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Deriving Minimal Conflict Sets by CS-trees with inputs/outputs of the whole system. We shall write (SD, COMP, OBS)
Mark Set in Diagnosis from First Principles for a system (SD, COMP) with observation OBS.
Definition 1.2 [7, Prop. 3.4]: A is a diagnosisfor (SD, COMP,
Benjamin Han and Shie-Jue Lee OBS) iff A is a minimal set such that SD OBSU {- AB (¢)|c €
COMP — A} is consistent.
Definition 1.3 [7, Definition 4.1]: C C COMP is aconflict set
Abstract—To discriminate among all possible diagnoses using Hou's (CS) for (SD, COMP, OBS) iff SDUOBS U {-AB (¢)|c € C}

theory of measurement in diagnosis from first principles [5], one has s ihconsistent. Aminimal conflict se{MCS) is a CS such that none
to derive all minimal conflict sets from a known conflict set. However,

the result derived from Hou's method depends on the order of node Of its subsets is a CS. _ )
generation in CS-trees. We develop a derivation method with mark setto ~ Note that we need to do consistency checking to test whether a

overcome this drawback of Hou’s method. We also show that our method given set is a conflict set. An inference engine such as de Kleer's
is more efficient in the sense t_hat no r_edundant tests ha\_/e to be done. An ATMS [2] or Davis—Putnam’s procedure [1] can do the job. In this
enhancement to our method with the aid of extra information is presented. . . . .
Finally, a discussion on top-down and bottom-up derivations is given.  PaPer, we shall not tie ourselves to a particular inference mechanism.
Consistency checking is an NP-complete problem [3] and shall be

considered expensive and be avoided whenever possible.

Definition 1.4 [7, Definition 4.3]: H is a hitting set (HS) for a
collection of setsS iff H C [J.csC such thatH N C # § for
I. INTRODUCTION eachC € S. A minimal hitting set(MHS) is an HS such that none

Under the assumption that the description of a digital system 9 its subsets is an HS. _ _ _
consistent, if the inputs and the outputs, i.e., the observation, of the' héorem 1.5 [7, Corollary 4.51:A C COMP is a diagnosis for
system conflict with the way the system is meant to behave, theP, COMP, OBS) iffA is an MHS for the collection of MCS's for
diagnostic problem is to pinpoint the possible diagnoses, i.e., theD, COMP, OBS).
possible sets of faulty components that cause the problem. Manyl© locate all possible diagnoses, we have to find all MHS's for
researchers have proposed various kinds of approaches to tackleti§ecollection of MCS's.
problem [2], [8]; among them, Reiter [7] has built and formalized A set of diagnoses for a system can be refined by taking a
the major theorems of diagnosis from first principles upon the wofReasurement], from the system. By taking a measurement we mean
of de Kleer [6] and Genesereth [4]. In [7], Reiter gave the followinéP Probe the input or the output of some component within a system.

Index Terms—Measurement, minimal hitting set, observation, system
description.

definitions: Usually it requires “opening the hood” of the system, and thus is
Definition 1.1 [7, Definition 2.1]: A systenis a pair (SD, COMP) considered at least inconvenient. In [5], Hou develops an approach
where to refine the diagnoses incrementally on evBry5, Theorem 3.13].

