
From Language to Time: A Temporal Expression Anchorer

Benjamin Han, Donna Gates and Lori Levin
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Ave, Pittsburgh PA 15213

{benhdj|dmg|lsl}@cs.cmu.edu

Abstract

Understanding temporal expressions in natural lan-
guage is a key step towards incorporating temporal infor-
mation in many applications. In this paper we describe a
system capable of anchoring such expressions in English:
system TEA features a constraint-based calendar model and
a compact representational language to capture the inten-
sional meaning of temporal expressions. We also report
favorable results from experiments conducted on several
email datasets.

1 Introduction

A key ingredient in incorporating temporal information
into natural language applications is the normalization, or
anchoring of temporal expressions, i.e., expressions using
temporal terms such as 2005, evening, tomorrow, etc. Some
of these expressions can be classified into the following cat-
egories:

• Explicit expressions are the ones that can be immedi-
ately anchored; e.g., June 2005, 1998 Summer, etc.

• Deictic expressions are the ones that form a specific
relation with a speech time; e.g., tomorrow, last year,
two weeks from today.

• Relative expressions are the ones that form a specific
relation with a temporal focus, i.e., the implicit time
central to a discourse; e.g., from 5 to 7, on Friday, etc.

• Duration expressions are the ones that describe cer-
tain length in time; e.g., for about an hour, less than
20 minutes.

Accomplishing this task requires not only the knowledge
about how various temporal primitives are related (e.g.,
February in a leap year has 29 days), but also how they

interact with one another given a description manifested by
an expression. In this paper we describe a system capable
of automatically anchoring the kinds of expressions listed
above1. The input to the system TEA (Temporal Expres-
sion Anchorer) are English sentences with temporal expres-
sions already identified, and the output is the normalization
for each temporal expression. TEA has the following char-
acteristics: (1) it incorporates a constraint-based calendar
model to reason with under-specified expressions; (2) it can
be extended to deal with new temporal primitives; (3) it cap-
tures the intensional meaning of temporal expressions using
a compact representational language TCNL (Time Calculus
for Natural Language).

A system overview of TEA is given in Fig. 1. The
Finite-state Parser first takes an input sentence and trans-
lates its temporal expressions into TCNL formulae. The
temporal references inside the formulae such as focus are
then instantiated and any ambiguity is resolved in the Dis-
course Module. Finally the Evaluator Module takes the set
of processed TCNL formulae and evaluate them to give
the normalized times. At all stages the Calendar Model
provides necessary services such as determining granular-
ity of an expression, comparing two expressions chrono-
logically, and solving constraint satisfaction problems in-
duced by TCNL formulae, etc. Fig. 22 shows an ex-
ample session using TimeShell3, an interactive front-end
of TEA, to illustrate this process: the Finite-state Parser
first transduces the expression “yesterday at 3pm” into its
TCNL formula {15hour, 0min, now−|1day|}, the Discourse
Module then rewrites the temporal reference now with
{2006year, feb, 7day} (speech time), and finally the Evalu-
ator solves the formula to its answer 20060206T1500??.

1Notable omissions of the expression types include recurrence (e.g.,
“3pm every Tuesday and Thursday”) and rate expressions (e.g., “twice a
week”). These are left to the future work.

2The output are shown in two formats: TCNL and an ISO8601-like
form. In the latter a date is written in the form of YYMMDD and a time
point is shown in the form of YYMMDDTHHMMSS; omitted information
is indicated by ‘?’.

3http://telltime.org

Finite-state Parser

Discourse Module

Evaluator Module

Calendar Model

Constraint Solver

sentences with
temporal expressions

TCNL formulae

instantiated and
disambiguated TCNL

formulae

sentences with anchored
temporal expressions (using

ISO8601-like format)

TEA

Figure 1. System overview of TEA

_ = {2006_year, feb, 3_day}
> yesterday at 3pm
TCNL: {15_hour, 0_min, now - |1_day|}

= {2006_year, feb, 6_day, 15_hour, 0_min}
ICal+: 20060206T1500??

