
Comments on the theory of measurement in
diagnosis from ®rst principles

Benjamin Han, Shie-Jue Lee *, Hsin-Tai Yang

Department of Electrical Engineering, National Sun Yat-Sen University,

Kaohsiung 80424, Taiwan, ROC

Received 12 March 1997; received in revised form 17 January 1999; accepted 25 June 1999

Abstract

When ®nding diagnoses from ®rst principles, one needs to re®ne possible diagnoses

by making measurements from the system being diagnosed. Based on the work of

Reiter, Hou has developed and formalized an e�cient incremental method for com-

puting all diagnoses upon measurement. However, we feel that some points in HouÕs
paper need clari®cations. In this paper, we describe an elaborate picture of the rela-

tionships among measurements, con¯ict sets and diagnoses. We also present some

comments on the equivalence relation and HouÕs procedure for con¯ict recogni-

tion. Ó 1999 Elsevier Science Inc. All rights reserved.
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Equivalence class

1. Introduction

Under the assumption that the description of a system is consistent, if the
inputs and the outputs, i.e., the observation, of the system con¯ict with the way
the system is meant to behave, the diagnostic problem is to pinpoint the pos-
sible diagnoses, i.e., the possible sets of faulty components that cause the
misbehavior. Many researchers have proposed various kinds of approaches to
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tackle the problem; among them, Reiter [4] has built and formalized the major
theorems of diagnosis from ®rst principles upon the work of de Kleer [1] and
Genesereth [2]. In the paper, Reiter gave the following de®nitions:

De®nition 1.1 ([4, Definition 2.1]). A system is a pair (SD, COMP) where
1. SD, the system description, is a set of ®rst-order sentences describing

(a) the functionality of a component within the system; e.g., let A be an
AND gate with two inputs, the sentence describing it is:

:AB�A� � out�A� � and�in1�A�; in2�A��;
where the predicate AB stands for abnormal, which is true iff gate A is mal-
functioning, and ÔandÕ is a function returning true iff both inputs of gate A
are true.
(b) the connections between the components of the system; e.g.,
out�A� � in1�B� means that the output of component A is connected with
the ®rst input of component B.

2. COMP is a ®nite set of constants denoting the collection of components of
the system.

De®nition 1.2 ([4, Proposition 3.4]). D is a diagnosis for (SD, COMP, OBS) iff D
is a minimal set such that SD [ OBS [ f:AB�c�jc 2 COMPÿ Dg is consis-
tent, where OBS stands for the observation of the system (SD, COMP).

De®nition 1.3 ([4, Definition 4.1]). C � COMP is a conflict set (CS) for (SD,
COMP, OBS) iff SD [ OBS [ f:AB�c�jc 2 Cg is inconsistent. A minimal
con¯ict set (MCS) is a CS such that none of its subsets is a CS. 1

De®nition 1.4 ([4, Definition 4.3]). H is a hitting set (HS) for a collection of sets
S iff H � SC2S C such that H \ C 6�£ for each C 2 S. A minimal hitting set
(MHS) is an HS such that none of its subsets is an HS.

To locate all possible diagnoses, Reiter showed that all we have to do is ®nd
all MHSs for the collection of MCSs, as stated in the following theorem.

Theorem 1.5 ([4, Corollary 4.5]). D � COMP is a diagnosis for (SD, COMP,
OBS) iff D is an MHS for the collection of MCSs for (SD, COMP, OBS).

1 For brevity, through out the rest of this paper we will use the initials CS for conflict set, MCS for

minimal conflict set, HS for hitting set, and MHS for minimal hitting set.
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However, to re®ne further the set of diagnoses, one needs to take mea-
surements from the system. Let P be a measurement. Each diagnosis then
predicts either P or :P.

De®nition 1.6 ([4, Proposition 5.3]). A diagnosis D for (SD, COMP, OBS)
predicts P iff

SD [ OBS [ f:AB�c� j c 2 COMPÿ Dg � P:

It turns out that each diagnosis is either preserved or rejected according to
the prediction, as stated in the following theorem.

Theorem 1.7 ([4, Theorem 5.7]). Suppose that every diagnosis for (SD, COMP,
OBS) either predicts P or :P, then:
1. Every diagnosis for (SD, COMP, OBS) which predicts P is a diagnosis for

(SD, COMP, OBS [ fPg).
2. A diagnosis for (SD, COMP, OBS) which predicts :P is not a diagnosis for

(SD, COMP, OBS [ fPg).
3. Any diagnosis for (SD, COMP, OBS [ fPg) which is not a diagnosis for (SD,

COMP, OBS) is a strict superset of some diagnosis for (SD, COMP, OBS)
which predicts :P; i.e., any new diagnosis resulting from the new measurement
P will be a strict superset of some old diagnosis which predicts :P.

