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Deriving Minimal Conflict Sets by CS-trees with
Mark Set in Diagnosis from First Principles

Benjamin Han and Shie-Jue Lee

Abstract—To discriminate among all possible diagnoses using Hou’s
theory of measurement in diagnosis from first principles [5], one has
to derive all minimal conflict sets from a known conflict set. However,
the result derived from Hou’s method depends on the order of node
generation in CS-trees. We develop a derivation method with mark set to
overcome this drawback of Hou’s method. We also show that our method
is more efficient in the sense that no redundant tests have to be done. An
enhancement to our method with the aid of extra information is presented.
Finally, a discussion on top-down and bottom-up derivations is given.

Index Terms—Measurement, minimal hitting set, observation, system
description.

I. INTRODUCTION

Under the assumption that the description of a digital system is
consistent, if the inputs and the outputs, i.e., the observation, of the
system conflict with the way the system is meant to behave, the
diagnostic problem is to pinpoint the possible diagnoses, i.e., the
possible sets of faulty components that cause the problem. Many
researchers have proposed various kinds of approaches to tackle the
problem [2], [8]; among them, Reiter [7] has built and formalized
the major theorems of diagnosis from first principles upon the work
of de Kleer [6] and Genesereth [4]. In [7], Reiter gave the following
definitions:

Definition 1.1 [7, Definition 2.1]: A systemis a pair (SD, COMP)
where

1) SD, thesystem description,is a set of first-order sentences
describing

a) the functionality of a component within the system. For
example, letA be an AND gate with two inputs, the
sentence describing it is:

AB(A)! out(A) = and(in1(A); in2(A))

where the predicate AB stands forabnormal,which is
true iff gateA is malfunctioning, “and” is a function
returning true iff both inputs of gateA are true, and
“!” stands forimplication.

b) the connections among the components of the system.
For example, out(A) = in 1(B) means that the output
of componentA is connected with the first input of
componentB.

2) COMP is a finite set of constants denoting the collection of
components of the system.

Real world diagnostic settings involve observations. Observations
allow us to determine whether something is wrong and hence whether
a diagnosis is called for. Anobservationof a system is a finite
set of first-order sentences describing the values observed at the
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inputs/outputs of the whole system. We shall write (SD, COMP, OBS)
for a system (SD, COMP) with observation OBS.

Definition 1.2 [7, Prop. 3.4]: � is a diagnosisfor (SD, COMP,
OBS) iff � is a minimal set such that SD[ OBS[f:AB (c)jc 2
COMP � �g is consistent.

Definition 1.3 [7, Definition 4.1]: C � COMP is a conflict set
(CS) for (SD, COMP, OBS) iff SD[OBS [ f:AB (c)jc 2 Cg
is inconsistent. Aminimal conflict set(MCS) is a CS such that none
of its subsets is a CS.

Note that we need to do consistency checking to test whether a
given set is a conflict set. An inference engine such as de Kleer’s
ATMS [2] or Davis–Putnam’s procedure [1] can do the job. In this
paper, we shall not tie ourselves to a particular inference mechanism.
Consistency checking is an NP-complete problem [3] and shall be
considered expensive and be avoided whenever possible.

Definition 1.4 [7, Definition 4.3]: H is a hitting set (HS) for a
collection of setsS iff H �

C2S
C such thatH \ C 6= ; for

eachC 2 S. A minimal hitting set(MHS) is an HS such that none
of its subsets is an HS.

Theorem 1.5 [7, Corollary 4.5]:� � COMP is a diagnosis for
(SD, COMP, OBS) iff� is an MHS for the collection of MCS’s for
(SD, COMP, OBS).

To locate all possible diagnoses, we have to find all MHS’s for
the collection of MCS’s.