_ = {2006_year, feb, 6_day, 15_hour, 0_min}
> 2 days after Thanksgiving a year ago
TCNL: {{|4_{thu}| @ {_ - |1_year|, nov}} + |2_day|}

= {2005_year, nov, 26_day}
ICal+: 20051126

_ = {2005_year, nov, 26_day}
> on Wednesday
TCNL: +{wed} = {104611_week, wed}
ICal+: 20051130

Figure 2. Example session in TimeShell

This result becomes the new focus that the Discourse Mod-
ule then uses to replace the reference ‘ ’ in the next for-
mula for the expression “2 days after Thanksgiving a year
ago”. This second formula also demonstrates how TCNL is
able to represent the intensional meaning of Thanksgiving,
which is the 4th Thursday in November. Finally the last
expression “on Wednesday” is anchored to a specific day
thanks to the prefix ‘+’ in the extremely under-specified
formula +{wed}. This instructs the Evaluator to find the
first Wednesday possible on or after the focus.

The rest of the paper details TEA in the reversed order
outlined above. Sec. 2 first introduces the constraint-based
calendar model and its core algorithms. Sec. 3 then gives
a concise description of TCNL. These two sections present
an updated account to the work reported in [5] and [6]. The
Discourse Module and the finite-state parsing are described
in Sec. 4 and Sec. 5. Experimental result on email corpora
is then reported in Sec. 6. Finally we conclude the paper
and outline the future work in Sec. 7.

Year

Month Day

Hour

Minute

Second

Week

Day-of-week

Time-of-day

Time-of-week

Year component Week component

?
X component

unit constraints
alignment constraints
is-measured-by relation

is-periodic-in relation

*

*
*

*

*

*
*

(* marks a representative)

*

temporal unit

Figure 3. A partial model of the Gregorian cal-
endar

2 Calendar Modeling

A calendar in TEA serves the role of a time ontology;
i.e., to encapsulate the relations among a set of temporal
primitives, or temporal units, so that they can be of use by
our representational language TCNL. In literature there has
been many works similar in purpose, such as the DAML
Time Ontology [7], Calendar Logic [11], and an algebraic
representation of granularity systems proposed in [3]. Our
modeling of calendars is distinct in that it views a cal-
endar as a constraint system, namely we treat a tempo-
ral unit as a variable with a discrete, finite and fully or-
dered domain (e.g., the domain of unit month consists of
jan < .. < dec), and a temporal expression in natural
language in effect assigns values to some of these units.
This modeling has the following advantages: (1) granularity
conversion is abstracted and localized in constraints, which
makes the model easy to extend; (2) partial assignments to
units can be refined by solving the induced Constraint Sat-
isfaction Problems (CSP) [12], thus making the model a
perfect fit for reasoning about under-specified expressions
(e.g., knowing the date February 29 implies it is in a leap
year). Fig. 3 gives a pictorial view of a partial model for the
Gregorian calendar.

The basic building block in our calendar model is a cal-
endar component, which is essentially a souped-up con-
straint network. Multiple components are then aligned us-
ing constraints (more on this later). Within a calendar com-
ponent, in addition to the constraints specifying compati-
ble values among the constrained units (e.g., February in
non-leap years cannot have 29 days), the units are also
partially ordered using a designated measurement relation
(solid arrows in Fig. 3); e.g., month is-measured-by day,
or month > day. A reciprocal relation periodicity is also
defined (dashed arrows in Fig. 3): if u1 is-measured-by u2,
u2 is-periodic-in u1 if iterating through the possible values

of u2 does not advance the value of u1; e.g., dow (day-of-
week: Monday..Sunday) is-periodic-in week but not peri-
odic in tow (time-of-week: weekdays and weekends), be-
cause adding one day to Friday will advance the corre-
sponding tow from weekdays to weekend. The periodic-
ity relation then allows us to define the concept of anchor
paths: a path < un, . . . , u1, u > is an anchor path of unit
u if ui is-periodic-in ui+1 for i = 1...(n − 1), and un is
a maximal unit under the measurement relation. We then
say that a set of assignments is anchored at unit u if every
unit on the anchor path of u has an instantiation (singleton
assignment).

The core operations in our calendar model are constraint
propagation and distribution: the former removes incom-
patible values from the domains of the units (represented
by intervals) using the standard AC-3 algorithm4 [9], and
the latter iterates through every consistent set of instanti-
ations using a chronological backtracking algorithm (e.g.,
given “Friday the 13th” find all possible anchored dates).
In TEA the distribution algorithm is tailored to instantiate
units in a given ordering (usually specified by an anchor
path), and it can also start iterating from a given set of in-
stantiations (e.g., iterating through all possible Friday the
13th starting from January 13, 2006). Fig. 4 gives a sketch
of the distribution algorithm.