sTo refine the diagnoses, one has to keep those diagnoses predicting
IT and recompute those predictirgl. For a diagnosis\; predicting
—II, one determines new diagnoses from the collection of candidates
a) the functionality of a component within the system. Fon; U h;, whereh; is an MHS for the collection of MCS's derived
example, let4 be an AND gate with two inputs, the from COMP-A;. To determine which candidate is accepted, one
sentence describing it is: needs to check if it is minimal against other diagnoses and candidates.
AB(4) — out(A) = andin1(A), in2(4)) Example 1.6: Consider t'he cir(;uit shown in Fig. 1. Obviously,
the output of O; shows inconsistency if we assume that each
where the predicate AB stands fabnormal,which is gate of {4, 42, Az, O1, Oz} is normal, therefore we have
true iff gate A is malfunctioning, “and” is a function {41, A2, As, O1, O2} as the initial CS. To calculate all possible
returning true iff both inputs of gatet are true, and diagnoses, we have to somehow derive all MCS’s from the initial
“—" stands forimplication. CS. The most straightforward way to do it is to test each and
b) the connections among the components of the systeavery proper subset of the initial CS to see if it is also a CS.
For example, out{) = in 1(B) means that the output This most straightforward way shall be proved too inefficient,
of component4 is connected with the first input of and both Hou's method and our approach aim to enhance the
componentB. efficiency of the derivation. A moment of reflection shall give
A , {4z, , {As, , {01, .
2) COMP is a finite set of constants denoting the collection clgg rrae”s;::/(ljcr:wiijg ll/lﬁHOStialre %che({)ng}; }1an% q {(4)411]: indi? 020}2’}\/\/;2;3
components of the system. are all the possible diagnoses of the circuit given the information so
Real world diagnostic settings involve observations. Observatiops. O
allow us to determine whether something is wrong and hence whethetry ~onstruct a practical diagnostic system, developing a complete
a diagnosis is called for. Ambservationof a system is a finite 4nq efficient method for deriving MCS's from a CS is a key issue.
set of first-order sentences describing the values observed at i€ ,ch a method the number of tests of consistency should be
Manuscript received March 4, 1997; revised June 21, 1998. This work wa§himized without the risk of missing any potential MCS. Hou [5]
supported in part by the National Science Council under Grant NSC-85-221#0oposed an approach to do the job. However, the result derived
E-110-037. This paper was recommended by Associate Editor L. O. Hall. from Hou’s method depends on the order of node generation in CS-
Su}he\(zttggrr]s ?Jrﬁiv\,:rtgit;r,]e Eaeophzritun:g“ ?;i\llz\):ﬁmggiézg'ﬁg!gg’ '(\le"’ft'mo:iﬁlees. In Section II, we _descr_ibe Hou’s method for _the_ derivation
leesj@ee.nsysu.edu.tw). and show two examples in which some MCS’s are missing from the
Publisher Item Identifier S 1083-4419(99)00771-2. derivation. In Section Ill, we develop a method with mark set for

1) SD, thesystem descriptionis a set of first-order sentence
describing
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Fig. 2. Deriving the MCS'’s fromC', using Hou’s method.
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Fig. 1. An example circuit about MCS’s and MHS’s. %\

deriving MCS’s from a CS, illustrate the method with an example, <Cr G G > <G, G > KOG, G >, G, G >
and prove that the method is correct and more efficient in the sense

that no redundant subsets are tested. In Section IV, we show oneﬂ\

possible enhancement to our derivation method by exploiting ext{(?\ C) SCoCis GG (G e )
information about the system being diagnosed. Finally, in Section V' ' " ~7AT AT T <G GereC G
we describe a bottom-up derivation strategy, compare it with the top-

down method described in Section IlI, and conclude this paper with (C2) (Ca)C) (Cy) <> ey
discussions on possible extensions to our method in Section VI.

v

] —

X

] —

Fig. 3. Deriving the MCS's fronC' (alternative order), using Hou's method.

Il. Hou's METHOD FOR DERIVING MINIMAL CONFLICT SETS
Definition 2.1 [5, Definition 5.1]: A CS-treeT rooted in a CC and the mark x on a node shows that: is closed due to the use of
is defined as follc;ws. pruning rule b). Note thafcz, c4} is lost during the derivation due

. to the use of pruning rule b).
1) Its root is labeled byC'. . . .
2) Each node: of T is labeled by a se§ C C. For each: € S, Note that if we change the order of generating the nodes in the

noden has a descendant. such that node.. is labeled by a CS-tree as shown in Fig. 3, the Mc{%z’,%} would be derived.
Obviously, the result obtained from Hou's method depends on the
nonempty setS — {c}.

