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Abstract

To fully discriminate among all possible diagnoses in a fault diagnosis task, one needs

to take measurements from the system being diagnosed. The primary e�ects of taking

one measurement in diagnosis based on ®rst principles were presented in A. Reiter

[Arti®cial Intelligence (32) (1987) 57±95] and a more detailed, formal account was given

in A. Hou [Arti®cial Intelligence (65) (1994) 281±328]. However, the order in which

measurements are to be taken is an issue. We propose a genetic algorithm to determine a

good measurement order for a diagnosis task. The method applies operators such as

selection, crossover, and mutation to evolve an initial population of measurement se-

quences. The quality of a measurement sequence is evaluated based on the cost taken for

the measurement sequence to ®nd the ®nal diagnosis. Experiments on testing circuits

have shown that the quality of measurement sequences is greatly improved after evo-

lution. Ó 1999 Elsevier Science Inc. All rights reserved.

Keywords: Model-based diagnosis; First principles; Measurements; Measurement

ordering; Genetic operators

1. Introduction

In a nontrivial fault diagnosis task using model-based approaches, such as
Reiter's theory of diagnosis from ®rst principles [12,16], one is always
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confronted with the problem of discriminating among competing diagnoses
obtained. To narrow down the candidate diagnoses, measurements have to be
taken from the system being diagnosed. A measurement is a system observa-
tion which probes the output of a single component within the system. As-
suming that measurements will not cause any unwanted side e�ect, the result of
a measurement is used to compute new diagnoses which con®rm the obser-
vation and the measured result. Subsequent measurements can be taken in
order to settle down to only one possible diagnosis.

Deriving new diagnoses based on the result of a measurement has been
formalized in the work of Reiter [16] and Hou [14]. However, the mea-
surement ordering problem, i.e., determining the best order in which mea-
surements are to be taken, has received very little investigation so far. The
one-step lookahead method proposed in [7,8] is one try which selects the
best next measurement by minimizing the total number of measurements
required. The method demands a simulation of probing each of the possible
measurements with each of the possible outcomes. Minimal con¯ict sets
under each measurement with each possible outcome are computed, and
the entropy of the whole system being diagnosed under di�erent measure-
ments is calculated. The measurement with which the entropy of the system
is minimal is then selected as the next measurement. This method is ex-
pensive in computation power as the number of possible measurements
increases.

The measurement ordering problem is well suited to a genetic algorithms
approach since it is an NP-hard problem and does not, in practice, require a
perfect solution. Genetic algorithms (GAs) have been developed and studied
[10,13] and have been applied to many ®elds with success [1,10,15]. GAs op-
erate on a set of strings instead of only one, so they can be more robust. GAs
use stochastic operators instead of deterministic ones, so they can be more
e�cient. Furthermore, the genetic operators used can be easily implemented.
We propose a genetic algorithm to help ®nd the best order of measurements to
be taken in a diagnosis task for digital circuits. The quality of a measurement
sequence is evaluated based on the cost taken for the measurement sequence to
®nd the ®nal diagnosis. Our method applies genetic operators such as selection,
crossover, and mutation to evolve an initial population of measurement se-
quences. Experiments with testing circuits have shown that our method is ef-
fective; the quality of measurement sequences is greatly improved after
evolution for each testing circuit.

The rest of the paper is organized as follows. We ®rst brie¯y review the
theory of diagnosis from ®rst principles in Section 2. Then in Section 3 we
describe in detail the genetic algorithm used for the measurement ordering
problem. Section 4 presents the results of experiments using the proposed
method to diagnose some testing circuits. Finally, Section 5 concludes our
work.
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2. Diagnosis from ®rst principles

Suppose we are given an observation of a system which con¯icts with the
way the system is meant to behave, the fault diagnosis task is to pinpoint
the possible diagnoses, i.e., the possible sets of faulty components, that cause
the misbehavior of the system. Reiter [16] has built and formalized the major
theorems for diagnosis from ®rst principles upon the work of de Kleer [6] and
Genesereth [9].