As mentioned earlier a temporal expression essentially
gives partial assignments to temporal units. This set of
assigned units acts as a view into the underlying calendar
model; e.g., the view introduced by expression “February
29” is {month, day}. We can then define granularity of as-
signments as the set of minimal units of their view under
the measurement relation; e.g., the granularity of “February
29” is {day}. Granularity conversion is therefore imple-
mented as a graph-theoretic operation to find a new view
with the desired set of minimal units; e.g., demoting the
granularity of “February 29” to {min} changes its view
to {month, day, hour, min}, while promoting it to {year}
changes the view to {year}.

Building on the concepts of anchor paths and granu-
larity, we can then determine the chronological ordering
of two sets of assignments. We do so by first compar-
ing two sets of assignments, say a1 and a2, on the same
anchor path: we say a1 is earlier than a2 on an anchor
path < un, . . . , u1, u > iff there exists i ≤ n such that
a1[uj] < a2[uj] for all j = n . . . i (lexicographic compari-
son). We then say a1 is earlier than a2 iff there exists a unit
u in the union of both granularities such that a1 is earlier
than a2 on the anchor path of u. E.g., “7am on February
29, 2004” (granularity is {hour}) is earlier than “afternoon
on February 29, 2004” (granularity is {tod}, i.e., time-of-
day) since the former is earlier than the latter on the anchor
path of hour.

4With minimum remaining values heuristics.

distribute(a, ordering, a0):

Input:
assignments a and starting instantiations a0

ordering is a list of units
Output: the next consistent instantiation of all units

i = 0; rest = list of units that are not in ordering
do:

u = ordering[i]; backtrack = False
if a0[u] exists:

if domain of u has value a0[u]:
v = a0[u]

else: backtrack = True
remove a0[u]

else:
if domain of u has any value:

v = the next available value
else: backtrack = True

if backtrack == False:
a[u] = v; remove v from domain of u
propagate(a)
if consistent:

if i == (length of p) - 1:
if rest is not empty and

there exists no a′ from distribute(a, rest, a0):
backtrack = True

else: yield a
else: i = i + 1

else: backtrack = True

if backtrack == True:
if i > 0:

revert a[u] and domain of u to the state before
the last assignment

i = i− 1
else: return

Figure 4. Sketch of the distribution algorithm

Another service provided by our calendar model is the
addition operation: adding an integer to an instantiated unit;
e.g., adding 1 day to unit day in the assignments “Febru-
ary 29” should result in assignments equivalent to “March
1”. The algorithm (shown in Fig. 5)5 essentially sets up the
assignments properly and call the distribution algorithm to
accomplish the feat. For certain units, however, a faster op-
eration is possible. A call add(a, u, n) can be broken down
into add(a, u, l) and add(a, u′,m) where n = m · k + l and
l < k, if unit u is periodic in u′ and every value of u′ is
compatible with the same set of values of u (the size of the
set is k).

Finally the modularity of our calendar model is achieved
by allowing multiple calendar components to be related via

5This can be easily generalized to the n < 0 case.

add(a, u, n):

Input: assignments a, unit u and integer n > 0
Output: True iff successful.

p = anchor path of u; u0 = p[0]
a0 is an empty dictionary
for v in p except u0:

a0[v] = min(a[v])
for every unit v except u0:

a[v] = full domain of v

do:
if there is a next set of assignments from distribute(a, p, a0):

n = n− 1
if n == 0: return True

else: return False

Figure 5. Sketch of the addition algorithm

alignment constraints. The purpose of such constraints is
to establish an order-preserving bijection mapping between
the instantiations of the two aligned components. The pair
of units that are aligned between two components are called
the portal units of the alignment, and the scope of an align-
ment is the union of the anchor paths of the portal units.
For example, in Fig. 3 the portal units of the alignment
between the year component and the week component are
day and dow, and the scope of the alignment constraint
is {year, month, day, week, dow}. Once the non-binary
alignment constraint is specified, we can then translate an
instantiation of one component to that of the other using the
core algorithms described above; e.g., “February 29, 2004”
is “Sunday of the 104519th week”. The measurement and
periodicity relations can also be extended across aligned
calendar components so that operations such as granularity
conversion and addition would work properly.