A set of diagnoses for a system can be refined by taking a
measurement,�, from the system. By taking a measurement we mean
to probe the input or the output of some component within a system.
Usually it requires “opening the hood” of the system, and thus is
considered at least inconvenient. In [5], Hou develops an approach
to refine the diagnoses incrementally on every� [5, Theorem 3.13].
To refine the diagnoses, one has to keep those diagnoses predicting
� and recompute those predicting:�. For a diagnosis�i predicting
:�, one determines new diagnoses from the collection of candidates
�i [ hj , wherehj is an MHS for the collection of MCS’s derived
from COMP-�i. To determine which candidate is accepted, one
needs to check if it is minimal against other diagnoses and candidates.

Example 1.6: Consider the circuit shown in Fig. 1. Obviously,
the output ofO1 shows inconsistency if we assume that each
gate of fA1; A2; A3; O1; O2g is normal, therefore we have
fA1; A2; A3; O1; O2g as the initial CS. To calculate all possible
diagnoses, we have to somehow derive all MCS’s from the initial
CS. The most straightforward way to do it is to test each and
every proper subset of the initial CS to see if it is also a CS.
This most straightforward way shall be proved too inefficient,
and both Hou’s method and our approach aim to enhance the
efficiency of the derivation. A moment of reflection shall give
us all MCS’sfA1; O1g; fA2; O1g; fA3; O1g, andfO1; O2g. The
corresponding MHS’s are thenfO1g andfA1; A2; A3; O2g, which
are all the possible diagnoses of the circuit given the information so
far.

To construct a practical diagnostic system, developing a complete
and efficient method for deriving MCS’s from a CS is a key issue.
In such a method the number of tests of consistency should be
minimized without the risk of missing any potential MCS. Hou [5]
proposed an approach to do the job. However, the result derived
from Hou’s method depends on the order of node generation in CS-
trees. In Section II, we describe Hou’s method for the derivation
and show two examples in which some MCS’s are missing from the
derivation. In Section III, we develop a method with mark set for
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Fig. 1. An example circuit about MCS’s and MHS’s.

deriving MCS’s from a CS, illustrate the method with an example,
and prove that the method is correct and more efficient in the sense
that no redundant subsets are tested. In Section IV, we show one
possible enhancement to our derivation method by exploiting extra
information about the system being diagnosed. Finally, in Section V
we describe a bottom-up derivation strategy, compare it with the top-
down method described in Section III, and conclude this paper with
discussions on possible extensions to our method in Section VI.

II. HOU’S METHOD FOR DERIVING MINIMAL CONFLICT SETS

Definition 2.1 [5, Definition 5.1]: A CS-treeT rooted in a CSC
is defined as follows.

1) Its root is labeled byC.
2) Each noden of T is labeled by a setS � C. For eachc 2 S,

noden has a descendantnc such that nodenc is labeled by a
nonempty setS � fcg.

Note that the definition here is slightly different from [5, Definition
5.1] in that we view the closing of a node labeled by a non-CS as
a pruning rule [in pruning rule (c), Procedure 2.2] instead of part of
the definition of a CS-tree. This viewpoint facilitates the comparison
between Hou’s method and our approach. Also, we preclude empty
sets from being used for labeling any node in a CS-tree. To derive
all MCS’s fromC, a pruned CS-treeT 0 rooted inC is generated by
the following procedure.

Procedure 2.2 [5, p. 312]:Generate a pruned CS-treeT 0 rooted
in a CSC by the following rules.

1) GenerateT 0 depth-first, i.e., generate the descendants of a node
before generating its brothers.

2) Pruning rules:

a) Let noden be some node already generated inT 0 with
the label setS. If noden0 is a new node such thatn0

will be labeled byS, then we close noden0.
b) If a nonroot noden will be labeled by a setS andS

is a proper superset of some MCS’s already used for
labeling some node inT 0, then we close noden.

c) If noden is labeled by a non-CS, then we close noden.

It turns out that in some occasions pruning rule b) closes some
nodes too soon, and may introduce errors to a diagnostic system.
Consider the following example.

Example 2.3: Let C = fc1; c2; c3; c4g and suppose that all the
MCS’s we can derive fromC arefc1g; fc2; c3g, andfc2; c4g. Fig. 2
shows the derivation of the MCS’s fromC by Hou’s method. Note
that we useh�i to denote a CS and(�) to denote a non-CS in the
figure. Also, we underline a set to denote an MCS. The mark� on a
noden indicates thatn is closed due to the use of pruning rule a),

Fig. 2. Deriving the MCS’s fromC, using Hou’s method.