A system is a pair (SD, COMP) where SD is the system description and
COMP is a ®nite set of constants denoting the collection of components of the
system. The system description is a set of ®rst-order logic sentences [3] de-
scribing:
1. The functionality of a component within the system; e.g., let A be an AND

gate with two inputs, the sentence describing A is

:AB�A� ! out �A� � AND�in1�A�in2�A��;
where the predicate AB stands for abnormal, which is true if and only if gate
A is malfunctioning. The sentence states that if A is normal then the output
of A is the conjunction of A's two inputs, in1(A) and in2(A).

2. The connections between the components of the system; e.g.,
out�A� � in1�B� means that the output of component A is connected with
the ®rst input of component B.
Real world diagnostic settings involve observations. Observations allow us

to determine whether something is wrong and hence whether a diagnosis is
called for. An observation of a system is a ®nite set of ®rst-order sentences
describing the values observed at input or output pins of gates in a system
under investigation. We shall write (SD, COMP, OBS) for a system (SD,
COMP) with observation OBS.

De®nition 1. D is a diagnosis for (SD, COMP, OBS) if and only if D � COMP
is a minimal set such that

SD [OBS [ f:AB�c� jc 2 �COMP-D�g
is consistent.

Note that we need to do consistency checking in order to con®rm that a set
is a diagnosis or not. The consistency checking can be done with a proposi-
tional logic theorem prover [2]. For an observation OBS of a system, there may
be many possible diagnoses to account for the system's misbehavior. To re®ne
further the set of diagnoses, one needs to take measurements from the system.
A measurement is just an additional observation which probes the output of a
single system component. Let P be the result of a measurement. Each diagnosis
either predicts P or :P.
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Proposition 1. A diagnosis D for (SD, COMP, OBS) predicts P if and only if

SD [OBS [ f:AB�c� jc 2 �COMP-D�g � P

where � stands for logical consequence.

Note that with P, the observation is expanded to OBS [P. The original set
of diagnoses can then be re®ned as stated in the following theorem.

Theorem 1. Suppose we take a measurement P for (SD, COMP, OBS).
1. Every diagnosis for (SD, COMP, OBS) which predicts P is also a diagnosis

for �SD; COMP ; OBS [P�;
2. No diagnosis for (SD, COMP, OBS) which predicts :P is a diagnosis for

(SD, COMP, OBS [P);
3. Any diagnosis for �SD; COMP ; OBS [P� which is not a diagnosis for (SD,

COMP, OBS) is a strict superset of some diagnosis for (SD, COMP, OBS)
which predicts :P.

Apparently, deriving the set of new diagnoses from the set of old diagnoses
and P involves a lot of consistency checks. If we come to one possible diag-
nosis for the system being diagnosed, then we stop. However, many mea-
surements may need to be taken before the number of possible diagnoses is
reduced to one. Also, we may have many candidate measurements each time.
The problem arises: what is the best order of measurements to be taken to
minimize the total cost required in the whole diagnosis process? In fact, the
derivation of possible diagnoses is closely related to the order of measurements
taken.

Consider the circuit in Fig. 1 which contains 8 gates, 6 AND gates and 2 OR
gates. The values on the left are the inputs and the value on the right is the
output of the circuit, and these values constitute the original observation, OBS.

Fig. 1. An example circuit.
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In the ®gure, seven more values are shown which indicate the results of seven
possible measurements. For simplicity, suppose gate A4 is out of order. From
OBS, we deduce the set, D0, of possible diagnoses to be

D0 � ffA1g; fA3g; fA4g; fA6g; fO1gg:
Suppose we have two measurement sequences:

S1 � fout�A4�; out�A3�; out�O1�; out�O2�; out�A2�; out�A5�; out�A1�g;
S2 � fout�O2�; out�O1�; out�A3�; out�A2�; out�A4�; out�A1�; out�A5�g:

If we use S1, we take the ®rst measurement and get out(A4)� 1 then we
deduce D1 � ffA4gg and we stop. Now let us work on the case with S2. We take
the ®rst measurement of S2 and get out�O2� � 1. This measurement does not
bring anything useful and we have

D1 � ffA1g; fA3g; fA4g; fA6g; fO1gg;
which is identical to D0. Take the second measurement of S2 and get
out(O1)� 1. We deduce

D2 � ffA1g; fA3g; fA4g; fO1gg:
Take the third measurement of S2 and get out(A3)� 0. We deduce

D3 � ffA4g; fO1gg:
The fourth measurement of S2 contributes nothing and we have D4 � D3.