3 Time Calculus for Natural Language
(TCNL)

Building on top of the constraint-based calendar model is
TCNL, a compact formalism designed to capture the mean-
ing of temporal expressions in natural language. Compared
to many other alternatives in literature such as TOP [2],
Timex2 [4] and TimeML/Timex3 [13], TCNL has the
following characteristics: (1) it is calendar-agnostic (or
ontology-agnostic); (2) it captures the intensional meaning
of an expression (e.g., “yesterday” is not represented as a
fixed date like 2006-02-02 but as a formula {now−|1day|};
more on this point later); (3) it exposes contextual depen-
dency by using temporal references such as focus; and (4)
its type system and operators makes granularity conversion
and re-interpretation a transparent process.

There are three types of temporal entities in a TCNL
representation: coordinates, quantities and enumerations.
A coordinate represents a set of assignments to temporal
units (Sec. 2); e.g., “Friday the 13th” is represented as
{fri,13day}. Semantically a coordinate represents a time
point at a certain granularity even when it is under-specified
and can be anchored at multiple possible positions on a time
line; e.g, the formula above represents a single Friday on the
13th (of some month). An enumeration, on the other hand,
represents a set of time points (sets of assignments), includ-
ing but not limited to intervals; e.g., [{wed},{fri}] repre-
sents “Wednesday and Friday” and [{wed}:{fri}] denotes
“Wednesday to Friday”6. Finally a quantity represents a cer-
tain number of temporal units (e.g., |2day| for “two days”) or
coordinates (e.g., |2{fri,13day}| for “two Fridays the 13th”).
The semantics of a quantity is quite different from that of
an interval: the latter must have a starting and an ending
point (although they can be under-specified) and must de-
note a contiguous range on a time line, while a quantity just
means a certain amount of “things”, and they do not need
to be adjacent to one another on a time line (e.g., no two
Friday the 13th are adjacent). Following Sec. 2 the granu-
larity of an entity is then defined as the set of minimal units
among those appearing in the representation.

More complex temporal entities can be constructed us-
ing operators. All of the TCNL operators impose type
and granularity requirements on their operands; an exam-
ple is the fuzzy-shifting operators + and −. In a formula
{c+q}, the operand c must be a coordinate while q must be
a quantity. In addition, the granularity of c must be brought
to match that of q. Thus the formula {now+|1day|} (“to-
morrow”) is evaluated to February 3, 2006 (granularity is
{day}) even when the temporal reference now is 10:03pm
on February 2, 2006 (granularity is {min}). Another ex-
ample is the ordinal operator @, which stipulates that the
left operand must be a quantity and the right operand must
be an enumeration, and that the granularity of the latter
must be brought to match that of the former. Evaluat-
ing a formula such as {|2{sun}|@{may, 2005year}} (“the
2nd Sunday in May 2005”7) thus first requires a type co-
ercion from {may,2005year} into the correct enumeration
[{sun,104580week}:{sat,104585week}]. The operator @
then selects the 2nd possible coordinate that is a Sunday us-
ing the find the nth algorithm shown in Fig. 6. A summary
of all TCNL operators is given in Table 1.

Temporal entities can also be related with one another
using relations. A top-level relational term “re′” in a host
entity e specifies that (e, e′) is in relation r. Based on dif-
ferent type requirements TCNL provides five sets of rela-

6An interval represented this way always denotes the shortest possible
interval; e.g., the example does not denote a time span of more than 7 days.

7Mother’s day; TEA maintains a database of US holidays using formu-
lae like this.

operator Type requirement Granularity requirement Semantics Example
+ and − C × Q→ C g(LHS)← g(RHS) fuzzy forward/backward

shifting
{now+|1day|}
(“tomorrow’’)

++ and −− C × Q→ C g(LHS)←
min(g(LHS)∪g(RHS))

exact forward/backward
shifting

{now++|2hour|}
(“2 hours from now”)

@ Q × E→ C g(RHS)← g(LHS) ordinal {|2{sun}|@{may}}
(“the 2nd Sunday in May”)

& C × C→ C
C × E→ E
E × C→ E
E × E→ E

g(LHS)←
min(g(LHS)∪g(RHS))

distribution {now &{now+|1year|}}
(“this time next year”)
[{15hour}&[{wed}:{fri}]]
(“3pm from Wednesday to Fri-
day”)

