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Abstract  

Current corpus-based machine translation 
systems usually require significant amount 
of parallel text to build a useful bilingual 
dictionary for translation. To alleviate this 
data dependency I propose a novel approach 
based on genetic algorithms to improve 
translations by fusing different linguistic 
hypotheses. A preliminary evaluation is also 
reported. 

Introduction 

Most of the current corpus-based machine 
translation systems rely on statistical methods to 
extract bilingual dictionaries. While these 
methods, such as [Kay and Röscheisen 1993], 
K-vec and DK-vec [Fung and McKeown 1994, 
1997], and [Brown 1997], presume little or no 
prior knowledge of source languages, they 
require significant amount of parallel text to 
build an accurate bilingual dictionary [Jones and 
Somers 1995] [Somers and Ward 1996] [Haruno 
and Yamazaki 1996]. The requirement makes 
these approaches less desirable when little data 
of the source languages could be obtained.  
 
The lack of parallel text presents one aspect of 
the data scarcity problem [Al-Onaizan 2000]. 
Being able to solve the problem has both 
theoretical and practical values. On the one hand 
an effective approach could shed light on the 
theoretical framework required for building 
general lexical acquisition systems, on the other 
it could facilitate accessing information 
expressed in minority or indigenous languages. 
 
Obviously the problem cannot be remedied 
without help. As proposed in [Kumano and 
Hirakawa 1994], [Utsuro et al. 1994], [Haruno 

and Yamazaki 1996] and [Brown 1999], 
incorporating more linguistic knowledge could 
be a promising solution. In this paper it has 
motivated the proposal of a novel approach 
based on genetic algorithms (GA) [Holland 
1975, Goldberg 1989] as a way to fuse different 
linguistic hypotheses. The paper is organized as 
follows: in Section 1 a view of translating by 
optimization together with the two working 
hypotheses are introduced. Section 2 presents 
the details of the algorithm, and Section 3 
reports the preliminary evaluation. The paper is 
then concluded with Future Works. 

1 Translating by Optimization 

Let f: W1 × W2 be a translation mapping, where 
W1/W2 represents the words of the source/target 
language (L1/L2), a good translation f should 
maximize an objective score S(f). Viewing 
translation as an optimization problem allows a 
straightforward incorporation of different 
information. In this paper the score function S is 
determined based on the two proposed linguistic 
hypotheses, namely, the similarity of locality 
and part-of-speech (POS) distributions across 
the two languages. More specifically, the score 
function over a translation f is defined as 
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which is the sum of a linear combination of SL(f, 
si) and SP(f, si) – the scores contributed by the 
locality and the POS hypotheses, respectively, 
over an L1 sentence si

1. It is worth noting that 
for different language pairs, e.g., from a case-
marking language (e.g. Russian) to a 
configurational language (e.g. English), the 

                                                      
1 λ is a constant set to 0.5 in the evaluation. 



hypotheses used here might not be appropriate 
and new hypotheses of different types must be 
proposed due to the distinct natures of the 
linguistic mappings between the languages. 
 
The two hypotheses are described below. 

1.1 Locality Hypothesis 

The locality hypothesis stipulates that a good 
translation f should map two words in an L1 
sentence into a pair of words with similar word 
distance in the L2 sentence. Let wi, wj ∈ W1, a 
preferable f has the following property: 
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where Dist(.,.) denotes the distance between two 
words. Note it does not presume a strict word 
order similarity since only the relative distances 
of words are taken into account. 
 
For an L1 sentence with n words Equ. (2) 
implies a O(n2) time for evaluating f over the 
sentence. To save time an approximation is 
adopted where only every k+1-th word in si is 
considered. The score SL is then formulated as2 
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where Distmin(.,.) returns the minimum distance 
between a pair of words, κi = max(k, |ti|-k) is a 
normalizing constant, and ti is the translated 
sentence in L2. This is simply an average of the 
relative differences of the word distances 
between the L1 sentence si and its translation ti 
in L2. 