Although Theorem 1.7 sheds some light on the practical way for computing
all diagnoses after adding P, it is Hou [3] who has developed and formalized an
e�cient incremental approach for computing them. However, we feel that
some points in HouÕs paper need clari®cations. In this paper, we supplement
and revise some theorems and procedures described in [3]. In Section 2, we
provide a concise review on the relationships between measurements and CSs
described in [3]. Then in Section 3, we show an elaborate picture of the rela-
tionships among measurements, CSs and diagnoses by supplementing the
theorems in [3]. In Section 4, we give a concise review of HouÕs consequences
about con¯ict recognition. Then in Section 5, we discuss the equivalence re-
lation and give comments on HouÕs con¯ict recognition.

2. Hou's consequences about measurements, con¯ict sets, and diagnoses

To re®ne further the set of possible diagnoses by a measurement P, Hou
de®ned a CS for �SD;COMP;OBS [ fPg� resulting from the measurement P
as follows.

De®nition 2.1 ([3, Definition 3.2]). A CS for �SD;COMP;OBS [ fPg� re-
sulting from a measurement P is a set fc1; c2; . . . ; ckg � COMP such that
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SD [ OBS [ f:AB�ci�ji � 1; . . . ; kg
is consistent, and

SD [ OBS [ fPg [ f:AB�ci�ji � 1; . . . ; kg
is inconsistent.

By combining De®nitions 2.1 with 1.3 and 1.6, Hou presented the following
important relationship between the diagnoses for (SD, COMP, OBS) predict-
ing :P and the CSs for �SD;COMP;OBS [ fPg� resulting from P.

Corollary 2.2 ([3, Proposition. 3.3]). If D � COMP is a diagnosis for (SD,
COMP, OBS) which predicts :P, then COMP-D is a CS for (SD, COMP,
OBS [ fPg) resulting from P.

On the other hand, every MCS for �SD; COMP; OBS [ fPg� resulting
from P is a subset of COMP-D, where D is a diagnosis for (SD, COMP, OBS)
predicting :P.

Theorem 2.3 ([3, Theorem 3.6]). Every MCS for (SD, COMP, OBS [ fPg)
resulting from P is one of the MCSs derived from COMP-Di; which is a CS for
(SD, COMP, OBS [ fPg) resulting from P, with Di being a diagnosis for (SD,
COMP, OBS) predicting :P.

Corollary 2.2 and Theorem 2.3 together show that by deriving all MCSs
from COMP-Di, where Di is a diagnosis for (SD, COMP, OBS) predicting :P,
one can get all, nothing more than all, MCSs for �SD;COMP;OBS [ fPg�
resulting from P. Moreover, the set of MCSs for �SD;COMP;OBS [ fPg�
can be divided into two collections, as stated below.

Theorem 2.4 ([3, Theorem 3.7]). Any MCS for (SD, COMP, OBS [ {P}) is
either an MCS for (SD, COMP, OBS) or an MCS for (SD, COMP, OBS [
fPg) resulting from P.

This theorem gives an interesting glimpse about the relationships between the
MCSs for (SD, COMP, OBS) and the MCSs for �SD;COMP;OBS [ fPg�.
However, in the rest of [3], no further explanation regarding the relationships is
given.

3. Relationships among measurements, con¯ict sets, and diagnoses

First we show that the MCSs for (SD, COMP, OBS) can also be divided into
two collections.
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Theorem 3.1. Any MCS for (SD, COMP, OBS) is either an MCS for (SD,
COMP, OBS [ fPg� or a strict superset of some MCS for (SD, COMP,
OBS [ fPg) resulting from P.

Proof. Let P � fc1; . . . ; ckg be an MCS for (SD, COMP, OBS) and
Pi � P ÿ fcig. From De®nition. 1.3 we know that

SD [ OBS [ f:AB�c� j c 2 Pg is inconsistent;

and

SD [ OBS [ f:AB�c� j c 2 Pig is consistent:

1. If SD [ OBS [ fPg [ f:AB�c� j c 2 Pig is inconsistent, then by De®ni-
tion 2.1, Pi is a CS for �SD;COMP;OBS [ fPg� resulting from P. Any
MCS derived from Pi then is a strict subset of P.