Fig. 3. Deriving the MCS’s fromC (alternative order), using Hou’s method.

and the mark x on a noden shows thatn is closed due to the use of
pruning rule b). Note thatfc2; c4g is lost during the derivation due
to the use of pruning rule b).

Note that if we change the order of generating the nodes in the
CS-tree as shown in Fig. 3, the MCSfc2; c4g would be derived.
Obviously, the result obtained from Hou’s method depends on the
order of node generation in CS-trees.

Example 2.4: Consider Example 1.6. A correct method should de-
rive four MCS’s: fA1; O1g; fA2; O1g; fA3; O1g, andfO1; O2g.
However, as shown in Fig. 4,fA3; O1g andfO1; O2g are lost using
Hou’s method. The diagnoses found according to the wrong result
arefO1g andfA1; A2g, wherefA1; A2g is obviously an erroneous
diagnosis.

III. A M ETHOD WITH MARK SET FOR

DERIVING MINIMAL CONFLICT SETS

Hou’s method closes a node whenever the label of it is a superset
of some MCS’s already discovered. This results in closing a node
too soon and making some MCS’s lost in some cases. We propose
a method with mark set to overcome this disadvantage. In addition,
we show that our method is more efficient than Hou’s approach in
the sense that no redundant tests are made. First of all we define a
CS-tree with mark set as follows.

Definition 3.1: A CS-tree with mark setTM rooted in a CSC is
defined as follows.

1) Its root is labeled by[C; ;].
2) Each noden of TM is labeled by[Sn; SM;n], whereSn � C

is the label setof noden, andSM;n � Sn is themark setof
noden. If SM;n = Sn or jSnj = 1 (hence we preclude empty
sets from being the label sets of any node in a CS-tree with
mark set), then noden has no descendants. Otherwise for each
c 2 Sn � SM;n, nodenc is a descendant of noden such that
nodenc is the immediateleft brother of nodenc and nodenc
is labeled by[SM;n [ (Sn � SM;n � fcg); SM;n [ fc0g].

3) For the leftmost noden in every subtree ofTM , SM;n =
SM;n , wherenp is the parent node of noden.
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Fig. 4. Deriving all MCS’s for the circuit in Fig. 1 using Hou’s method.

Fig. 5. A CS-tree with mark set rooted infc1; c2; c3; c4g.

The intuition of the use of “mark sets” is straightforward. In a
TM with the root node labeled by[C; ;], for the leftmost descendant
noden1 labeled by[C � fc1g; ;] we can derive all proper subsets
of C � fc1g beneath the node. For the immediate right adjacent
noden2 of n1, whose label set isC � fc2g, to avoid generating
duplicate sets when generating the proper subsets ofC � fc2g, i.e.,
to avoid generating some proper subsetS0 of C � fc2g such that
S0 � C � fc1g, we markc1 and includec1 first in every subset we
generate. This way we are ensured that no node beneath noden2
will be labeled by a set already used for labeling some node beneath
node n1.

Example 3.2: Let C = fc1; c2; c3; c4g. The CS-tree with mark
set forC is shown in Fig. 5. The mark set of each node is denoted
by putting a box around the elements it contains. For example, the
label set of the node(c1; c3; c4) in Fig. 5 is fc1; c3; c4g, and the
mark set of the node(c1; c3; c4) is fc3; c4g. In fact, the mark set
of a node includes the mark set of the immediate left brother of the
node, and the element which is not contained in the label set of the
immediate left brother of the node. For instance, the mark set of the
node (c2; c4) includesc4 which is the element in the mark set of
the node(c1; c4), andc2 which is not contained in the label set of
the node(c1; c4).

To derive all MCS’s fromC, we generate a pruned CS-tree with
mark setT 0

M rooted inC by the following procedure.
Procedure 3.3: Generate a pruned CS-tree with mark setT 0

M

rooted in a CSC by the following rules:

1) GenerateT 0

M depth-first, i.e., generate the descendants of a
node before generating its brothers.