Table 1. Summary of operators in TCNL; LHS/RHS is the left/right operand, g(e) returns the granular-
ity of e and min(s) returns the set of minimal units among s.

find the nth(n, c, start, end):

Input: integer n > 0, coordinate c, start and end
Output: a coordinate if successful, otherwise None.

iter path =
union of anchor paths of units in granularity of start

sort iter path using the measurement relation

do:
if there is a next set of assignments a

from distribute(c, iter path, start):
if a is earlier or equal to end:

n = n− 1
if n == 0: return a

else: return None

Figure 6. Sketch of the find the nth algorithm

tions (Table 2). Some examples are {wed, < now} for “a
past Wednesday”, {now, de {now+|0day|}} for “the rest of
today” and [s now] for “from now on”8.

TCNL also provides two temporal references so repre-
sentations of temporal expressions can use them to expose
contextual dependency. We have seen reference ‘now’ used
in various examples above: it denotes the speech time and
usually it is kept constant during a discourse. The other ref-
erence available is the temporal focus, symbolized by ‘ ’
(underscore). It is usually moved around in a discourse de-
pending on which temporal location the discourse is focus-
ing on9. A simple example is shown below:

After the Challenger accident in ’86
({1986year}), shuttle missions were suspended
in the next 2 years ([:{ +|2year|}]).

8This forms an interval starting from now to a pre-defined maximal
coordinate.

9Another contrast between the two different references is that dectic
expressions such as “tomorrow” use speech time ({now+|1day|}) while
relative expressions such as “the next day” use focus ({ +|1day|}).

Relations Type
requirement

Semantics

<, <=, >=, > Q × Q shorter-than, shorter-than or
equal-to, longer-than or equal-
to, and longer-than

<, <=, >=, > C × C before, before or equal-to, after
or equal-to, and after

b, s, d, de, f, di C × E LHS is
before/starting/during/during-
equal/finishing/after RHS; de
is defined as (s or d or f).

b, s, f, bi E × C LHS is a maximal interval that
is before/starting at/finishing
at/after RHS.

b, m, o, s, d, f,
=, fi, di, si, oi,
mi, bi

E × E See [1].

Table 2. Summary of relations in TCNL;
LHS/RHS is the left/right operand.

Evaluating the second formula requires instantiating its fo-
cus with a previously mentioned time, in this case it is the
year 1986. Managing focus movement (or focus tracking)
is then relegated to the Discourse Module (to be described
in Sec. 4).

It is worthwhile contrasting the use of a temporal fo-
cus in TCNL with similar devices adopted in other for-
malisms. For example, in TimeML/Timex3 the attribute
anchorTimeID is used in a TIMEX3 tag to “introduce
the ID of the time expression to which the TIMEX3 mark-
able is temporally anchored” [13]. An example for expres-
sion “two weeks from next Tuesday” is shown below:

<TIMEX3 tid="t1" type="TIME" value="2002-08-06"
temporalFunction="true" anchorTimeID="t0">

two weeks from next Tuesday</TIMEX3>

The date referred to by t0 (which was introduced earlier in
the discourse) is then used to resolve the expression into the
value 2002-08-06. By contrast the same expression is
represented in TCNL as {{ +|1{tue}|}++|2week|}. Using

a placeholder like is more akin to the idea of lazy evalu-
ation: it allows the same meaning representation to be re-
solved into different denotations, thus enhancing the mod-
ularity of our approach10. Another relevant observation is
that much of the inner arithmetic evident in the TCNL for-
mula is opaque in the Timex3 representation.

It is not always obvious how one can factor out the ef-
fect of focus in a TCNL formula, however. Consider the
following example:

I am free next week ({now+|1week|}). How about
Friday ({fri})?

We can evaluate the under-specified expression “Friday”
here by finding its nearest possible instantiations on or after
the focus (“the next week”); i.e., we can rewrite {fri} into
{|1{fri}|@{>= }} and evaluate the new formula. This
step is only necessary, however, if the formula cannot be
anchored in its original form (e.g., if the second expression
is “February 3, 2006”, then applying the same rewriting
procedure would give us no consistent instantiation). This
dilemma motivates the introduction of two coordinate pre-
fixes: prefix ‘+’/‘−’ leading a coordinate indicates that the
formula should be rewritten to find the nearest possible in-
stantiation in the future/past of the focus, if necessary. Thus
in the example above “Friday” should be represented as
+{fri} instead. Deciding whether to add a prefix or what
prefix to add is again a responsibility of a different module.