2. If

SD [ OBS [ fPg [ f:AB�c�jc 2 Pig
is consistent, since

SD [ OBS [ fPg [ f:AB�c�jc 2 Pg
is inconsistent, then by De®nition 1.3 P is an MCS for �SD; COMP;
OBS [ fPg�. �

Given both Theorems 2.4 and 3.1, one may wonder what relationships exist
between the two collections of MCSs for (SD, COMP, OBS) and the two
collections of MCSs for �SD;COMP;OBS [ fPg�. Fig. 1 shows the rela-
tionships depicted by Theorems 2.4 and 3.1.

In the ®gure, a circle stands for a set of MCSs. The lower circle is the set of
MCSs after adding P. The section denoted by ÔNEWÕ is the collection of MCSs
for �SD;COMP;OBS [ fPg� resulting from P. Fig. 1(c) in e�ect states the
following corollary.

Corollary 3.2. Let C1 be the collection of MCSs for (SD, COMP, OBS) and C2

be the collection of MCSs for (SD, COMP, OBS [ fPg). Then C1 can be
partitioned into C0 and C11, and C2 can be partitioned into C0 and C21, where C21

is the collection of MCSs for (SD, COMP, OBS [ fPg) resulting from P and
8c 2 C11, c is a strict superset of some c0 in C21.

It is easy to see from Fig. 1(c) that a diagnosis for (SD, COMP, OBS), if it
intersects all MCSs for �SD;COMP;OBS [ fPg� resulting from P, must be
an HS for the collection of MCSs for �SD;COMP;OBS [ fPg�. Further-
more, Hou [3, Corollary 3.12] showed that such a diagnosis for (SD, COMP,
OBS) is also a diagnosis for �SD; COMP; OBS [ fPg�. On the other hand,
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in Theorem 1.7 (1), Reiter has shown that if a diagnosis for (SD, COMP, OBS)
predicts P, then it is also a diagnosis for �SD;COMP;OBS [ fPg�. To relate
these two viewpoints, we have the following theorem:

Theorem 3.3. Let D be a diagnosis for (SD, COMP, OBS). Then D predicts P iff
it intersects each MCS for (SD, COMP, OBS [fPg) resulting from P.

Proof. �)� Since D predicts P, from De®nition 1.6 we have

SD [ OBS [ fPg [ f:AB�c� j c 2 COMPÿ Dg is consistent;

i.e., COMP-D is not a CS for �SD;COMP;OBS [ fPg�. Assume that P is an
MCS for (SD, COMP, OBS [ fPg) resulting from P and P \ D �£, then
P � COMP-D, i.e., COMP-D is a CS for �SD;COMP;OBS [ fPg�, a con-
tradiction.

(() Assume that D predicts :P, then we have

SD [ OBS [ fPg [ f:AB�c� jc 2 COMPÿ Dg is inconsistent;

i.e., COMP-D is a CS for �SD;COMP;OBS [ fPg�. Since all MCSs for
�SD;COMP;OBS [ fPg� derived from COMP-D do not intersect D, we have
a contradiction. �

Therefore the above result shows that Theorem 1.7 is in fact equivalent to
Corollary 3.12 in [3].

The picture of the relationships between the diagnoses before adding P
and the diagnoses after adding P can be drawn directly from Theorem 1.7 (See
Fig. 2).

Fig. 1. The relationships between the MCSs before adding P and the MCSs after adding P de-

picted by: (a) Theorem 2.4; (b) Theorem 3.1; (c). Theorem 2.4 and Theorem 3.1.
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In the ®gure, a circle stands for a set of diagnoses. The upper diagnoses are
divided into those predicting P and those predicting :P. The lower circle is the
set of diagnoses after adding P. The section denoted by ÔNEWÕ is the collection
of diagnoses for �SD;COMP;OBS [ fPg� but not for (SD, COMP, OBS).

Fig. 2 essentially shows the way to compute all diagnoses for �SD;
COMP;OBS [ fPg�. What we need to do is preserve all diagnoses for (SD,
COMP, OBS) predicting P, and then compute all ÔnewÕ diagnoses from the
diagnoses for (SD, COMP, OBS) predicting :P. To compute the new diag-
noses, Hou introduced the idea of candidates as follows: 2

De®nition 3.4. A candidate k for �SD;COMP;OBS [ fPg� is a set of com-
ponents such that k � D [ h, where D is a diagnosis for (SD, COMP, OBS)
predicting :P and h is an MHS for C, which is a collection of MCSs for
�SD;COMP;OBS [ fPg� resulting from P such that 8P 2 C, P does not
intersect P.