Fig. 6. Deriving the MCS’s fromC, using our method.

2) Pruning rules:

a) If SM;n of noden is a superset of some MCS already
used as the label set of some node inT 0

M , then we close
noden and do not generate any right brothers of node
n.

b) If Sn of noden is not a CS, then we close noden.

Note that not every label set requires a call for consistency checking
to test if it is a CS because a superset of a known CS is a CS. Also
note that for a noden labeled by a CSC, if n does not have any
descendant or all of its descendant nodes are labeled by non-CS’s,
C is not necessarily minimal—a check must be done to see if it is
minimal against all MCS’s already found.

Let us illustrate Procedure 3.3 by deriving the MCS’s from the
same set in Example 2.3.

Example 3.4: Let C = fc1; c2; c3; c4g and suppose that all the
MCS’s we can derive fromC arefc1g; fc2; c3g, andfc2; c4g (the
same as those in Example 2.3). Fig. 6 shows the derivation using
our method, with the same order of node generation as in Fig. 2.
Note that our method is complete. The MCSfc2; c4g is derived, in
contrast to the loss in Fig. 2 by Hou’s method. During the derivation
we generated 15 nodes but only did nine tests (the label set of the
root node is a CS without doubt). The “]” mark beside some nodes
in the tree denotes that the corresponding label set is determined to
be a CS without the need of a test.

Fig. 7 shows the derivation using our method, with the same order
of node generation as in Fig. 3. Note that our method is not only
complete, but also more efficient than Hou’s method in the sense
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Fig. 7. Deriving the MCS’s fromC (alternative order), using our method.

Fig. 8. Three possible subtrees in a CS-tree with mark set rooted infc1; c2g.

that no duplicate set and no subset of any known non-CS is used for
labeling nodes. There are nine nodes generated and eight tests done
in Fig. 7, in contrast to 17 nodes and ten tests in Fig. 3.

Since all possibilities of generating the nodes labeled by duplicate
sets are implicitly expelled by using the notion of mark sets, no node
is labeled by� in Figs. 6 and 7.

Now we give a formal proof of the correctness of our method. First
we give a corollary directly from Definition 3.1.

Corollary 3.5: The label set of each descendant and right brother
of noden is a superset of the mark set of noden.

Next we show that all nonempty proper subsets containing set
SM;n of a setSn can be generated in the CS-tree with mark set
rooted in a node labeled by[Sn; SM;n].

Theorem 3.6:For a noden labeled by[Sn; SM;n], each and every
nonempty proper subsetS0

n of Sn such thatSM;n � S0

n is the label
set of some node beneath the noden.

Proof: We prove it by induction onjSnj. If jSnj = 2, say
jSnj = fc1; c2g, then Fig. 8 shows that the theorem holds.

Assume that the theorem holds whenjSnj = k � 1. Consider
the casejSnj = k. If jSM;nj = 0, the noden has k descendant
nodes, and each node has a label set of sizek� 1. According to the
induction hypothesis, we then know that each and every nonempty
proper subsetS0

n of Sn is used to label a node in the CS-tree with
mark set rooted in the noden. Now consider the casejSM;nj > 0.
Let c 2 SM;n. From Corollary 3.5 we know that each and every node
in the tree is labeled by a set containingc. Therefore we can strip
c from each and every node in the tree and obtain a new tree with
the root noden labeled by a set of sizek � 1. From the induction
hypothesis, we know that each and every nonempty proper subsetS0

n

of Sn such thatSM;n �fcg � S0

n must be used to label some node
beneath the noden. Addingc back to each and every node completes
the proof.

From the above theorem, if we generate a CS-tree with mark set
rooted in a node labeled by[C; ;], we have each and every possible
nonempty proper subset ofC in the tree. Next, we show that the
pruning rules in Procedure 3.3 are correct. Since any subset of a non-
CS is not a CS, we can safely prune away those nodes with non-CS’s
as their label sets, hence pruning rule b) is correct. The correctness
of pruning rule a) is a direct result from Corollary 3.5, as stated in
the following corollary.