A second pair of prefixes is also provided to deal with
the effect brought by tense/aspect. The “Friday” in “the
company announced/will announce on Friday’’ can denote
a Friday either before or after now. Instead of hard-coding
the relation existing between a coordinate with now (e.g.,
{fri, < now} for the past tense), we use prefix ‘f’ and ‘p’
to mark this relation. Similar to the +/− prefix the insertion
of the relational term happens only when necessary.

Finally TCNL provides a handful of functions to repre-
sent the meaning of expressions such as “late 2006” and
“year-end”. Examples are early(.), mid(.) and late(.)
(C → C).

4 Anchoring in Discourse

Two complications arise before the evaluation of a
TCNL formula can commence, and they are handled in the
Discourse Module in TEA (Fig. 1). The first is one of ambi-
guity - an example is ambiguous hour expressions. In TEA
the Finite-state Parser produces multiple formulae for ex-
pressions like “at 3” - in this case they are +{3hour} and
+{15hour}11. To resolve this ambiguity we simply pick the

10We should also emphasize that one of the design goals for TCNL is to
make it easier for machines to generate these representations.

11Recall from Sec. 3 the prefix + indicates that the formula should be
anchored in the future of focus.

one that evaluates to a point closer to the focus; e.g., in the
expression above if the focus is at 1 pm, +{15hour} will be
chosen (evaluated to 3 pm on the same day) instead of the
other (evaluated to 3 am of the next day).

The second complication is the instantiation of temporal
references appearing in a formula (both speech time ‘now’
and focus ‘ ’). While instantiating now is straightforward
(e.g., experiments reported in Sec. 6 use email time stamp
as the speech time), focus instantiation is more challeng-
ing. The current implementation of TEA uses a slightly
constrained recency-based method for “tracking” focus: we
simply pick the most recent formula prior to the one being
evaluated to instantiate the focus, except when that formula
comes from a noun-modifying temporal expression. The
exception is motivated by examples such as this:

We received a copy of 2005 report and will send
you our analysis by Sunday ({<= +f{sun}}).
(now = {feb,3day,2006year})

Clearly {<= +f{sun}} is not a Sunday in 2005. The con-
jecture is that a noun-modifying temporal expression usu-
ally serves as a temporal co-reference instead of introducing
a new temporal entity into the discourse, and this reference
has a more confined effect in anchoring the subsequent ex-
pressions.

We should emphasize that much of the current imple-
mentation of the Discourse Module is far from perfect (evi-
dent in the results shown in Sec. 6) and requires more work
in the future.

5 Parsing Temporal Expressions

The Finite-state Parser in TEA (Fig. 1) first identifies
all verb chunks in an input sentence and associates each
temporal expression with its nearest verb chunk. Each ex-
pression with the tense/aspect information of its associated
verb chunk is then used to build a TCNL formula. The
formula-building process essentially breaks down an ex-
pression and constructs the representation bottom-up. The
compositional nature of TCNL makes this a relatively pain-
less process: for example, given an expression “Friday last
week”, the TCNL formulae for “Friday” ({fri}) and “last
week” ({now−|1week|}) are first built and then combined to
give the final representation ({fri,{now−|1week|}}). Note
that we are not required to produce a single “normalized”
representation for every equivalent expression; e.g., the for-
mula {now−|1{fri}|} parsed from “last Friday” would be
evaluated to the same date. This makes grammar develop-
ment a much easier task12.

12The grammar used in the experiments reported in Sec. 6 has 100 rules,
including many rules for major US holidays.

Another interesting note is that the interpretation of an
expression can be affected by the granularities of its sub-
expressions. Take the following pair of expressions for ex-
ample:

”Tuesday before Christmas”
= {tue, < {|25day|@{dec}}}

”Tuesday before 6pm”
= {< {tue,18hour}, de {tue}}

Both of the expressions share the same “X before Y ” pat-
tern, but their interpretations are different (see Table 2 for
relation de). The key to discriminate the two is to compare
the granularities of X and Y : if Y if at a higher granular-
ity (Sec. 2) then the first interpretation should be adopted.
This observation has persuaded us to provide mechanisms
for “estimating” the granularity of a formula (without first
evaluating it) and making it available to the parser13.