. . ) ~order of node generation in CS-trees. O
Note that the definition here is slightly different from [5, Definition Example 2.4: Consider Example 1.6. A correct method should de-

5.1] in that we view the closing of a node labeled by a non-CS &$e four MCS's: {A1, O1}, {4z, O1}, {As, O1), and {01, Os}.

a pruning rule [in pruning rule (c), Procedure 2.2] instead of part @iowever, as shown in Fig./4Ag, 0} /and{()1., 0.} are lost using

the definition of a CS-tree. This viewpoint facilitates the comparisqo,'s method. The diagnoses found according to the wrong result

between Hou’s method and our approach. Also, we preclude ema%{ol} and{A;, 4>}, where{A;, 4,} is obviously an erroneous
sets from being used for labeling any node in a CS-tree. To derid%gnosis. O

all MCS's from C, a pruned CS-tre&” rooted inC is generated by
the following procedure.

Procedure 2.2 [5, p. 312]:Generate a pruned CS-tr@¢ rooted . A M ETHOD WITH MARK SET FOR
in a CSC by the following rules. DERIVING MINIMAL CONFLICT SETS
1) Generatd” depth-first, i.e., generate the descendants of a nodeHou’s method closes a node whenever the label of it is a superset
before generating its brothers. of some MCS’s already discovered. This results in closing a node
2) Pruning rules: too soon and making some MCS’s lost in some cases. We propose

a method with mark set to overcome this disadvantage. In addition,
C we show that our method is more efficient than Hou’s approach in
the label setS. If node»’ is a new node such thal e sense that no redundant tests are made. First of all we define a
will be labeled byS, then we close node’. CS-tree with mark set as follows.
b) It a nonroot noder will be labeled by a set and 5 Definition 3.1: A CS-tree with mark sef; rooted in a CSC' is
is a proper superset of some MCS’s already used fQgfined as follows.
labeling some node iif”’, then we close node. 1) Its root is labeled byC, ]

c) If noden is labeled by a non-CS, then we close nade 2) Each node: of T, is labeled by[S,, Sas. ], whereS,, C C
It turns out that in some occasions pruning rule b) closes some is thelabel setof noden, andSu:,» C S» is themark setof

a) Let noden be some node already generated Tnwith

nodes too soon, and may introduce errors to a diagnostic system. noden. If Sys, . = S, or|S.| =1 (hence we preclude empty

Consider the following example. sets from being the label sets of any node in a CS-tree with
Example 2.3: Let C' = {c¢1, ¢2, c3, ca} and suppose that all the mark set), then node has no descendants. Otherwise for each

MCS’s we can derive fromd' are{ci }, {c2, 3}, and{cz, c4}. Fig. 2 ¢ €S, — Swm, », Noden. is a descendant of node such that

shows the derivation of the MCS'’s frod by Hou's method. Note noden.s is theimmediateeft brother of node:. and noden.

that we use(-) to denote a CS and) to denote a non-CS in the is labeled by[Sis n U (S — Sar,n — {¢}), Sas,n., U {c'}]

figure. Also, we underline a set to denote an MCS. The maok a 3) For the leftmost node: in every subtree ofln/, Syr.n =
noden indicates that: is closed due to the use of pruning rule a), S, n,, Wheren, is the parent node of node.
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Fig. 4. Deriving all MCS'’s for the circuit in Fig. 1 using Hou’'s method.

{c{é> ] el <42> e e

Fig. 5. A CS-tree with mark set rooted i1, c2, ¢, ca}. Fig. 6. Deriving the MCS’s fronC', using our method.

The intuition of the use of “mark sets” is straightforward. In a 2) Pruning rules:
T with the root node labeled by, #], for the leftmost descendant
noden, labeled by[C — {¢}, 0] we can derive all proper subsets
of C' — {¢1} beneath the node. For the immediate right adjacent
noden. of ny, whose label set i€ — {c2}, to avoid generating
duplicate sets when generating the proper subsefs ef{c.}, i.e., .
to avoid generating some proper sub$étof C' — {c,} such that b) If S. of noden is not a CS, then we close node

§°C €= {er}, we marke; and includer, firstin every subset we  \qte that not every label set requires a call for consistency checking
generate. This way we are ensured that no node beneathmodey, yeqt if it is a CS because a superset of a known CS is a CS. Also
will be labeled by a set already used for labeling some node benegihia that for a node: labeled by a CS7, if n does not have any

node n:. descendant or all of its descendant nodes are labeled by non-CS's,

Example 3.2:Let C' = {c1, ¢z, c3, ca}. The CS-tree with mark - js not necessarily minimal—a check must be done to see if it is
set forC' is shown in Fig. 5. The mark set of each node is denoteginimal against all MCS's already found.