Take the ®fth measurement of S2 and get out(A4)� 1. We deduce

D5 � ffA4gg:
Note that with S1, we only need to take one measurement, but with S2 we

have to take ®ve measurements, before deriving the ®nal diagnosis. Obviously,
the order in which measurements are to be taken a�ects the e�ciency of a
diagnosis system.

3. Measurement ordering by genetic algorithms

GAs were invented based on the inspirations from natural selection and
evolution [10,13]. GAs manipulate a population of binary strings, named
chromosomes. Each chromosome represents an encoded solution to the
problem to be solved. During the evolution process, a chromosome is evalu-
ated and the ®tness value associated with the chromosome is computed. A
®tness value is a positive number which re¯ects the quality of the corre-
sponding chromosome, i.e., how good this particular solution is. The higher a
®tness value, the better the corresponding chromosome (encoded solution).
The chromosomes are selected from the population according to the ®tness
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distribution so that the one with higher ®tness value is selected more frequently
than that with lower ®tness value. Moreover, two descendant chromosomes are
generated by crossing over a pair of selected chromosomes, and new chro-
mosomes are mutated according to a certain probability.

In a generational GA the evaluation process goes on until a whole new
population is generated, and the old population is then replaced by the new
one. In a steady-state GA the replacement occurs immediately after the eval-
uation of each single chromosome. In either case a stopping criteria is set, e.g.,
when the average ®tness value goes beyond some threshold, and when the
criteria are met the whole process stops.

3.1. Our method

For convenience, we call our method ``a genetic algorithm for ordering
measurements'', abbreviated as GAOM. For a given circuit, a measurement
sequence is called a measurement request list (MRL) which is an ordered set of
all possible measurements that can be taken for the circuit. For example,
S1 and S2 of Section 2 are two MRLs for Fig. 1. Apparently, there are
7! � 5040 di�erent MRLs for Fig. 1. Each measurement in an MRL is taken in
order, and the result is used to update the set of possible diagnoses. This
process goes on until only one diagnosis is left. It is obvious that every MRL is
guaranteed to ®nd the diagnosis. The question is: how far do we need to go
through the measurements contained in an MRL to ®nd the ®nal diagnosis? Of
course, the less the cost to ®nd the diagnosis, the better the e�ciency of the
corresponding MRL.

A good MRL should keep the cost low for obtaining the ®nal diagnosis. As
described in Section 2, deriving new diagnoses involves a lot of consistency
checks. Intuitively, a good MRL should minimize the number of measure-
ments, nM, to be taken and the number of consistency checks, nP, involved in
the process of obtaining possible diagnoses. We use the product of these two
numbers as the performance index (PI) of an MRL as follows:

PI � nM � nP:

One MRL is said to be better than another MRL if the PI value of the
former is smaller than that of the latter. Our goal here is to obtain the best
MRL using GAOM.

Classic GAs use bit strings as the representation of candidate solutions. In
GAOM a chromosome is represented simply by an MRL. Essentially, the goal
of GAOM is to optimize the ordering of measurements to be taken. Bit-string
representation is not natural for such order-based GAs since illegal strings may
be produced after applying genetic operators [4]. Using MRLs as chromosomes
facilitates the operation of the genetic operators used in GAOM.
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GAOM is a steady-state genetic algorithm with a worst-replacement scheme
and can be outlined as follows.

1. Initialization: Randomly obtain a population of MRLs.
2. Initial evaluation: Compute the PI value of each MRL within the popula-

tion by performing diagnosis using the measurements contained in the cor-
responding MRL. Then calculate the ®tness value of the MRL based on its
PI value.