6 Experiments and Results

We have tested the effectiveness of TEA over time on
several email corpora. Emails are of particular interest to
us due to our work in project RADAR14: the project aims
at building personal agents capable of scheduling meetings
among different users. Understanding the meaning of tem-
poral expressions is therefore a crucial step.

The email dataset used in our development and testing
were collected from MBA students of Carnegie Mellon Uni-
versity over the year 1997 and 1998. The 277 students,
organized in approximately 50 teams of 4 to 6 members,
were participating in a 14-week course and running simu-
lated companies in a variety of market scenarios [8]. For our
study, 1,196 scheduling-related emails were manually se-
lected from the 15,000+ dataset and were randomly divided
into five sets (email1 to email5). Only four of them are
used in the results reported here: email1 was used to estab-
lish our baseline, email2 and email5 were used for devel-
opment, and part of email4 was used for testing. The tem-
poral expressions in all of the datasets were initially tagged
using rules developed for MinorThird15, and subsequently
corrected manually by two of the authors. Table 3 shows
some basic statistics of the datasets16, and Fig. 7 shows a
sample email from the datasets (edited).

It is worth noting that much of the previous work de-
voted on recognizing and normalizing temporal expressions
have focused on newswire texts. Distribution-wise emails

13This is not always possible as temporal references and functional
terms might appear in a formula.

14Reflective Agent with Distributed Adaptive Reasoning.
http://www.radar.cs.cmu.edu/external.asp

15http://minorthird.sourceforge.net/
16The percentages in some rows do not add up to 100% because some

expressions like coordination can be classified into more than one type.

of
emails

of
tempex

explicit deictic relative duration

email1 253 300 3 (1%) 139
(46.33%)

158
(52.67%)

N/A

email2 253 344 19
(5.5%)

112
(32.6%)

187
(54.4%)

27
(7.8%)

email4
(part.)

149 279 71
(25.4%)

77
(27.6%)

108
(38.7%)

22
(7.9%)

email5 126 213 14
(6.6%)

105
(49.3%)

92
(43.2%)

3 (1.4%)

Table 3. Basic statistics of the email datasets

Date: Thu, 11 Sep 1997 00:14:36 -0500

I have put an outline out in the n10f1 OpReview directory...
(omitted)

We have very little time for this. Please call me Thursday
night to get clarification. I will need graphs and prose in
files by Saturday Noon.

– Mary

ps. Mark and John , I waited until AFTER midnight to
send this .

Figure 7. A sample email (edited)

exhibit a very different nature: in [10] for example it was
reported that the proportion of explicit expressions is about
25% in the the North American News Corpus. In contrast
the same type of expressions accounts for only about 9.5%
in the email datasets we use. Other characteristics of emails
comparing to newswire include having a higher rate of hu-
man errors17 and featuring more “creative” writing such as
using tables, bullet lists, abbreviations, etc.

We first developed a prototype system and established
our baseline over email1 (50%). The system at that time
did not have any focus tracking mechanism (i.e., it al-
ways used the time stamp as the focus), and it did not use
any tense/aspect information. We then gradually developed
TEA to its current form using email1, email2 and email5.
During the process we added the recency-based focus track-
ing mechanism, incorporated the tense/aspect information
into each TCNL formula (via coordinate prefixes), and in-
troduced several representational improvements. Finally we
tested the system on the unseen dataset email4, and ob-
tained the results shown in Table 4. Note that the percent-
ages reported in the table are accuracies, i.e., the number
of correctly anchored expressions over the total number of
temporal expressions over a dataset, since we are assuming

17This includes typos and use of incorrect expressions; e.g., using “to-
morrow” in emails sent after midnight when ”today” was intended.

Accuracy Parsing
errors

Human
errors

Anchoring
errors

email1 (test) 50% N/A N/A N/A
email2 (dev) 78.2% 10.47% 1.7% 9.63%
email5 (dev) 85.45% 5.16% 1% 8.39%
email4 (test) 76.34% 17.92% < 1% 5.74%

Table 4. Development and testing results

correct tagging of all of the expressions. Also note that the
parsing errors referred to in Table 4 were brought by the
incorrect/missing TCNL formulae produced by the Finite-
state Parser. Our best result was achieved in the dev set
email5 (85.45%), and the accuracy over the test set email4
was 76.34%. Overall the accuracy numbers are all com-
pared favorably to the baseline. To put this performance
in perspective, in [14] a similar task was performed over
transcribed scheduling-related phone conversations. They
reported an average accuracy 80.9% over the CMU test set
and 68.9% over the NMSU test set. Although strictly speak-
ing the two results cannot be compared due to differences
in the nature of the corpora (transcription vs. typing), we
nevertheless believe it represents a closer match compared
to the other works done on the newswire genre. It should be
noted that [14] also adopted a recency-based focus tracking
method.