Corollary 3.7: Let T 0

M be a pruned CS-tree with mark set. If the
mark set of a node,n, is a superset of some MCSP already used
for labeling some node inT 0

M , then the label set of each descendant
and right brother of the noden is a CS.

Corollary 3.5, Theorem 3.6, and Corollary 3.7 together prove the
correctness of our method. Now we consider the efficiency of our
approach. For comparison, note that Hou’s method for the derivation
will generate the nodes with duplicate labels. For example, the node
labeled byfc2g in Fig. 2 and the nodes labeled byfc2g, fc4g, and
fc3; c4g in Fig. 3 are duplicates, respectively, in the two derivations.
In contrast, our method prevents any node labeled by a duplicate set
from being generated by exploiting the notion of mark sets, hence
no test for duplicates is necessary in our approach. The following
theorem states that no duplicate label set exists in a CS-tree with
mark set.

Theorem 3.8: Let TM be a CS-tree with mark set rooted in a CS
C. If C 0 � C, then only one noden exists inTM such thatC 0 is
the label set of noden.

Proof: We show it by induction onjCj. If jCj = 2, say
C = fc1; c2g, then by Definition 3.1 each offc1g and fc2g is
used as a label set of one node inTM , as already shown in Fig. 8
(the left tree).

Now assume that the theorem is valid whenjCj = k�1, whereC
is a CS. WhenjCj = k, C = fc1; � � � ; ckg is the label set of the root
noden. By Definition 3.1 we know thatn hask descendant nodes
n1, � � �, nk whose label sets areCi = C � fcig, i = 1; � � � ; k,
respectively. IfC 0 � Cq, by the induction hypothesis, the subtree
rooted in Cq has only one node withC 0 as its label set. From
Definition 3.1 and Corollary 3.5, we know that the label set of each
and every right brother of nodenq must containcq. Sincecq 62 C 0,
no node in the subtrees rooted in the right brothers ofnq hasC 0 as
its label set.

On the other hand, we need to prove that no node in the subtrees
rooted in the left brothers ofnq hasC 0 as its label set. Assume that
the subtree rooted in nodenp has a node withC 0 as its label set, with
np being a left brother ofnq. SinceCp does not containcp, neither
doesC 0. However, sincenq is a right brother ofnp, from Definition
3.1 and Corollary 3.5Cq and all the label sets of the descendants of
nq must containcp, so doesC 0. We have a contradiction.

Another improvement to our method is: ifC 0 is not a CS, then no
node withC 00 � C 0 as its label set will be generated in a pruned CS-
tree with mark set. In contrast, Hou’s pruned CS-tree does have some
node labeled by the subset of some known non-CS. For example, the
nodes labeled byfc3g andfc4g in Fig. 3 are redundant.

In summary, our method has efficiency edges over Hou’s approach
in that we do not generate any node with a duplicate set or a subset
of a known non-CS as its label set, while Hou generates them and
prunes them away afterward.

IV. DERIVATION WITH EXTRA INFORMATION

In this section we show that with the aid of extra information about
the system being diagnosed, we can further improve the efficiency of
our derivation method. First we define an input/output of a component
of the system being diagnosed to befixed if it is either in the
observation of the system, or it is one of the previous measurements
taken.

Example 4.1: Consider the faulty circuit shown in Fig. 9. The
actual value of the input/output of each gate is shown in the figure.
Also, the shaded gates are the ones causing the system to misbehave.
The two inputs of gateA2 are fixed because they are part of the
system observation. If we make a measurement at out(A2), then both
inputs of gateA4 are fixed as well.
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Fig. 9. A faulty circuit.

Fig. 10. Deriving the MCS’s fromfA1; A2; A3; A4; A5; A6; O2g.

Now suppose� is a measurement at the output of a component
c such that all inputs ofc are fixed, and� is a diagnosis for (SD,
COMP, OBS) predicting:� such thatc 62 �, then by Definition
1.1 we know that SD[ OBS [f�g [ f:AB(c)g is inconsistent.
Formally speaking, we have the following corollary.

