (top-down), until the resulting DFA, a quotient DFA, conforms with
both S* and S—.

In [19] it has been shown that as long as ST is a structurally complete set, the search space
implied by the state merging /splitting operations is guaranteed to contain the correct target DFA.
ST is structurally complete if for each transition in the target DFA there exists at least one string
in ST that makes use of the transition, and for each accepting state there exists at least one string
in ST that ends at the state; e.g. ST = {b,aa,aaaa} in our example is (trivially) structurally
complete with respect to L.

Based on this theme, in [51] an approach using wversion space is proposed. The algorithm
requires a structurally complete ST and an informant as the input, and uses the negative examples
received from the informant to reject any quotient DFA that accepts them. The time complexity is
exponential in the size of the initial PTA. Another approach, regular positive and negative inference
[48], searches through the state space by a quadratic loop over all state-merging possibilities, and
rejects a quotient DFA if it accepts any string in S~. However this approach requires that S~
prevents any non-equivalent state in the PTA from being merged. The time complexity is O((|S™|+
1S7D) - 1ST).

A radically different symbolic method, the L* algorithm, is proposed in [4]. The algorithm relies
entirely on an informant, a minimally adequate teacher, which answers two types of questions: (a)
membership questions: is a string in the target language? (b) conjecture question: is the conjecture
DFA the correct one? if not a counterexample is provided. The algorithm then incrementally
constructs the conjecture DFA by maintaining an observation table, until the conjecture is right

to be translated into, as used in most of the MT literature. The usage should be self-evident based on the context.

12
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Figure 2: Searching a DFA with state merging/splitting.

on the mark. Without going into the details I will only show the correspondence between a target
DFA and its observation table in Fig. 3, as a visualized motivation of the approach. In particular
the membership question asked in cell (z,y) is over the string composed by concatenating the prefix
label of row z with the suffix label of column y. During training only part of this table is visible
to the algorithm, and it must figure out what questions to ask in order to augment the table. The
algorithm is interesting in that it does not impose any restriction on the input, and an intelligent
question planning might even speed up the learning process (see Section 4.1 on the role of question
planning in combining GI with MT). The author further extended the algorithm into a random
sampling setting for the teacher to find a counterexample should a conjecture fail. The approach

can also be extended to learning a CFG.

suffixes e to
distinguish two states
e

ﬁ Lla|b
States AJ1]0]0 0/1 from
labeled al0/| 1| 0| membership
by prefixes P tests
L={arb?|p and g are even s bj0jo|1
numbers } v|ab| 0| 0[O0

Figure 3: Correspondence between a DFA and its observation table in L* algorithm [4].
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The search problem can also be solved using non-symbolic methods. A possible choice is genetic
algorithms (GA) [29], which has been proved effective over an ill-defined, huge search space with
noise. In [19] this is done by encoding a quotient DFA in a chromosome. The fitness metric favors
DFAs with fewer states and higher accuracy. Two GA operators are used: structural mutation
randomly picks a state partition and randomly moves a state in the partition to another one, and
structural crossover unions the randomly picked partitions of two parent chromosome and makes
sure the resulting chromosomes are still valid.

In the connectionists camp recurrent neural networks (RNN) [45] have been used to model
natural language phenomena because of its capability to implicitly learn a state machine. Dur-
ing training a set of output neurons are periodically probed to determine the state of the implicit
machine, and a recurrent back-propagation method can be used to adjust the weights in order to
minimize the discrepancies between the probed and the desired states. However the representation
does not anticipate the possibility of an integration between the learned grammar and the existing
one, which requires an additional process of extraction of symbolic knowledge from the trained
network [26]. The connectionist approaches can be combined with evolutionary programming tech-
niques to automatically find the best network topology [1].

In the statistician/Bayesian camp, works have been done in learning stochastic FSA [15], and
learning stochastic grammars using Bayesian model merging technique [61]. The basic ideas still
come from the state merging process discussed earlier, but under a probabilistic setting the merging
must optimize the posterior probabilities of the training data. In the second work mentioned
above, the merging takes place between non-terminals in a grammar instead of states in an abstract
machine, so the approach is readily applicable to learning a CFG as well.