7 Conclusion and Future Work

In this paper we described a system capable of anchoring
temporal expressions in English. System TEA features an
extensible constraint-based calendar model and a compact
representational language TCNL to capture the intensional
meaning of temporal expressions. We also reported favor-
able results from our experiments of using TEA on several
email datasets.

Looking into the future we would like to extend the
implementation of TCNL to allow representing the mean-
ing of recurrence expressions (e.g., “every Wednesday
at 6pm”). Currently this is possible only for limited
expressions such as “6pm from Wednesday to Friday”
([{18hour}&[{wed}:{fri}]], which produces three coordi-
nates when iterated). An extension is to introduce a pattern
construct into an enumeration formula to denote recurrence
(e.g., [{18hour}&[{∗wed}]] for “every Wednesday at 6pm”).

We are also planning to use TEA on newswire texts in
order to produce anchored event structures. Although the
recency-based focus model so far has served us well in the
email genre, we might need to devise a more elaborated
tracking mechanism to account for the unique rhetorical
structure often exhibited in newswire.

Acknowledgments

This material is based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under
Contract No. NBCHD030010.

Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the Defense Ad-
vanced Research Projects Agency (DARPA), or the Depart-
ment of Interior-National Business Center (DOI-NBC).

References

[1] J. F. Allen. Towards a General Theory of Action and Time.
Artificial Intelligence, 23:123–154, 1984.

[2] I. Androutsopoulos. Temporal Meaning Representations in a
Natural Language Front-end. In M. Gergatsoulis and P. Ron-
dogiannis, editors, Intensional Programming II (Proceed-
ings of the 12th International Symposium on Languages for
Intensional Programming, Athens, Greece, 1999.

[3] C. Bettini, S. Jajodia, and S. X. Wang. Time granularities in
database, data mining, and temporal reasoning. Springer-
Verlag, Berlin, 2000.

[4] L. Ferro, L. Gerber, I. Mani, B. Sundheim, and G. Wilson.
TIDES 2005 Standard for the Annotation of Temporal Ex-
pressions. Technical report, MITRE, April, 2005.

[5] B. Han and M. Kohlhase. A Time Calculus for Natural Lan-
guage. In The 4th Workshop on Inference in Computational
Semantics, Nancy, France, September 2003.

[6] B. Han and A. Lavie. A Framework for Resolution of Time
in Natural Language. TALIP Special Issue on Spatial and
Temporal Information Processing, 3(1):11–32, March 2004.

[7] J. R. Hobbs, G. Ferguson, J. Allen, P. Hayes, I. Niles, and
A. Pease. A DAML ontology of time, Aug 23 2002.

[8] R. E. Kraut, S. R. Fussell, F. J. Lerch, and A. Espinosa. Co-
ordination in teams: Evidence from a simulated manage-
ment game. Journal of Organizational Behavior, to appear,
2004.

[9] A. K. Mackworth. Consistency in networks of relations. Ar-
tificial Intelligence, 8:99–118, 1977.

[10] I. Mani, B. Schiffman, and J. Zhang. Inferring Temporal
Ordering of Events in News. In Proceedings of the Human
Language Technology Conference (HLT-NAACL’03)., 2003.

[11] H. Ohlbach and D. Gabbay. Calendar logic. Journal of Ap-
plied Non-classical Logics, 8(4):291–324, 1998.

[12] Z. Ruttkay. Constraint Satisfaction - a Survey. Technical
Report 11(2-3), CWI, 1998.

[13] R. Saurı́, J. Littman, B. Knippen, R. Gaizauskas, A. Setzer,
and J. Pustejovsky. TimeML Annotation Guidelines, Version
1.2.1, January 31 2006.

[14] J. M. Wiebe, T. P. O’Hara, T. Ohrstrom-Sandgren, and K. J.
McKeever. An Empirical Approach to Temporal Refer-
ence Resolution. Journal of Artificial Intelligence Research,
9:247–293, 1998.