3. Test if one of the stopping criteria (time, ®tness, etc.) holds. If yes, stop the
procedure. For example, one would like to stop the procedure when the av-
erage PI value goes below some threshold or the ®nal diagnosis is found.

4. Genetic operator selection: Select a genetic operator.
5. Selection of MRLs: Assume that the operator selected requires n MRLs as

operands. Select n MRLs from the population.
6. Applying the genetic operator: Generate descendant chromosomes by apply-

ing the genetic operator selected in step 4 on the MRLs selected in step 5.
7. Evaluation: Select one of the new MRLs generated in step 6. Compute the

PI value of this MRL by performing diagnosis using the measurements
contained in this MRL. Then calculate the ®tness value of the MRL based
on its PI value.

8. Updating the population: If the new MRL evaluated in step 7 already exists
in the population, keep this MRL in the population and update the values
associated with it. Otherwise replace the worst MRL, i.e., the MRL with
the largest PI value in the population, with the newly generated one
(worst-replacement scheme).

9. Updating the ®tness values of the genetic operators: Update the ®tness values
of all related genetic operators according to the performance of the new
MRL.

10. Repeat steps 7±9 until all of the descendant MRLs generated in step 6 are
evaluated and inserted into the population.

11. Repeat steps 3±10.

The following sub-sections give details on MRL evaluation, the genetic
operators involved in GAOM, and dynamic update of the ®tness values of the
genetic operators.

3.2. MRL evaluation

An MRL is evaluated by performing diagnosis using it. The PI value is
collected from the diagnosis process, and is used to compute the raw ®tness
value fr of the MRL using the following formula:

fr � Pmax

P
� fr;min;
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where P is the PI value of the MRL, Pmax the maximal PI value of all the MRLs
in the population, and fr;min is a constant which is the reserved minimal raw
®tness value of all the MRLs in the population. This conversion essentially
inverts the direction of optimization from minimizing to maximizing, and at
the same time preserves the ratio between the PI values of di�erent MRLs.

After the raw ®tness value of an MRL is determined, the ®tness value f of
the MRL is computed by scaling the raw ®tness value using the following linear
equation [10]:

f � a � fr � b;

where the two coe�cients a and b are obtained by solving the following
equations:

fr � a � fr � b;

c � fr � a � fr;max � b;

where c is a constant typically in the range from 1.2 to 2, fr;max the raw ®tness
value of the best MRL within the population, and fr is the average raw ®tness
of the population. Intuitively, computing a and b this way ensures that an
average MRL contributes one expected o�spring, while the most successful
MRL contributes c expected o�spring in the selection process. At the beginning
of the evolution process, signi®cant diversity might appear in the population,
and the ®tness scaling ensures that superior MRLs will not take over the whole
population too early. On the other hand, when the population converges in late
stages of the process, the ®tness scaling guarantees that superior MRLs still
have better chance to be selected, so that the evolution process will not become
a random walk among those slightly inferior MRLs.

However, there are occasions when the whole population converges to some
average raw ®tness value and there still exist some bad MRLs whose raw ®tness
values are far below the average. In this case the ®tness scaling will yield
negative ®tness values, which are unacceptable for the working of GAOM. To
solve the di�culty, we recalculate a and b by solving the following equations:

fr � a � fr � b;

fmin � a � fr;min � b;

where fmin is a given constant representing the reserved minimal ®tness value.

3.3. Genetic operators

GAOM uses ®ve operators: selection, crossover, mutation, ®ne-tune, and re-
evaluation.

Selection. This operator applies the Roulette wheel selection method which
is essentially a weighted random selection approach. Let the sum of the ®tness
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values of all chromosomes within the population be F. Then the probability
that a chromosome with ®tness value f is selected is f =F .