1.2 Part-of-speech (POS) Similarity Hypothesis 

The second hypothesis adopted is that a good 
translation should preserve the POS distribution. 
Let the POS distribution of a word w, D(w), be a 
vector of POS confidence values, i.e., 
 
D(w) = {ct | 0≤ct≤1 is the confidence that w is of 
POS t} 
                                                      
2 For the current implementation k=1. 

 
The POS distribution of a sentence s can then be 
defined as 
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And the score SP is defined as 
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normalized angle between the two distribution 
vectors. Note since both f(si) and ti are in L2, 
only the POS information of L2 is required. For 
translation for assimilation this is usually not a 
problem since in these scenarios the POS 
information of L2 is usually available3. 

2 A Genetic Algorithm Approach 

The GA-based approach is proposed to solve the 
translation optimization problem based on the 
following observations: (a) the search space is 
huge and not well understood, and (b) the 
problem satisfies the “building block 
hypothesis” in that a good translation possesses 
many useful smaller “building blocks” which 
can be exchanged with the others to potentially 
yield a better translation [Goldberg 1989]. 
 
Until recently GA has not been widely used in 
the field of computational linguistics. Several 
works have been reported for grammar 
induction, robust parsing, anaphora resolution 
and morphological analysis [Losee 1995] [Rosé 
1998] [Orasan et al 2000] [Kazakov and 
Manandhar 2000]. To the author’s knowledge 
there has not been any report on using GA-based 
techniques to extract bilingual dictionaries. 

2.1 Algorithm Outline 

The algorithm applies various GA operators on a 
population of solutions to maximize the 
objective function S(f). A solution (translation 
mapping) is encoded by a vector v where vi = j 
denotes the translation f(wi) = xj. A sketch of the 

                                                      
3 For the current implementation Brill’s 
Transformation-based POS Tagger [Brill 1992] is 
used for L2 (English). 



proposed steady-state genetic algorithm with 
least-fit-deletion strategy is described below: 
 
1. For each wi∈W1, iteratively compute a 

candidate set CS(wi) containing the 
possible translations with their respective 
confidence values (described below). 

2. Initialize a population of solutions by 
randomly picking a candidate translation 
for each wi according to the confidence 
distributions4, and adding a solution 
containing the candidates with the highest 
confidence values5. Evaluate all of the 
solutions according to Equ. (1), (3) and (4) 
and linearly scale the scores into the 
fitness values. 

3. Randomly pick a GA operator according to 
the operator fitness distribution. One or 
two solutions are then randomly selected 
according to the solution fitness 
distribution, and the GA operator is 
applied on them to generate new solutions. 

4. The new solutions are evaluated again by 
Equ. (1), (3) and (4), and the operator 
fitness values are adapted according to the 
performances of the new solutions. The 
worst solutions are then replaced by the 
new ones. 

5. A complete run of Step 3 and 4 is called an 
epoch. Run a certain number of epochs or 
stop when the score of the best solution 
exceeds a preset threshold. 

 
The following sub-sections give the rest of the 
details of the algorithm. 

2.2 Iterative Candidate Set Computation 

For a word wi ∈ W1 and xj ∈ W2, we first define 

iwS and 
jxS to be the set of sentences where wi 

and xj occurs respectively. The coverage of xj 
with respect to wi and vice versa are then 
computed by 

                                                      
4 The same random selection operation, roulette-
wheel selection, which picks a selectee randomly 
according to a given distribution, is adopted in the 
entire experiment.  
5 This is to ensure that the GA improves upon the 
initial best solution. 
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The n-th iterative confidence that xj is the correct 
translation of wi is then defined recursively as6 
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Finally for wi we rank xj in descending order 
according to cn(wi,xj), and form the candidate set 
CS(wi) by only taking the top k (cutoff value) L2 
words in the ranking list7. 
 
The intuition behind Equ (5) & (6) is that a 
preferable candidate xj for wi should have a 
higher ranking in CS(wi) and vice versa. This 
prevents a high-frequency L2 word from being a 
preferable translation for too many L1 words. 