An immediate consequence follows from the de®nition above:

Corollary 3.5. A candidate k for (SD, COMP, OBS [ fPg) is an HS for the
collection of MCSs for (SD, COMP, OBS [ fPg).

Fig. 2. The relationships between the diagnoses before adding P and the diagnoses after adding P
depicted by: (a) Theorem 1.7 (1); (b) Theorem 1.7 (2) and (3); (c) Theorem 1.7 as a whole.

2 In [3], Hou did not give a formal de®nition for candidates, but he adopted the term ÔcandidateÕ
for the same use. However, we ®nd it helpful to single out the de®nition.
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Proof. Let k � D [ h. By Theorem 3.3 we know that D does not intersect some
MCSs for �SD;COMP;OBS [ fPg� resulting from P. Let C denote such
collection of MCSs. But we know that h is an HS for C. �

Next we show that every new diagnosis can be generated by some candidate.

Theorem 3.6. Let D be a diagnosis for (SD, COMP, OBS [ fPg) but not for
(SD, COMP, OBS ). Then there exists a candidate k for (SD, COMP, OBS
[ fPg) such that k � D.

Proof. By Theorem 1.7 (3), we know that D � Di [ Dj, where Di \ Dj �£ and
Di is a diagnosis for (SD, COMP, OBS) predicting :P. Since there must exist
some candidate k such that k � Di [ h, where h is an MHS for C, the col-
lection of MCSs derived from COMP-Di, all we have to do is prove that Dj � h.

Assume that Dj is not an HS for C, then there must exist some P 2 C such
that P \ Dj �£. Since Di does not intersect any P 2 C, D could not intersect
every MCS for �SD;COMP;OBS [ fPg�, a contradiction. Dj is also minimal,
for if not, D could not be minimal. �

As a matter of fact, the above result is equivalent to the theorem Hou [3,
Theorem 3.13] suggested for computing all new diagnoses based on a mea-
surement P: (1) if a diagnosis for (SD, COMP, OBS) intersects all MCSs for
�SD;COMP;OBS [ fPg� resulting from P, then it must be a diagnosis for
�SD;COMP;OBS [ fPg� as well; (2) if a diagnosis for (SD, COMP, OBS)
does not hit some MCSs, which form a collection C, for �SD;COMP;
OBS [ fPg� resulting from P, then we simply compute the candidates, i.e.,
the union of the diagnosis and the MHSs for the collection C, and replace the
diagnosis with all candidates which are not subsumed or duplicated by another
candidate or diagnosis already generated in case (1). However, in the proof of
the theorem, Hou did not show that every new diagnosis can be generated by at
least one candidate.

It is interesting to know why a candidate could be non-minimal. Let D be a
diagnosis for (SD, COMP, OBS) predicting :P, and h be an MHS for C, the
collection of MCSs which D does not intersect. Intuitively h patches the ÔholeÕ
that D misses. However, it is possible that h not only makes candidate
k�k � D [ h� intersect each MCS in C, but also introduce for D more ÔcontactÕ
with some MCS that D already touches. The following theorem states a suf-
®cient condition under which the candidate must be minimal.

Theorem 3.7. Let k be a candidate for (SD, COMP, OBS [ fPg) such that
k � Di [ h, where Di is a diagnosis for (SD, COMP, OBS) predicting :P and h
is an MHS for C, the collection of MCSs derived from COMP-Di. If P \ h �£,
where P is an MCS for (SD, COMP, OBS), then k is minimal.
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Proof. Since Di is a diagnosis for (SD, COMP, OBS), Di ÿ fcg does not in-
tersect some MCS P for (SD, COMP, OBS), where c 2 Di. If P is also an MCS
for �SD;COMP;OBS [ fPg� and P \ h �£; �Di ÿ fcg� [ h cannot intersect
P. Therefore k ÿ fcg cannot intersect P.