by putting a box around the elements it contains. For example, thg ot s illustrate Procedure 3.3 by deriving the MCS’s from the
label set of the nodéci, cs, ca) in Fig. 5 is {c1, c3, ca}, and the  ggme set in Example 2.3.

mark set of the nodec,, cs, c4) is {cs, ca}. In fact, the mark set  gyample 3.4: Let C' = {c1, ca, c3, i} and suppose that all the
of a node includes the mark set of the immediate left brother of thgcs's we can derive fron€ are {c:}, {c2, cs}, and{cs, e} (the

node, and the element which is not contained in the label set of theme as those in Example 2.3). Fig. 6 shows the derivation using
immediate left brother of the node. For instance, the mark set of thg; method, with the same order of node generation as in Fig. 2.

node (cz2, ca) includesecs which is the element in the mark set of\ote that our method is complete. The M@&,, ¢4} is derived, in
the node(c:, c4), ande, which is not contained in the label set ofcontrast to the loss in Fig. 2 by Hou's method. During the derivation

a) |If Sy, ., of noden is a superset of some MCS already
used as the label set of some noddjp, then we close
noden and do not generate any right brothers of node
n.

the node_(m., ca). _ we generated 15 nodes but only did nine tests (the label set of the
To derive all MCS's fromC', we generate a pruned CS-tree Witfyoot node is a CS without doubt). The"‘mark beside some nodes

mark set?}, rooted inC' by the following procedure. in the tree denotes that the corresponding label set is determined to
Procedure 3.3: Generate a pruned CS-tree with mark 88t pe a CS without the need of a test.

rooted in a CSC' by the following rules: Fig. 7 shows the derivation using our method, with the same order

1) Generatel;, depth-first, i.e., generate the descendants of a&f node generation as in Fig. 3. Note that our method is not only
node before generating its brothers. complete, but also more efficient than Hou's method in the sense
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<Ci, G, G, G > Corollary 3.7: Let T}, be a pruned CS-tree with mark set. If the
mark set of a nodey, is a superset of some MCB already used
for labeling some node iff},, then the label set of each descendant
and right brother of the node is a CS.

<C,,Cy,C > CyLCy> Corollary 3.5, Theorem 3.6, and Corolla_ry 3.7 toget_hgr prove the
correctness of our method. Now we consider the efficiency of our
approach. For comparison, note that Hou's method for the derivation
will generate the nodes with duplicate labels. For example, the node
labeled by{c.} in Fig. 2 and the nodes labeled By}, {c4}, and
Cy> {cs, ca} in Fig. 3 are duplicates, respectively, in the two derivations.

In contrast, our method prevents any node labeled by a duplicate set
from being generated by exploiting the notion of mark sets, hence

(C5,Cy ) §4_> ¢

() > no test for duplicates is necessary in our approach. The following
Fig. 7. Deriving the MCS’s fronC' (alternative order), using our method. tmhztr)kresn;tstates that no duplicate label set exists in a CS-tree with
Theorem 3.8:Let Tis be a CS-tree with mark set rooted in a CS
{C,C ) e {ci ol C. If ¢’ C C, then only one node exists inTy; such thatC’ is

the label set of node.
Proof: We show it by induction on|C|. If |C] = 2, say
{C1} Gy} } C = {c1. ¢z}, then by Definition 3.1 each ofc,} and {c;} is
) ) ) ) ) used as a label set of one nodeTiy, as already shown in Fig. 8
Fig. 8. Three possible subtrees in a CS-tree with mark set roofed jneo }. (the left tree).