2.3 Genetic Operators 

Three GA operators are adopted: crossover, 
mutation and creep. Each of them has its own 
fitness value, which is then used in selecting one 
operator in each epoch so that an operator with 
higher fitness value will on average be picked 
more frequently. To achieve greater autonomy 
and more dynamic system response the fitness 
values are adapted based on the idea of [Davis 
1989], although the realization is somewhat 
different. In each epoch after evaluating the new 
solutions, a reward proportional to their 
improvements over the best solution in the 
population is credited to the responsible 
operator, and a proportion of the reward is 
propagated back to the operator generating the 
parent(s), and to the operator generating the 
grandparent(s), etc., until we reach out of a 
preset history window. 
 

                                                      
6 For the experiment results reported here n=2. 
7 For the experiment results reported here k=10. 



The crossover operator takes two solutions, 
randomly picks a crossover point and swaps the 
sub-solutions between the two up to the point. 
The mutation operator randomly picks an L1 
word and changes the current translation to 
another L2 candidate according to the candidate 
confidence distribution. These two operators are 
adopted in most of GA implementations, and 
contribute to the search process by combining 
the potentially useful building blocks and 
randomly exploring the search space, 
respectively. 
 
The third operator, creep, locally optimizes a 
solution over a randomly chosen sentence. The 
new solution has the local alteration 
incorporated if it improves the objective score 
over the sentence, and the result of this 
perturbation is subsequently measured by Equ. 
(1), (3) and (4). 
 
The introduction of the creep operator is based 
on observing how a human tries to ‘decode’ 
words using a small parallel corpus [Al-Onaizan 
2000]. It is usually done by coming up with a set 
of translation hypotheses upon observing the 
correspondences between an L1 sentence and its 
corresponding L2 sentence. The hypotheses are 
then tested against the rest of the corpus. 
 
The objective function to be optimized by the 
creep operator is the translation score over a 
particular sentence si, namely 
 

),()1(),(),( PL iii sfSsfSsfS ⋅−+⋅= λλ . 

 
To make the search problem tractable this is 
done by a limited depth-first beam search: for 
each word wi, only 3 possible translations 
randomly picked from CS(wi) are searched8, and 
only the first 500 or 50% of the total different 
sentence translations are searched9. 

2.4 Fitness Scaling 

To avoid premature population convergence the 
fitness values are computed by linearly scaling 
the solution scores following the suggestion in 
[Goldberg 1989]. The fitness value F(f) of a 

                                                      
8 Again they are selected according to the candidate 
confidence distribution. 
9 Whichever smaller.  

solution f is computed by F(f) = a⋅S(f) + b, 
where the scaling coefficients a and b are 
computed by solving the linear equations10 
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Should they fail the coefficients are then 
obtained from solving the following equations: 
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where Fmin is a parameter11. If these fail again 
the population is fully converged and we give up 
scaling by setting a = 1.0 and b = 0.0. 

3 Experiments and Results12 

In order to evaluate the effectiveness of the 
approach with limited data, the experiments 
were conducted on three small corpora of 
different sizes (corpus C1 – C3), taken from the 
Spanish and English portions of the UN 
Multilingual Corpus [Graff and Finch 1994]. 
The statistics of each corpus together with the 
population size used in the training session is 
shown below. 
 
 # of 

sentence 
pairs 

Spanish 
lexicon 

size 

English 
lexicon 

size 

Pop. 
size 

C1 2000 6533 5335 150 
C2 4000 9910 8010 200 
C3 6000 12526 10034 250 

Table 1. Statistics for corpus C1, C2 and C3 

 
In all of the three training sessions the initial 
fitness values for the three GA operators were 
set equal (1/3), and 1,000,000 epochs were run 
for each corpus. After the training sessions 400 
Spanish words were randomly picked from C3 
and their translations were given according to 
the best solution before and after training using 

                                                      
10 Constant c is usually set in [1.2,2]. For the current 
implementation c=1.2. 
11 For the the current implementation Fmin = 0.1. 
12 All of the experiments were run on a Linux 
machine with AMD 700Mhz CPU and 256MB RAM. 