Crossover. Let Si and Sj be two MRLs. Compute the average number of
consistency checks associated with Si and that with Sj, respectively. For each
measurement, M, in Si, if the number of consistency checks associated with M
exceeds the average, collect M into an ordered set Ti, in which Mx is in front of
My if and only if Mx is in front of My in Si. Similarly, collect all such mea-
surements in Sj into another ordered set Tj. Then the two descendants,
S 0i and S0j, of Si and Sj are

S 0i � Ti � �Tj ÿ Ti� � Oj�Si ÿ �Ti � �Tj ÿ Ti���;
S 0j � Tj � �Ti ÿ Tj� � Oi�Sj ÿ �Tj � �Ti ÿ Tj���;

where for two ordered sets A and B, A� B returns an ordered set appending B
to the end of A, Aÿ B returns an ordered set containing the elements only
belonging to A and in the order speci®ed in A, and Ox reorders its argument
according to the order speci®ed in Sx.

Intuitively, if a measurement result agrees with all the old diagnoses, the
measurement is useless since it does not bring any information and the set of
new diagnoses is totally the same as the set of old diagnoses. In this case, the
number of consistency checks is equal to the number of old diagnoses. On the
other hand, if a measurement result disagrees with old diagnoses, the old di-
agnoses will be rejected and new diagnoses will be generated. The measurement
is useful since it brings information and contributes to the re®nement of di-
agnoses. In this case, consistency checking may be executed many times in the
derivation of new diagnoses. Therefore, a useful measurement result which
helps updating already-known diagnoses requires many calls of consistency
checking. We use the average number of consistency checks associated with an
MRL as the threshold of preference to the measurements in the MRL. We
would like to probe such measurements which are potentially useful early in the
diagnosis process.

Although the crossover operator moves those measurements in one MRL
with the number of consistency checks exceeding the average to the front of the
MRL, the relative order of these promising measurements is preserved. The
remaining measurements in the MRL are rearranged according to their relative
order speci®ed in the other MRL. In this way, good orderings in di�erent
MRLs can be exchanged for better performance.

Consider two MRLs, S1 and S2:

S1 � fM3;M1;M5;M2;M4;M6;M8;M7g;
S2 � fM7;M3;M8;M5;M4;M2;M1;M6g

each containing eight measurements. The number of consistency checks asso-
ciated with each measurement is listed in Table 1. The average number of
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consistency checks for S1 is 56.25, and for S2 is 43.75. Thus we have
T1 � fM5;M2;M6;M8;M7g and T2 � fM3;M8;M2;M1g. The two descendants,
S 01 and S02, after applying the crossover operator are:

S01 � fM5;M2;M6;M8;M7;M3;M1;M4g;
S02 � fM3;M8;M2;M1;M5;M6;M7;M4g:

Mutation. This operator acts on a single MRL. Let Si be an MRL. Ran-
domly choose two measurements, M1 and M2, within Si and invert the ordering
of all measurements in between (inclusive) M1 and M2. The result is the de-
scendant of Si. This operator is essentially the inversion operator ®rst intro-
duced by Holland [13].

Fine-tune. This operator acts on a single MRL. Let Si be an MRL. Compute
the average number of consistency checks associated with Si and collect all the
measurements with the number of consistency checks exceeding the average
into an ordered set Ti as depicted in the description of the crossover operator.
Randomly reorder the elements of Ti, and denote the result as T 0i . Then the
descendant S0i is

S0i � T 0i � fSi ÿ T 0i g:
The intuition of this operator is to move the promising measurements to the

front of the MRL, and rearrange their relative order randomly in the hope that
the new ordering of these promising measurements will improve the PI value of
the MRL.

Generally speaking, the ®ne-tune operator achieves a di�erent e�ect than the
crossover operator. A crossover operator ®rst lumps the promising measure-
ments (those with the above-average number of consistency checking) into the
front of an MRL, then appends it with the measurements taken from the other

Table 1

Two MRLs for crossover

S1 S2

Measurement Number of consistency

checks

Measurement Number of consistency

checks

M3 30 M7 30

M1 20 M3 50

M5 60 M8 60

M2 70 M5 30

M4 40 M4 20

M6 80 M2 60

M8 90 M1 50

M7 60 M6 30
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MRL. The ®ne-tune operator only lumps the promising easurements to the
front, without ``borrowing'' measurements from another MRL.