3.3 Learning Context-free Languages

Learning a CFG is a much more difficult task than learning a regular language: part of the reason
is due to the vastly increased search space, and part of the reason is that for any two grammars
G1 and G5, there exists no algorithm to test if L(G1) C L(G2), or if L(G1) N L(G2) = ¢ - the
intersection operator N is not even closed under CFG [31]. The learning algorithms thus often rely
on heuristics, or make additional assumptions on the input data or on the target language to make
the problem tractable (as suggested in Section 3.1). Table 4 summarizes several representative
learning techniques in a similar fashion discussed in the previous section.

Although the problem is much more challenging, several concepts from learning regular lan-
guages are still helpful in a CFG setting. First off the state merging/splitting concept is still a
useful one, but it must now operate on a different representation. In [67] a learning technique
based on version space is proposed. The algorithm requires both positive and negative examples
(ST US7), but ST now contains unlabeled parse trees instead of the plain grammatical sentences.
The merging happens on the non-terminals of the trees, as is the case in learning a stochastic
grammar proposed in [61]. For each tree in the training data, each possible partitioning of the non-
terminals results in a different grammar. The algorithm adds all possible partitionings upon seeing
a positive example, and rejects a grammar and all of the grammars covered by it if it accepts any
negative example. Fig. 4 shows all five possible partitionings of the unlabeled tress for utterances
“cat” and “black cat”. The FastCover operator is used to determine the partial ordering between
two partitionings/grammars.

Another approach exploiting a similar idea of state-merging is proposed in [36], where a recur-
sive transition network (RTN) is used as the underlying representation. As shown in Fig. 5, the
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Table 4: Approaches for learning CFG.
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Figure 4: Version space of possible partitionings of non-terminals [67]; example taken from [52].
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algorithm first constructs a trivial network covering all positive examples (very similar to the con-
struction of a PTA described in the previous section), then it splits the network into sub-networks
upon observing any significant recurring pattern. The sub-networks are then undergone a series
of node mergings in order to generalize the learned grammar. It is interesting to note that the
operation of splitting networks and the operation of merging nodes are actually equivalent to the
chunking and merging operations proposed in [61].

Figure 5: Learning a recursive transition network [36]; example taken from [52].

In an important work in learning CFG [56], Sakakibara proposed a normal form reversible
contezt-free grammar, and showed that there exists polynomial-time learning algorithm to learn
a CFG in such normal form, provided the input data contains full structural information (fully
bracketing strings specified by the parenthesis grammar [43]). Since the algorithm operates on a
normal form, it simply implies that full class of CFL can be learned if the noise-free data with
structural information is available. If this precondition cannot be satisfied, one still needs to resort
to the other techniques discussed in this section.

In the cases where structural information is not available, to use a symbolic technique one must
make compromise in the richness of the target languages, i.e., only learn a subset of CFL. Notable
examples of such subsets include k-bounded CFG [3], deterministic languages (SDL) [32], linear and
even linear languages (ELL) [63], structurally reversible languages [13], one-counter languages [6],
pivot languages [20], and very simple languages [74], etc.

For non-symbolic techniques, most of them bear a strong resemblance with their counterparts in
learning regular languages. Obviously if a method assumes DFA as the underlying representation
for learning regular languages, here it must switch to use a pushdown automaton (PDA) - a DFA
with a stack. In the following works this is exactly what was proposed: in [18] an RNN is proposed
to learn a PDA, and in [37] a genetic algorithm is proposed to learn a non-deterministic PDA. For
probabilistic method, the use of Bayesian model merging in [61] is still valid since it operates on a
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general grammar representation.

4 Incorporating GI techniques in MT

Based on the background knowledge of GI developed in Section 3, I attempt to answer all of the
key questions presented in Section 2 by discussing the relevant issues in fitting GI into an MT
framework. The section then concludes with a proposal of a highly flexible, monolingually-trained
MT system. The discussions will focus more on the analysis (parsing) side since this is a more
difficult problem, and as Section 4.2 will point out, the generation grammar can be obtained by
mechanically converting from an analysis grammar, or can be discarded altogether if the MT system
adopts an example-based /corpus-based generation strategy.

It should be noted that at this stage the use of GI is still not widespread within the MT
community. At times the discussions in this section might seem somewhat unsubstantiated, but
the intent is to hypothesize ways of combining the two at an abstract level, or at least to provoke
more thinking along these lines.