Now assume that the theorem is valid whét} = k — 1, whereC

that no duplicate set and no subset of any known non-CS is used ifoft CS. WhenC'| =k, C' = {c1, -- -, e} is the label set of the root

labeling nodes. There are nine nodes generated and eight tests dif¢n. By Definition 3.1 we know that hask descendant nodes

in Fig. 7, in contrast to 17 nodes and ten tests in Fig. 3. ny, -+, ny Whose label sets ar€; = C' — {c¢i}, 1 = 1,---. k,
Since all possibilities of generating the nodes labeled by duplicd@sPectively. IfC" C Cj, by the induction hypothesis, the subtree

sets are implicitly expelled by using the notion of mark sets, no nod@oted in C'; has only one node withC" as its label set. From

is labeled by in Figs. 6 and 7. o Definition 3.1 and Corollary 3.5, we know that the label set of each

Now we give a formal proof of the correctness of our method. Fird'd every right brother of node, must contairr,. Sincec, ¢ ",
we give a corollary directly from Definition 3.1. no node in the subtrees rooted in the right brothera phasC’ as

Corollary 3.5: The label set of each descendant and right brothlf 1abel set. )
of noden is a superset of the mark set of node On the other hand, we need to prove that no node in the subtrees
Next we show that all nonempty proper subsets containing dgpted in the left brothers of, hasC’ as its label set. Assume that
Sur.. Of a setS, can be generated in the CS-tree with mark sékﬂe subtree rooted in nodg, has a node witl" as its label set, with
rooied in a node labeled ByB,. Sis. »]. n, being a left brother of:,. SinceC,, does not contaim,, neither

Theorem 3.6: For a node: labeled by[S... Sir. ], each and every doesC’. However, since, is a right brother ofx,,, from Definition
nonempty proper subsét, of S, such that%} . C, §' is the label 31 and Corollary 3.%7; and all the label sets of the descendants of
set of some node beneath the node e n, must contairr,, so doeC". We have a contradiction. O

Proof: We prove it by induction oS, |. If |Sn| = 2, say Another improveme_nt to our method is:@f' is note_tCS, then no
1Sn| = {c1, c2}, then Fig. 8 shows that the theorem holds. node \{VlthC” C (' as its label set will be generated in a pruned CS-
Assume that the theorem holds wh$i,| = & — 1. Consider tree with mark set. In contrast, Hou’s pruned CS-tree does have some
the case|S,| = k. If [Su..| = 0, the noden hask descendant node labeled by the subset of some known non-CS. For example, the

nodes, and each node has a label set of kizel. According to the Nodes labeled bycs} and{cs} in Fig. 3 are redundant.

induction hypothesis, we then know that each and every nonempty" Summary, our method has efficiency edges over Hou's approach
" of S, is used to label a node in the CS-tree wit" that we do not generate any node with a duplicate set or a subset

proper subseb,, ’ ’
mark set rooted in the node. Now consider the castas. .| > 0. of a known non-CS as its label set, while Hou generates them and

Letc € S, ». From Corollary 3.5 we know that each and every nodgrunes them away afterward.

in the tree is labeled by a set containingTherefore we can strip

¢ from each and every node in the tree and obtain a new tree with

the root noden labeled by a set of siz& — 1. From the induction IV. DERIVATION WITH EXTRA INFORMATION

hypothesis, we know that each and every nonempty proper sffgset In this section we show that with the aid of extra information about

of S, such thatSys, .. — {c} C S,, must be used to label some nodehe system being diagnosed, we can further improve the efficiency of

beneath the node. Adding ¢ back to each and every node completesur derivation method. First we define an input/output of a component

the proof. O of the system being diagnosed to figed if it is either in the
From the above theorem, if we generate a CS-tree with mark sdfservation of the system, or it is one of the previous measurements

rooted in a node labeled Hy', @], we have each and every possiblegaken.

nonempty proper subset @ in the tree. Next, we show that the Example 4.1: Consider the faulty circuit shown in Fig. 9. The

pruning rules in Procedure 3.3 are correct. Since any subset of a nactual value of the input/output of each gate is shown in the figure.