Intuitively the ®ne-tune operator improves an MRL by reorder itself, i.e., no
information is drawn from another MRL, so that the promising measurements
are considered ®rst in the hope that fewer measurements are required to
complete the process. The crossover operator, however, actually rebuilds two
new MRLs by swapping the useful schema in them. The only case where the
e�ect of the crossover operator is the same as that of the ®ne-tune operator is
that the two MRLs involved in a crossover are exactly the same ones. Without
the ®ne-tune operator it is far less likely that the promising measurements are
lumped in the front while the other measurements maintain the same ordering
in an MRL.

Re-evaluation. This operator simply returns the MRL it received but up-
dates the values associated with the MRL. For real diagnosis tasks, even with
the same circuit the fault patterns will not be the same all the time. If an MRL
is associated with a high ®tness value under some fault pattern, it is possible
that it will receive a rather low ®tness value under another fault pattern.
Without the re-evaluation operator, this inaccurate association will never be
updated, hence the association cannot re¯ect the real fault tendency adaptively
anymore.

3.4. Adapting ®tness values of genetic operators

It has been shown that the control parameters such as the size of the
population, mutation and crossover rates, and the number of crossover points
a�ect a GA's performance [18]. Although some of them can be preset ac-
cording to the results of empirical studies [5,11], the various operator rates
need to be adapted constantly in the course of the evolution process in order
to re¯ect the change in the population and in the environment. In GAOM, we
use credit propagation for updating the ®tness values of all four operators
based on Davis' work [4]. In short, each of the operators receives a reward if
it yields a superior descendant than the replaced MRL. This reward is then
distributed exponentially to the operator producing the parent of the MRL,
the operator producing the parent of the parent of the MRL, etc. The exact
number of generations considered backward, parent length, and the constant
for multiplying the original reward, credit constant, are the parameters of this
method. Note that the updating method used here is slightly di�erent from
Davis' approach in that we give reward to a particular operator based on the
di�erence between the ®tness value of the new MRL and that of the replaced
MRL, instead of assigning reward to an MRL based on the di�erence be-
tween the ®tness value of the new MRL and that of the best MRL in the
population.

B. Han, S.-J. Lee / Information Sciences 120 (1999) 223±237 233



4. Experimental results

To test GAOM, we incorporate it into a diagnosis system for diagnosing
faults in digital circuits that we developed based on ®rst principles. Experi-
ments were done on ®ve testing circuits. These ®ve circuits are described in
Table 2. The second column gives the number of gates (components) contained
in each circuit. The number of possible measurements and possible MRLs
(search space) are listed in columns 3 and 4, espectively. Column 5 describes the
function and the IC number of each circuit.

Note that in these experiments, all fault patterns were randomly generated
according to a given error rate distribution of the components in each circuit.
Also, the parent length for credit propagation is set to 5, the reserved minimal
raw ®tness value and the reserved minimal ®tness value are both set to 10.0, the
constant c used for scaling raw ®tness values is 1.5, and the number of faulty
components in all simulated fault patterns used is set to 2.

In each experiment, we ®rst randomly generated an initial population of
MRLs for each circuit. After the initialization phase, the initial population of
MRLs is evolved using GAOM operators. We randomly generated a fault
pattern for each MRL during the course of the evolution process. The spirit of
these tests is to simulate the situation in which a diagnosis system deals with
real-world problems, i.e., the fault patterns of the same circuit keep changing
all the time. Table 3 gives the values of the parameters used in GAOM for each
testing circuit.