4.1 Fitting GI into MT
4.1.1 Bootstrapping GI

The essential idea is to learn a grammar based on some existing knowledge in the hope that it
can speed up the learning process and improve the accuracy of the learned grammar. The existing
knowledge can be either syntactic, semantic (domain knowledge) or even in a completely different
representation. Below I discuss four possibilities of bootstrapping: with an existing grammar, with
trained simpler models, with domain knowledge, and with cross-lingual correspondences in the
training data.

In the first kind of bootstrapping the GI device simply learns based on the existing grammars.
This is possible provided the existing grammars have overlapping with the desired target grammar.
A straightforward way of doing this, as already described in Section 3.3, is to take advantage of the
vast amount of the data tagged with the correct parse trees to obtain the target grammar [16]. An
indirect approach, which requires much less data, is to only augment the existing grammar whenever
it is insufficient to parse certain sentences. With each unparsed sentence in the training data, the
GI algorithm first reconstructs a complete parse tree (or whatever serves as the deep structure of
the language) based on the incomplete parses received from the parser and the correct meaning
representation tagged with the sentence, and then reads off the rules from the hypothesized tree
and integrates them with the existing grammars. In [38] I have done preliminary work exactly along
this line to induce semantic grammars on the analysis side for MT in the medical domain based on
the existing grammars originally developed for the travel domain. The only difference between a
semantic and a syntactic grammar is that in the former a non-terminal denotes a particular concept
in the application domain, while in the latter a non-terminal denotes a grammatical function (e.g.,
nouns, verbs, etc.) [25]. An example parse tree in the semantic grammar formalism is shown in Fig.
6 and the entire GI process is summarized in Fig 7. In short the performance of the automatically
learned grammar is promising compared to the manually developed one'!.

' The induced grammars tend to have a higher recall and a lower precision compared to the manually developed
grammars.
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Figure 6: The parse tree of the utterance “Suddenly my urine became discolored” in the semantic
grammar formalism.
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The second possible way of bootstrapping is already motivated in Section 2.2, where a similar
idea of using successively simpler models to bootstrap the training of the more complex ones, as
proposed in [11], is argued to be appropriate for GI as well. For example, first a collection of simple
FSAs are efficiently learned using one of the methods presented in Section 3.2 to identify only
the noun phrases in both source and target language, and then a more sophisticated CFG can be
learned after replacing each noun phrase with a single lexical entry representing its meaning. The
same is also true for learning the transformation rules, in which the automata induced are finite
state transducers instead of FSA. The grouping of simple constituents can be also achieved by using
statistically motivated approaches, such as n-gram models.

The third possibility of bootstrapping uses the domain knowledge to constrain the GI pro-
cess. Essentially this type of the approaches exploits the connections between an ontology and the
grammar, and can be best illustrated when the grammar used is a semantic grammar instead of a
syntactic grammar. The approach essentially consists of the following steps. Before the GI process
is engaged, a skeleton grammar is first created based on the ontology. E.g., since ‘breakfast’ is a
“meal type”, we would expect that the full grammar should at least have a rule as shown below

mealType — abreak fast 8

where o and 3 are undetermined strings of terminals and non-terminals. The skeleton grammar can
then be augmented by taking into account the input language data. Under most circumstances the
ontology can even be used to constrain the generalization of the rules, such as choosing the right
non-terminals to expand to for a particular left-hand side non-terminal [25]. The idea of exploiting
the connections between ontologies/domain knowledge and grammars can even be extended to the
point where interactive ontology augmentation is intertwined with the GI process, thus making the
MT system more robust and flexible. More details are discussed in Section 4.1.3.

The last way of bootstrapping is by using the cross-lingual correspondences in the training
data, and this can be best illustrated in a interlingua-based MT setting. Let s; and sy be a pair
of corresponding sentences in the source language L; and the target language Lo, respectively, i.e.,
s1 and so are correct translation to each other. If the grammar for L; is incomplete to successfully
parse s, we can obtain the correct meaning of s; by parsing s, provided the grammar of Lo is
sufficient to do so. With the correct meaning representation of s;, the GI component is then able
to make use of the existing grammars for L, to induce the missing links. This approach might find
its best use in augmenting less developed grammars of some languages based on the more complete
grammars developed for the other languages.