 Init. 
score 

Init. 
score 
per 

sentence 

Final 
score 

Final 
score 
per 

sentence 

Init. 
Word 

Precision 

Init. 
POS 

Precision 

Final 
Word 

Precision 

Final 
POS 

Precision 

C1 853.961 0.4270 1051.63 0.5258 46% 60% 49% 62% 
C2 1689.97 0.4225 1987.23 0.4968 49% 65% 50% 67% 
C3 2566.68 0.4278 2966.91 0.4945 51% 63% 54% 68% 

Table 2. Translation accuracies before and after training, with recall=100%; the max. precision is 
shown in bold typeface 

each corpus. The results were then graded by 
native Spanish speakers, who were given the 
translations and the actual parallel sentence pairs 
to judge the correctness of the translations. The 
results are summarized in Table 2. 
 
The initial best objective score and the per-
sentence score for each corpus are shown in the 
1st and the 2nd column, while the final cores are 
shown in the 3rd and 4th column. The initial 
scores represent the pre-GA, pure statistical 
translation precisions achieved by the iterative 
candidate set computation (see Section 2.2). 
Comparing the initial and the final scores 
indicates that the GA-based approach did 
perform better, although the advantages seemed 
to keep decreasing with the corpus size. This 
might be due to the insufficient running epochs 
when the corpus size grows larger. 
 
The rest of Table 2 shows the evaluation results 
given by the native speaker graders. At recall 
level 100% for all corpora, both of the final 
word and POS precisions are consistently higher 
than the pre-GA ones – although the 
improvements are not significant (the most 
significant improvement is about 6.5%). 
 
In addition to the premature termination of the 
training processes mentioned earlier, one 
possible explanation for the relatively modest 
improvements is that the random selection of a 
candidate in the mutation and creep operators is 
based on the candidate confidence distribution, 
which biases strongly toward the initial best 
solution. Another possible reason might be that 
the hypotheses were not reflecting perfectly the 
real linguistic similarities between these two 
languages. It has become apparent during the 
evaluation process that the system could take 
advantage of the observed linguistic constraints 

between these two languages, e.g., reinforcing 
the patterns where a Spanish adjective is 
translated behind a Spanish nominal head. 
Obviously any more specific hypotheses would 
risk the generality of the approach. 
 
As a comparison with a conventional statistical 
approach, the experiment reported in [Brown 
1997] used the same Spanish-English UN 
corpus, but instead of using only a small portion 
the author used the entire corpus for training 
(total 685,000 sentence pairs with 96,793 unique 
Spanish words). The best precision achieved at 
recall = 14.92% was 71%, but at the highest 
recall level (38.07%) the precision was 54%. 

Future Works 

In this paper I addressed the problem of 
translating with scarce resources, and 
demonstrated that by viewing translation as 
optimization, useful information could be fused 
to yield better translations. In particular, two 
linguistic hypotheses – locality and POS 
similarity – were postulated, and a GA-based 
technique was developed to solve the 
optimization problem. A preliminary evaluation 
based on the three small Spanish-English 
corpora is also reported 
 
However there are several problems that need to 
be addressed in order to make the technique 
fully practical. Since the approach optimizes 
translation mappings sentence by sentence, as 
the size of the corpus grows the running time 
becomes unacceptable. The problem could be 
alleviated by only optimizing over the most 
discriminating sentences. Another limitation of 
the approach is the overly simplified 
representation used to represent lexical entries. 
There are no phrasal terms, no polysemous 
words, and no linguistic constraints between 



words are learned (e.g., verb subcategorization). 
The problem must be overcome in order to make 
the machine-generated lexicon more useful 
within a complete translation system. 
 
Finally, as cued in the previous section, it 
remains to be seen if a more accurate fitness 
function and a set of more robust GA operators 
can be discovered. In the realm of machine 
translation this might translate into finding the 
commonalities between a specific pair, or even 
any pair of languages, and a set of more 
universal operators for transforming word tokens 
of L1 into those of L2. 

References  

Al-Onaizan, Y., Germann, U., Hermjakob, U., 
Knight, K., Koehn, P., Marcu, D. and Yamada, K. 
(2000) Translating with Scarce Resources. The 17th 
National Conference of the American Association 
for Artificial Intelligence (AAAI-2000), Austin, 
Texas.  

Brill, E. (1992) A simple rule-based part of speech 
tagger. In Proceedings of the Third Conference on 
Applied Natural Language Processing, ACL.. 