CSis not a CS, we can safely prune away those nodes with non-C8lIso, the shaded gates are the ones causing the system to misbehave.

as their label sets, hence pruning rule b) is correct. The correctn@$® two inputs of gated, are fixed because they are part of the

of pruning rule a) is a direct result from Corollary 3.5, as stated isystem observation. If we make a measurement atdetthen both

the following corollary. inputs of gated, are fixed as well. O



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 2, APRIL 1999 285

1
A,
1 L 1
1 A,
1

0

Fig. 9. A faulty circuit.
<Ay By By B A B, O > (¢>
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Fig. 10. Deriving the MCS’s from{ A1, As, Az, A4, As, As, O2}. <G G > <Gy, Ch> (Cy\Cy)

Fig. 11. Deriving the MCS’s fron, using an inverse CS-tree.
Now supposdl is a measurement at the output of a component
¢ such that all inputs of are fixed, andA is a diagnosis for (SD, )
COMP, OBS) predicting-II such thatc ¢ A, then by Definiton 1) ItS root is labeled byp.
1.1 we know that SDJ OBS U {II} U {-AB(c)} is inconsistent. ~ 2) Letn be a node inl7, n, be the parent node of nodeand
Formally speaking, we have the following corollary. n' be the left brother of node. Then noder is Iapeled by an
Corollary 4.2: Let I be a measurement at the output of a com-  °rdered set,, such thats,, = Snp U €, wherec is the next
ponentc such that all inputs of are fixed, and let\ be a diagnosis adjacent element of in ¢ andc’ is the last element its,...
for (SD, COMP, OBS) predicting-II such that: ¢ A. Then{c} is  3) For the leftmost node in every subtree of’, 5. = 5., U c,
an MCS for (SD, COMP, OB {I1}) resulting fromfI. wheren,, is the_ parent node_of node, ¢ is the nex_t adjacent
The above corollary offers an efficiency improvement as illustrated ~ €lément ofc, in ' and ¢, is the last element iy, . If
in the following example. Sn, = 0, ¢ is the first element of”.
Example 4.3: Consider the faulty circuit shown in Fig. 9. To derive all MCS’s from an ordered GS, we generate a pruned
After considering the observation only, we have five diagnosdsverse CS-tree by the following procedure.
{AL ) {As), {Ad), {46}, and{O,}. Assume that we have taken Procedure 5.2: Generate a pruned inverse CS-tfEg of an or-
a measurement at out§). Now we take a measuremeiii, at out dered CSC' by the following rules.
(A4). It then turns out that diagnos{®), } predicts—II, and we have 1) Generatd’, depth-first, i.e., generate the descendants of a node
to derive all MCS's from{ A, Az, A3, A4, A5, As, O2}. Now by before generating its brothers.
Corollary 4.2 we know tha{A,} is an MCS for (SD, COMP, OB 2) Pruning rule: IfS,, of noden is a CS, then we close node

. . : il
U {II}) resulting fromII without any test to determine if it is an  Note that not every label set requires a call for consistency checking
MCS. Moreover, we can arrange the order of generating the noqgSeqt if it is a CS because a superset of a known CS is a CS. On

in the pruned CS-tree with mark set as shown in Fig. 10. In thga other hand, if a label set is a subset of some known non-CS, it
derivation, only two nodes are generated in the tree. Without the USBst not be a CS. either

of Corollary 4.2, 17 instead of two nodes would be generated Example 5.3: Let C' = {c1, e2, c3, cs} and suppose that all the

Note that despite the great gﬁigiency improvemgnt b.rou.ght. WCS’S we can derive fron€ are{c:}, {cs, c3}, and{es, 4} (the
Corollary 4.2, one has to '.“a".‘ta'.“ extra. information mdmatmgame as those in Example 2.3). Fig. 11 shows the derivation using
whether a particular connection is fixed. an inverse CS-tree. Thet™mark beside(c.) denotes that the label

set{c,4} is determined to be a CS without the need of a test.[d
V. TopDowN VERsus BoTTom-Up One might get the impression from the above example that the

The methods described in Sections Il and Ill are top-down apettom-up approach is more efficient than the top-down approach.
proaches. The MCS's of a GS are derived by creating the CS-treeHowever, such conclusion is not necessarily true for all cases.
rooted inC' itself. We can also derive the MCS’s 6fin a bottom-up Consider the case in which we have to derive all MCS’s from a
manner by creating the inverse CS-tree rooted.in CS C with » elements, and assume that all we can derive ft@m