4.1.2 Introducing More Constraints on the Input

As discussed in Section 3.1, with only positive examples none of the interesting languages can be
learned automatically. One way to work around the problem of having only positive examples
is to posit structures or constraints on the input data, so that indirect negative evidence can be
obtained. Several methods exploiting the statistics of the data (e.g., stochastic CFG), the structural
information added to the data (e.g. unlabeled parse trees), etc., are already described in Section 3.2
and 3.3. Here I describe how to exploit constraints from the domain knowledge in my preliminary
work of inducing semantic grammars for speech-to-speech translation as reported in [38].
Basically as described in Section 4.1.1 the particular GI technique operates on semantic gram-
mars. The outline of the approach is shown in Fig. 7. In particular at the stage of hypothesis
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generation, the missing links between the unparsed words and the concepts denoted by the parse
nodes must be recovered. Without direct negative examples telling us what kind of pairings are not
possible, such constraints must be sought out by exploiting additional knowledge. In a particular
example of hypothesis generation shown in Fig. 8, one way to figure out which parse node the word
‘became’ must attach to is to simply pose an ontological question to the user:

“Is the word became usually used to describe the onset of a symptom?”

With an answer ‘yes’ the correct link can then be established. The questions can either be generated
using simple heuristics (e.g., if the hypothesized concept y is action-related, for an unparsed word
z generate a question in the form of “is z a way to y?”), or can be canned in each of the concepts
in the form of templates.

It is also possible to generate a hypothesis based on statistical evidence gathered over time.
E.g., the correct link in Fig. 8 can be established if among all of the possible pairings, the pairing
of word ‘became’ with concept “give-information+onset+symptom” is statistically more favorable
than the others given the past records.

|[gwe—mformat]onron%usymetom I

symptom-location=] f-————-—-Y

sudden [ DETP | [BODYLOCATION]
BODYFLUID {FUNCTION-ADI-VALS] [[atiribute=
| POSS | urine abnormal color_attribute

[ suddenty | [(my | [urine]

adj:symptom-name=

| Suddenly my urine|became|discolored |

Figure 8: Hypothesis generation to pair an unparsed word ‘became’ with a concept denoted by a
parse node. The correct link in this case is indicated by the thick line, while the possible links are
shown in dashed lines.

4.1.3 Interactive Ontology Building

As hinted in Section 4.1.1 the interactions between ontologies and grammars can be bidirectional.
On the one hand an ontology can be used to bootstrap the learning process, on the other hand the
flexibility brought by the GI component enables the possibility of interactively augmenting/building
the ontology. As an example, imagine an MT system stumbles on a new word z. In order to figure
out how to translate it correctly the system asks the user

“What is z?”

At this point the user is free to give any answer appropriate to the inquiry. Assuming our imag-
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inative user is willing to cooperate by answering in a controlled language for ontology augmentation
“An x is a TypeX.

the MT system is then able to pull out the corresponding lexical category in the target language,
and perhaps will ask more questions in order to zero in the correct translation. Now consider the
scenario where the user feels creative and utters something like this:

“I would say an x is some kind of TypeX.”

the MT system can then crank up its GI component and initiate further clarification questions
to learn different ways of instructing ontology repairing. Thus ontologies and GI can benefit each
other through a careful study of their interactions.

It is worth noting that bootstrapping the learning of the language for ontology building is
intuitively simpler than bootstrapping the learning of a full natural language, since the former
involves only a fixed set of concepts (e.g., is a, has a, part of, etc.). As a concluding remark, very
little work has been done in exploring this aspect of language learning.

4.1.4 Dialog-based MT

Interactions between a user and an MT system have been exploited in several works, mainly for
disambiguation at both lexical (e.g., picking the right sense of the word to translate from/to) and
structural level (e.g. determining the right constituent to attach a propositional phrase) [33, 10,
22, 44]. Nevertheless, almost all of the systems with the interactive disambiguation capability do
not learn or generalize the patterns acquired during such interactions!?. With the help of GI, the
interactions can not only solve an instance of an ambiguity problem, but also be able to produce
useful knowledge which is general enough to resolve any future ambiguities. Furthermore, what GI
is capable of is beyond mere disambiguations - novel sentences can be brought into comprehension
via more carefully designed interactions.