Brown, R. (1997) Automated Dictionary Extraction 
for “Knowledge-Free” Example-Based 
Translation". In Proceedings of the Seventh 
International Conference on Theoretical and 
Methodological Issues in Machine Translation, pp. 
111-118. Santa Fe. 

Brown, R. (1999) Adding Linguistic Knowledge to a 
Lexical Example-Based Translation System. In 
Proceedings of the Eighth International 
Conference on Theoretical and Methodological 
Issues in Machine Translation, pp. 22-32. Chester, 
UK. 

Davis, L. (1989) Adapting Operator Probabilities in 
Genetic Algorithms. In Proceedings of the Third 
International Conference on Genetic Algorithms, 
pp. 61 - 69, Morgan Kaufmann. 

Fung, P. and McKeown, K. (1994) Aligning Noisy 
Parallel Corpora Across Language Groups: Word 
Pair Feature Matching by Dynamic Time Warping. 
In Proceedings of the Conference on Theoretical 
and Methodological Issues in Machine 
Translation, pp. 81-88. 

Fung, P. and KcKeown, K. (1997) A Technical 
Word- and Term-Translation Aid Using Noisy 
Parallel Corpora Across Language Groups. 
Machine Translation, Vol. 12, Nos. 1-2, pp. 53-87. 

Goldberg, D. E. (1989) Genetic Algorithms in 
Search, Optimization, and Machine Learning. 
Addison-Wesley. 

Graff, D. and Finch, R. (1994) Multilingual Text 
Resources at the Linguistic Data Consortium. In 
Proceedings of the 1994 ARPA Human Language 
Technology Workshop. Morgan Kaufmann. 

Holland, J. H. (1975) Adaptation in Natural and 
Artificial Systems, University of Michigan Press. 

Haruno, M. and Yamazaki, T. (1996) High-Precision 
Bilingual Text Alignment Using Statistical and 
Dictionary Information. In Proceedings of Annual 
Conference of the Association for Computational 
Linguistics, pp. 131 -138. 

Jones, D. and Somers, H. (1995) Bilingual 
Vocabulary Estimation from Noisy Parallel 
Corpora Using Variable Bag Estimation. In JADT 
III Giornale Internazionale di Analsi Statistica dei 
Dati Testuali, pp. 255-262, Rome. 

Kay, M. and Röscheisen, M. (1993) Text-Translation 
Alignment. Computational Linguistics, Vol. 19, No 
1, pp 121-142. 

Kazakov, K. and Manandhar, S. (2000) Unsupervised 
Learning of Word Segmentation Rules with 
Genetic Algorithms and Inductive Logic 
Programming. To appear in Journal of Machine 
Learning. 

Kumano, A. and Hirakawa, H. (1994) Building an 
MT Dictionary from Parallel Texts Based on 
Linguistic and Statistic Information. In 
Proceedings of International Conference on 
Computational Linguistics, pp. 76-81, Kyoto. 

Losee, R. M. (1995) Learning Syntactic Rules and 
Tags with Genetic Algorithms for Information 
Retrieval and Filtering: An Empirical Basis for 
Grammatical Rules. In Information Processing and 
Management. 

Orasan, C., Evans, R. and Mitkov, R. (2000) 
Enhancing Preference-Based Anaphora Resolution 
with Genetic Algorithms. In Christodoulakis (ed.) 
Proceedings of Natural Language Processing 
(NLP 2000), pp. 185 – 195. 

Rosé, C. P. and A. Lavie (1998) A Domain 
Independent Approach for Efficiently Interpreting 
Extragrammatical Utterances. In Journal of 
Natural Language Engineering, 1 (1) pp. 1-57. 

Somers, H. and Ward, A. (1996) Some More 
Experiments in Bilingual Text Alignments. In 
Oflazer, K. and Somers, H. (eds) Proceedings of 
the SecondInternational Conference on New 
Methods in Language Methods in Language 
Processing, pp. 66-78, Ankara. 

 Utsuro, T. et al. (1994) Bilingual Text Matching 
Using Bilingual Dictionary and Statistics. In 
Proceedings of International Conference on 
Computational Linguistics, pp. 1076-1082, Kyoto. 

 