Corollary 4.2: Let � be a measurement at the output of a com-
ponentc such that all inputs ofc are fixed, and let� be a diagnosis
for (SD, COMP, OBS) predicting:� such thatc 62 �. Thenfcg is
an MCS for (SD, COMP, OBS[f�g) resulting from�.

The above corollary offers an efficiency improvement as illustrated
in the following example.

Example 4.3: Consider the faulty circuit shown in Fig. 9.
After considering the observation only, we have five diagnoses:
fA1g; fA3g; fA4g; fA6g, and fO1g. Assume that we have taken
a measurement at out(A2). Now we take a measurement,�, at out
(A4). It then turns out that diagnosisfO1g predicts:�, and we have
to derive all MCS’s fromfA1; A2; A3; A4; A5; A6; O2g. Now by
Corollary 4.2 we know thatfA4g is an MCS for (SD, COMP, OB
[f�g) resulting from� without any test to determine if it is an
MCS. Moreover, we can arrange the order of generating the nodes
in the pruned CS-tree with mark set as shown in Fig. 10. In the
derivation, only two nodes are generated in the tree. Without the use
of Corollary 4.2, 17 instead of two nodes would be generated.

Note that despite the great efficiency improvement brought by
Corollary 4.2, one has to maintain extra information indicating
whether a particular connection is fixed.

V. TOP-DOWN VERSUS BOTTOM-UP

The methods described in Sections II and III are top-down ap-
proaches. The MCS’s of a CSC are derived by creating the CS-tree
rooted inC itself. We can also derive the MCS’s ofC in a bottom-up
manner by creating the inverse CS-tree rooted in;.

Definition 5.1: An inverse CS-treeTI of an ordered CSC is
defined as follows.

Fig. 11. Deriving the MCS’s fromC, using an inverse CS-tree.

1) Its root is labeled by;.
2) Let n be a node inTI , np be the parent node of noden and

n0 be the left brother of noden. Then noden is labeled by an
ordered setSn such thatSn = Sn [ c, wherec is the next
adjacent element ofc0 in C andc0 is the last element inSn .

3) For the leftmost noden in every subtree ofTI , Sn = Sn [ c,
wherenp is the parent node of noden, c is the next adjacent
element ofcp in C and cp is the last element inSn . If
Sn = ;, c is the first element ofC.

To derive all MCS’s from an ordered CSC, we generate a pruned
inverse CS-tree by the following procedure.

Procedure 5.2: Generate a pruned inverse CS-treeT 0

I of an or-
dered CSC by the following rules.

1) GenerateT 0

I depth-first, i.e., generate the descendants of a node
before generating its brothers.

2) Pruning rule: IfSn of noden is a CS, then we close noden.

Note that not every label set requires a call for consistency checking
to test if it is a CS because a superset of a known CS is a CS. On
the other hand, if a label set is a subset of some known non-CS, it
must not be a CS, either.

Example 5.3: Let C = fc1; c2; c3; c4g and suppose that all the
MCS’s we can derive fromC arefc1g; fc2; c3g, andfc2; c4g (the
same as those in Example 2.3). Fig. 11 shows the derivation using
an inverse CS-tree. The “]” mark beside(c4) denotes that the label
setfc4g is determined to be a CS without the need of a test.

One might get the impression from the above example that the
bottom-up approach is more efficient than the top-down approach.
However, such conclusion is not necessarily true for all cases.
Consider the case in which we have to derive all MCS’s from a
CS C with n elements, and assume that all we can derive fromC

is an MCS withm elements (m � n). Therefore among the2n

subsets ofC we have2n�m CS’s, and the probability of having a
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CS as the label set of a node,PCS, is 1=2m. Since we need a CS to
close a node when using the bottom-up method, the lowerPCS the
worse the efficiency of the bottom-up method. On the other hand,
we need a non-CS to close a node when using the top-down method,
lower PCS could improve the efficiency of the top-down approach. In
general, whether the top-down method has an efficiency edge over the
bottom-up approach depends on the particular problem to be solved.