However the keyword here is “careful design”. It is noted in [44] that “interactive disambiguation
leads to higher authoring costs” because of the time and efforts required by the pre-editing tasks,
thus it is desirable to do away with such interactions. Despite the claim I would like to argue the
contrary, namely interactions are necessary for a portable MT system, and can be made more cost-
efficient via a careful design of such interactions. For the first argument, as discussed in Section 3.1,
without negative examples or language informants, it is impossible to identify natural languages
in the correct forms. One can claim that a complete domain model is sufficient for the purposes
of negative evidence, however in practice for any non-trivial domain it is almost always the case
that the domain knowledge is not complete, hence a learning mechanism is necessary to make the
system robust and flexible. For the second argument, in designing the interactions between an
MT system and the user, one can make them more cost-efficient by assuming less on the user’s
linguistic expertise, and by designing an optimal strategy for question planning. Section 4.1.1 and
4.1.3 already provide examples of hiding linguistic complexities from an end user while providing the
necessary substitute for the direct negative evidence. An optimal question planning can be achieved
by first defining the appropriate performance metrics (similar to the ones used in designing a spoken

12In system KANT [44] the decisions made in an interactive disambiguation process are recorded in the form of
SGML processing instructions, but no further generalization of the pattern is done.
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dialog system [69, 70]), and using various machine learning techniques such as decision trees and
Bayesian networks [49, 50| for optimization. The system can even proactively plan questions without
the presence of “immediate confusion”, i.e., the system has the capability of self-monitoring by either
periodically, stochastically, or via a reasoning mechanism, verifying the integrity of its internal
knowledge, and then pose questions to remedy the predicted breakdown. Such an intelligent MT
system is thus capable of, for example, probing the lexical mismatches between two languages once
it senses the possibility of such mismatches, forming hypothetical questions in learning the rules
of disambiguating certain linguistic constructs, or asking clarification questions after detecting a
possible grammar breakdown by analogy reasoning over the past record of grammar augmentation,
even before such confusion crops up in the actual use of the system.

4.1.5 Self-explaining MT

In the spirit of dialog-based MT, an ideal GI-enhanced MT system should also be able to explain
to a critical user about the reasons behind a particular translation. The capability of explaining
the translation decisions could help the user, regardless of a novice one or an expert MT developer,
to pinpoint the problem whenever the translation is not satisfactory. For example, if the analysis
grammar of an MT system cannot parse the sentence

S1: “He runs for President.”
but it can parse the sentence
So: “He runs for his life.”

In choosing the translation for the word ‘run’ in the target language, which has different words
for the sense of “campaigning for a position” (used in S7) and for the sense of “physically moving
one’s body fast by one’s feet” (used in S5)'?, the MT system chooses the latter as the translation
for sentence 57, since the GI component decides that S5 is the most similar analogy it can draw
from in order to parse S; without a sufficient grammar. Upset by the seemingly counter-intuitive
translation, the user demands an explanation from the system, and then realizes that a lexical
mismatch causes the mistranslation. At this point the user can then proceed to add in a new lexical
entry for the sense used in S;. Without an intuitive explanatory device, this diagnostic process can
range from impossible to unpleasant.

There are at least two implications for a self-explaining MT system. The first one is the prob-
lem of optimizing the explanation. The system should only report the key decisions made in
learning/augmenting the insufficient grammar without boring the user to death with unnecessary
details. The second one is that the underlying representation chosen for the GI processes must be
suitable for high-level reasoning and explanation.

4.1.6 Knowledge Integration/Management

With the introduction of GI into an MT system the knowledge integration and management becomes
an even more important problem. Ideally the integration of the existing grammar and the newly
learned one needs to meet the following criteria:

13In Chinese these two senses are indeed realized by two different words.
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1. Correctness: Any perturbation of the existing grammar should not alter the grammaticality
judgment and the parses of the seen sentences, i.e., those grammatical sentences should still
give the same parses while the non-grammatical ones should stay rejected. It is worth noting
that if compactness of a grammar is preserved during the integration, over the training sessions
the grammar is actually undergone a series of generalizations, in the sense that the grammar
coverage is monotonically increasing. It is obvious that such generalization would cause
admissions of previously ungrammatical sentences, but why is it possible to reject the existing
parsable sentences? It is possible since the generalized grammar usually introduces ambiguities
to the grammatical sentences. If the parser implementation only takes the top k parses into
account, the truth parse might very well be pushed “beyond the horizon”.