We used GAOM to evolve an initial population of MRLs 10 times for each
testing circuit. The results obtained in the 10 times are averaged and the av-
eraged results: the initial PI value, the PI value after evolution, and the im-
provement rate for each circuit, are shown in Table 4. Note that the
improvement rate is de®ned as (column 2ÿcolumn 3)/(column 3) in the table.
Clearly, the PI values, which are what GAOM tries to minimize, are all reduced
considerably for all testing cases. The last column of Table 4 shows the per-

Table 2

Five testing circuits

Testing

circuit

Number

of gates

Number of

possible M's

Number of

possible MRLs

Description

c01 8 7 5040 Arbitrary circuit (Fig. 1)

c02 18 8 40320 BCD to decimal decoder

(7442)

c03 19 14 87178291200 Lookahead carry generator

�74182�
c04 16 8 40320 3±8 demultiplexer �74138�
c05 16 14 87178291200 Dual 4±1 data selectors

�74153�
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centage of the search space (i.e., the number of possible MRLs) explored for
each circuit. This equals the number of evaluations divided by the size of the
search space, e.g., 100/5040 � 1.984% for c01. Fig. 2 shows how the PI value
evolves as the number of evaluations increases for circuits c03 and c05. Similar
curves are obtained for the other circuits.

5. Concluding remarks

We have proposed a measurement ordering strategy which can be incor-
porated into a diagnosis system for determining the best order of measure-
ments to be taken in a diagnosis process. Speci®cally, we have proposed
GAOM, a genetic algorithm for ordering measurements, and successfully in-
tegrated it into our diagnosis system developed for digital circuits based on ®rst
principles [14,16]. Experimental results on ®ve testing circuits were presented
and they showed that GAOM is e�ective in reducing the cost of a diagnosis
task signi®cantly.

The GA approach has a fundamental advantage that the whole population
of promising MRLs keeps adapting itself with the real fault tendency exhibited
in the target system. It is true because every MRL in the population is actually
applied in a real diagnosis process, and its performance is used for its survival

Table 3

The values of the parameters used for each testing circuit

Testing

circuit

Popula-

tion size

Number of

evaluations

Initial operator ®tness Credit

constantCrossover Mutation Fine-tune Re-evalua-

tion

c01 20 100 0.55 0.05 0.25 0.15 0.001

c02 40 200 0.55 0.05 0.25 0.15 0.00001

c03 40 400 0.55 0.05 0.25 0.15 0.00001

c04 40 200 0.55 0.05 0.25 0.15 0.00001

c05 40 400 0.55 0.05 0.25 0.15 0.00001

Table 4

Improvement on PI values after evolution

Testing

circuit

Initial PI PI after

evolution

Improvement

(%)

Percentage of search

space circuit

c01 534.10 216.67 59.434 1.984

c02 145797:90 24529:58 83.176 0.496

c03 606380.90 51719:73 91.471 4:588� 10ÿ7

c04 46166:80 7602.59 83.532 0.496

c05 122290:90 12948:33 89.412 4:588� 10ÿ7
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in the successive generations. In the ®rst glance it seems to be expensive to
obtain optimal orderings by actually applying the inferior MRLs in diagnosis
processes. However, in a real-world setup the whole adaptation process occurs
on-line, namely no o�-line training is required. We can always start from a
randomly generated population of MRLs and in time the system will adapt
itself with the real fault tendency exhibited in the target system. Moreover, no
presumption is made with the performance index we want to optimize. One
can always rede®ne the PI to incorporate other cost factors and use the same
architecture, to meet the requirements of any speci®c diagnosis task [17]. In
any case, the average PI value of the whole population of MRLs can be
lowered down by training the diagnosis system with fault patterns randomly
generated or obtained from past experiences before any diagnosis process is
engaged.

GAOM has another advantage that the computation overhead involved for
evolving promising MRLs is negligible. The adaptation process takes place on-
line, which means that the system could adapt itself with the fault tendency
exhibited in the target system in real-time ± no o�-line training is necessary. Of
course the initial population can be generated in a more intelligent way, other
than the ``random'' one used in the experiments, so that the convergence could
take place sooner. By contrast, the simulation of the probing for every possible
measurement requires considerable amount of consistency checks in de Kleer's
approach (each simulation actually is a partial derivation of diagnoses based
on the conjectured probe outcome) ± in the end the overhead may well surpass
the e�ort the approach tries to save, especially when there are many possible
measurements (and to make things worse there are possibly more than two
possible outcomes for each possible probe in a target system other than the
digital circuits studied here).

Fig. 2. PI value vs. number of evaluations for (a) c03 and (b) c05.
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