Definition 5.1: An inverse CS-tre€l’; of an ordered C” is is an MCS withm elements f < n). Therefore among the”
defined as follows. subsets ofC we have2"™™ CS’s, and the probability of having a
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CS as the label set of a nodBgs, is 1/2™. Since we need a CS to Postprocessing Statistical Language Models for a

close a node when using the bottom-up method, the ldfer the Handwritten Chinese Character Recognizer
worse the efficiency of the bottom-up method. On the other hand,
we need a non-CS to close a node when using the top-down method, Pak-Kwong Wong and Chorkin Chan

lower PCS could improve the efficiency of the top-down approach. In
general, whether the top-down method has an efficiency edge over th&bstract—Two statistical language models have been investigated on

bottom-up approach depends on the particular problem to be solviégir effectiveness in upgrading the accuracy of a Chinese character
recognizer. The baseline model is one of lexical analytic nature which
segments a sequence of character images according to the maximum
VI. CONCLUDING REMARKS matching of words with consideration of word binding forces. A model
of bigram statistics of word-classes is then investigated and compared
, %E;ainst the baseline model in terms of recognition rate improvement
Hou’s approach. on the image recognizer. On the average, the baseline language model

1) Our method is independent of the order of node generatidWPfOVes the recognition rate by about 7% while the bigram statistics
while Hou's approach is dependent on the order of nodB°de! upgrades it by about 10%.
generation due to the use of pruning rule b). Index Terms—C€hinese character recognizer, handwritten Chinese char-
2) By exploiting the concept of mark set, we implicitly discarchcter recognizer, language model, statistic language model.
any possibility of generating the nodes labeled by duplicate
sets or the subsets of some known non-CS. The counterpart of I. INTRODUCTION

the duplicate test is done in pruning rule a) in Hou’s method, ap jmage recognizer of a line of unknown characters can be asked
which requires a search in the CS-tree, and no facility fqp propose a lattice of degree of character candidates that are
testing the subset of some known non-CS is available in Hoygost ikely to reveal the true content of the line. The correspondence
approach. Hence our method achieves better efficiency thgBween a sequence of character candidates and a sequence of words
Hou’s approach. is usually ambiguous because of ambiguous segmentation of the
To conclude this paper, we point out one possible extension to tiigaracters into words. A language model as a post-processor, can
work. As shown in Examples 3.8 and 4.3, by carefully arranging theelp selecting among the candidates by evaluating their respective
order of generating nodes in a CS-tree with mark set, the efficiensyundness in forming a natural line-of-text of the language because
of the derivation could be dramatically improved. This makes orfe linguistic information of the characters can provide a useful basis
wonder if one can find an optimal ordering of node generaticar improving the recognition rate [1]. In this study, a character
in a CS-tree with mark set if one knows all MCS’s before theecognizer [2] is employed to test two statistics based language
derivation. If it is true, then we may use the error rate of each @fiodels as postprocessors. The character recognizer supports a vo-
the components within the system being diagnosed to “approximatgibulary of 4616 characters and accepts writer independent off-line
such optimal ordering by first calculating all possible MCS'’s basesandwritten character images (Chinese characters, alphanumeric, and
on some assigned error threshold. Then we may use the resulpimctuation symbols) from a scanner. It outputs a user-specified
guide us to generate nodes in a more efficient order. Moreover, wigmbern of candidates for each character image forming a lattice.
may discard some node in the CS-tree with mark set if we determiBecause Chinese, unlike Western languages in which words are
that all possible MCS’s found beneath that node are not importaséparated by blanks, has no word markers except the punctuation
enough (again based on some assigned error threshold). In this wgynbols. If there aren character images lying between a pair of
the diagnostic system will not be complete, but its efficiency coulsunctuation symbols, the number of possible candidate sequences is
be greatly improved. m™ which can be extremely large for large and n. Inevitably,
many words can be formed in the lattice just coincidentally. This
ACKNOWLEDGMENT paper investigates how to select the “best” candidate sequence out

] ] of this large number of possible choices efficiently and accurately by
comments.

In summary, our method has the following two improvements ov
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