2. Compactness: At any time the grammar should impose least number of constraints on gram-
maticality such that it conforms with the given positive and negative examples.

3. Efficiency: The integration process, while observing the previous two conditions, should
terminate in a finite amount of time. In practice we may even want to have an integration
algorithm that runs in polynomial time.

First I shall discuss the situations under a symbolic setting without noise. For correctness checking,
as mentioned earlier, for CFG in theory there exists no algorithm for determining if G subsumes Gs.
A possible way out is by keeping a characteristic set [2] of sentences of the target grammar as a test
suite, and verify the integrity of the combined grammar over this set each time after the integration.
In [42] it has been shown that for languages of very simple deterministic pushdown automata, the
subsumption test of L(M;) C L(Ms) is decidable with exponential time complexity, by testing if
R C L(M>) holds, where R is a finite characteristic set of M;. The question is then how to restrict
the grammar formalism to allow such check, and whether the restriction is reasonable given the
particular application domain. For compactness checking, one of the straightforward ways is to
remove any unused rule with respect to the training data. Finally for the efficiency consideration
we might need to impose more restrictions on the characteristic set to make the checking more
tractable, but any of such restrictions obviously voids the theoretical guarantee.

For the situations where noise is possible in the input of the GI component, one possible solution
is to reduce the problem into that of diagnosis, where we try to pinpoint the faulty sentence, i.e., the
sentence which was given with the inaccurate linguistic judgment, and asks the user to reconsider
the validity of the information given before. We can make use of one of the non-monotonic reasoning
techniques in Al to pinpoint the faulty sentence [21]. Once the conflicts between the old and the
new knowledge is resolved, we can then proceed as discussed above.

In a non-symbolic setting, the correctness criterion can be recast into one that requires maximiza-
tion of posterior probability of the training data under a probabilistic framework, or minimization
of the error rates under a connectionists/evolutionary setting. The compactness criterion can be
reduced to the requirement that the combined grammar has the minimal description length [55].
Finally the efficiency can be improved by pruning the redundant or insignificant training sentences
(this could also be applied in the symbolic setting).

Finally it is worth noting that the knowledge integration process can be mixed with the other
system activities. Already we discussed the possibility of engaging the interactive diagnostic process
to pinpoint the knowledge conflicts. It is probably also the best time for the system to find out any
potential confusion and initiate a proactive probing as discussed in Section 4.1.4.
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4.2 Toward a Monolingually-trained MT

With all of the discussions given in Section 4.1, in this section I propose an interlingua-based and
Gl-enhanced MT system. Thanks to the learning capability brought by the GI component, together
with an automatic generation and a dialog planning component, the system would be capable of
learning to understand and speak different languages by interacting with monolinguals. The reason
for choosing a symbolic approach over a non-symbolic one is that the underlying representation
facilitates integration of the learned grammars with the human developed ones, and it is more
straightforward to make it possible for the system to engage in a conversation with humans.

To understand what a monolingually-trained MT system can buy us, let us first consider the
development process of the conventional rule-based MT systems. For a transfer-based system,
each language will need its own analysis and generation grammars, and both grammars are tightly
coupled with the transformation rules in between. This implies that the system requires bilingual
developers, since without intimate knowledge of both source and target language it is impossible to
create the necessary grammars. If a bidirectional system is desired the development effort is simply
doubled. For an interlingua-based system, the source and the target languages are decoupled by
the use of the interlingua - a language neutral meaning representation, thus the system only needs
monolingual developers for each language. However for each language the development effort is
still doubled in that the development of analysis and generation grammars are separate. Fig. 9
summarizes the discussions.

] Transfer-based MT * Interlingua-based MT

: analysis gmem“"h { analysis E -generamon
@Q NIT L., bilingual @ ‘ 0 @
. « « ':-/developers E ‘ : ‘
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&=* __ developers
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Figure 9: Development of transfer-based and interlingua-based MT systems.

Now consider the proposed monolingually-trained MT system. Since it is an interlingua-based
system, it again only needs monolinguals for each language. What is more interesting is by introduc-
ing an interactive GI component using a bidirectional grammar, or combining an ezample-based or
corpus-based generation module, there is no need for any manual development effort on both analysis
and generation grammars. The system is then able to pick up each language by simply interacting
with monolingual speakers - they do not even need to have sophisticated linguistic expertise. This
is shown in Fig. 10.