VI. CONCLUDING REMARKS

In summary, our method has the following two improvements over
Hou’s approach.

1) Our method is independent of the order of node generation,
while Hou’s approach is dependent on the order of node
generation due to the use of pruning rule b).

2) By exploiting the concept of mark set, we implicitly discard
any possibility of generating the nodes labeled by duplicate
sets or the subsets of some known non-CS. The counterpart of
the duplicate test is done in pruning rule a) in Hou’s method,
which requires a search in the CS-tree, and no facility for
testing the subset of some known non-CS is available in Hou’s
approach. Hence our method achieves better efficiency than
Hou’s approach.

To conclude this paper, we point out one possible extension to this
work. As shown in Examples 3.8 and 4.3, by carefully arranging the
order of generating nodes in a CS-tree with mark set, the efficiency
of the derivation could be dramatically improved. This makes one
wonder if one can find an optimal ordering of node generation
in a CS-tree with mark set if one knows all MCS’s before the
derivation. If it is true, then we may use the error rate of each of
the components within the system being diagnosed to “approximate”
such optimal ordering by first calculating all possible MCS’s based
on some assigned error threshold. Then we may use the result to
guide us to generate nodes in a more efficient order. Moreover, we
may discard some node in the CS-tree with mark set if we determine
that all possible MCS’s found beneath that node are not important
enough (again based on some assigned error threshold). In this way,
the diagnostic system will not be complete, but its efficiency could
be greatly improved.
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Postprocessing Statistical Language Models for a
Handwritten Chinese Character Recognizer

Pak-Kwong Wong and Chorkin Chan

Abstract—Two statistical language models have been investigated on
their effectiveness in upgrading the accuracy of a Chinese character
recognizer. The baseline model is one of lexical analytic nature which
segments a sequence of character images according to the maximum
matching of words with consideration of word binding forces. A model
of bigram statistics of word-classes is then investigated and compared
against the baseline model in terms of recognition rate improvement
on the image recognizer. On the average, the baseline language model
improves the recognition rate by about 7% while the bigram statistics
model upgrades it by about 10%.

Index Terms—Chinese character recognizer, handwritten Chinese char-
acter recognizer, language model, statistic language model.

I. INTRODUCTION

An image recognizer of a line of unknown characters can be asked
to propose a lattice of degreen of character candidates that are
most likely to reveal the true content of the line. The correspondence
between a sequence of character candidates and a sequence of words
is usually ambiguous because of ambiguous segmentation of the
characters into words. A language model as a post-processor, can
help selecting among the candidates by evaluating their respective
soundness in forming a natural line-of-text of the language because
the linguistic information of the characters can provide a useful basis
for improving the recognition rate [1]. In this study, a character
recognizer [2] is employed to test two statistics based language
models as postprocessors. The character recognizer supports a vo-
cabulary of 4616 characters and accepts writer independent off-line
handwritten character images (Chinese characters, alphanumeric, and
punctuation symbols) from a scanner. It outputs a user-specified
numbern of candidates for each character image forming a lattice.
Because Chinese, unlike Western languages in which words are
separated by blanks, has no word markers except the punctuation
symbols. If there arem character images lying between a pair of
punctuation symbols, the number of possible candidate sequences is
mn which can be extremely large for largem and n: Inevitably,
many words can be formed in the lattice just coincidentally. This
paper investigates how to select the “best” candidate sequence out
of this large number of possible choices efficiently and accurately by
means of a post-processing statistical language model.

II. THE LEXICON

A lexicon named WORDDATA is acquired from the Institute of
Information Science, Academia Sinica, Taiwan. There are 78 410
word entries in WORDDATA covering most, if not all, of the Chinese
words actively used in modern texts such as journals, newspapers,
and literature in Taiwan. Each word entry is associated with a usage
frequency and the membership of at least one syntactic/semantic
word-class. A text corpus named “The Selection of Hundred Kinds
of the Press in 1994,” of over 63 million characters of news lines
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