Obviously the key to realize such highly flexible and rapidly deployable systems is the interactive
GI component. All of the techniques proposed in Section 4.1: bootstrapping GI, introducing more
constraints via interactions, interactive ontology building, dialog-based and self-explaining MT, and
knowledge integration, can be incorporated into this single GI module. However we are still left
with the question of how to actually turn an analysis grammar into a generation one.

The first possibility is to mechanically convert the learned analysis grammar into a form (not
necessarily grammars) suitable for generation purposes. In [23] this is done by inverting an enhanced
unification-based grammar used for analysis into a logical form within the framework of Typed
Feature Structures [14]. The inversion algorithm has minor restrictions on what grammars are

24



* Gl-enhanced Interlingua-based MT

P -, - ~

{ analysis+ : { analysis+ :
i generation) Y1 generation!,
@ @« VT | =
[ H
. [} ' .
[ ; ] ; monolingual
e > e g
""" G- &= ___ speakers

Figure 10: A monolingually-trained MT system.

invertible [57], and prior to the inversion a special-purpose feature is added to each rule constituent
to keep the original phrase structure. The inverted grammar is then compiled into Abstract Machine
instructions for efficient generation of surface forms. The overall framework thus provides both
chart-based parsing and generation using one single grammar.

An alternative approach for generation using an analysis grammar is to bypass the creation
of a generation grammar altogether. This can be done by using purely corpus-based techniques,
such as the good-old n-gram model [47]. The approach has several advantages over the rule-based
ones, such as extremely fast generation and better domain portability. However it suffers from
its extremely naive modeling of natural languages - generated utterances can be ungrammatical
or sometime even repeating part of itself. The data collection is also a problem for large appli-
cation domains. Another possible solution is to make use of the learned analysis grammar, but
in the reverse processing direction. As an example, consider the following meaning representation
for an intended utterance “Suddenly my urine became discolored” (see Fig. 6; the nodes with thick
borders are significant - the labels of the other nodes are not taken as the meaning of the sentence).:

give-information+onset+symptom (manner=sudden, symptom-location=urine, symptom-name=(abnormal,
attribute=color _attribute))

Assuming again we are using a semantic grammar formalism, the generation can be proceeded in a
bottom-up fashion: first the surface form of the argument-value pair “attribute=color _attribute” is
generated, then the pair “symptom-location=urine”, “manner=sudden” and finally the root concept,
which is a dialog-act in this particular formalism, is generated. The lexical selection can be deter-
mined by maximizing the conditional probability P(w|c), where w is a possible word choice and
¢ is the underlying concept, or by maximizing over a more context-dependent class-based n-gram
model. Note that the grammaticality of the generation would still be a problem, which might be
remedied by a post-editing process to ensure the generation satisfies a set of local grammatical
constraints.

In summary the proposed monolingually-trained MT system is able to adapt to monolinguals
of different languages, and requires less development effort before it can be deployed.

5 Conclusions
In this paper I have investigated ways of incorporating GI into an MT framework, by first observing

a list of key considerations, surveying the theoretical and practical aspects of GI, and then proposing
ways of using GI in MT systems. In reviewing what has learned, I summarize several key research
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problems as the future works toward a highly flexible and self-adapting MT system:

1. Investigating the interactions between grammar formalisms and learning techniques:
Data scarceness is the problem plaguing almost all MT development works. With only little,
purely positive data, the only way to make the learning possible is by imposing constraints on
the language to be learned. A careful investigation, with a particular application in mind, of
the interactions between the adopted grammar formalism and the learning technique, is thus
crucial to better predict the system performance.

2. Investigating the interactions between language learning and knowledge acquisition:
As discussed in Section 4.1.3 there seems to be an interesting way to exploit the bidirectional
connections between a grammar and the domain knowledge/ontology. If used right for a
knowledge-based MT system both of the costs to develop a grammar and to develop a domain
model can be drastically reduced. In order to do this a more rigorous study of the relations
between the two is required.

3. Investigating the interactions between the analysis grammars and generation grammars:
It is argued in Section 4.2 that without the burden of developing two sets of grammars a
Gl-enhanced MT system can simply learn by interacting with monolinguals with no linguistic
expertise. The key is to exploit the symmetries and understand the asymmetries between the
two, and to come up with a satisfactory solution with respect to a particular application.
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