If P is not an MCS for (SD, COMP, OBS [ fPg), then by Theorem 3.1,
P must be a strict superset of some P 0, where P 0 is an MCS for
�SD;COMP;OBS [ fPg� resulting from P. Since Di ÿ fcg does not intersect
P 0 and P 0 \ h �£; �Di ÿ fcg� [ h cannot intersect P 0. Therefore k ÿ fcg
cannot intersect any such P 0. �

4. Hou's enhanced con¯ict recognition

In [3], Hou showed that to compute all new diagnoses for
�SD;COMP;OBS [ fPg�, one has to derive all MCSs from COMP-Di, where
Di is a diagnosis for (SD, COMP, OBS) predicting :P. The process of the
derivation requires a test for each subset of COMP-Di by calling a proposi-
tional calculus prover, therefore it needs substantial computation power. To
ease the situation, Hou showed that some Di can be safely ignored from the
derivation process by ®rst introducing the notion of equivalence between two
components and homogeneity between two diagnoses.

De®nition 4.1 ([3, Definition 4.1]). For the system (SD, COMP, OBS),
8c1; c2 2 COMP, c1 and c2 are de®ned to be equivalent if c1 2 P $ c2 2 P ,
where P is an MCS for (SD, COMP, OBS). This relation is indicated by
c1 � c2.

De®nition 4.2 ([3, Definition 4.2]). Two diagnoses D1 and D2 for (SD, COMP,
OBS) are de®ned to be homogeneous if 8ci 2 D1, there must exist some cj 2 D2

such that ci � cj, and 8cj 2 D2, there must exist some ci 2 D1 such that cj � ci.
This relation is indicated by D1 � D2.

Note that both the equivalence relation and the homogeneity relation are
symmetric, transitive and re¯exive. Next Hou showed that under certain
condition, a homogeneous diagnosis predicting :P can be safely removed from
the derivation process without losing any MCSs.

Theorem 4.3 ([3, Theorem 4.5]). Suppose that D1 and D2 are two diagnoses
for (SD, COMP, OBS) which predict :P and D1 � D2. If all MCSs for (SD,
COMP, OBS [ fPg) derived from COMP-D1 do not intersect D2, then all
MCSs derived from COMP-D1 and COMP-D2, respectively, are the same
ones.
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The above theorem provides an e�ciency enhancement: when two diag-
noses D1 and D2 predicting :P are homogeneous, if all MCSs derived from
COMP-D1 do not intersect D2, one can safely ignore D2, i.e., one does not
need to derive any MCS from COMP-D2. However, to exploit Theorem 4.3,
one has to maintain equivalence classes of components and homogeneity
classes of diagnoses when adding more measurements. The following theo-
rem points out the change of the equivalence relation when adding mea-
surement P.

Theorem 4.4 ([3, Theorem 4.7]). For every a¿ b for (SD, COMP, OBS), we still
have a¿ b for (SD, COMP, OBS [ fPg).

In other words, to maintain equivalence classes of components, one follows
the procedure listed below. 3

Procedure 4.5 [3, p. 307]. Update equivalence classes of components as follows:
1. For every a � b for (SD, COMP, OBS), if one determines a � b based on all

MCSs P1; . . . ; Pm for �SD;COMP;OBS [ fPg� resulting from P, then one
has a � b for �SD;COMP;OBS [ fPg�. If one determines a¿ b based on
P1; . . . ; Pm, then one has a¿ b for �SD;COMP;OBS [ fPg�.

2. For some a � b for (SD, COMP, OBS), if all P1; . . . ; Pm do not include both
a and b, then one keeps a � b for �SD;COMP;OBS [ fPg�.

3. For every a¿ b for (SD, COMP, OBS), one must have a¿ b for
�SD;COMP;OBS [ fPg�, and pay no particular attention to whether
a � b or a¿ b based on P1; . . . ; Pm.

4. For every new a � b determined by all MCSs P1; . . . ; Pm resulting from P, if
a and/or b do not occur in any previous equivalence class, namely a and/or b
are not the members of any old MCS, then one keeps a � b for
�SD;COMP;OBS [ fPg�.
To determine homogeneity classes of diagnoses, one simply compares each

diagnosis with another, and determines if Di � Dj [3, Section 5.1]. 4

5. Comments on enhanced con¯ict recognition

First we show some observations of De®nition 4.1.

3 Later in Section 5 we will simplify this procedure.
4 Later in Section 5 we will describe an improved procedure for updating homogeneity classes.
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Corollary 5.1. If a and b are two components such that no MCS for (SD, COMP,
OBS) contains them, then a � b for (SD, COMP, OBS).

The above corollary in e�ect states that each and every component is in
one equivalence class from the beginning, regardless whether it hits an MCS
or not. However, in [3] it is HouÕs intention to ignore all the components
which do not hit any MCS from being considered in any equivalence class.
This implication does not make any di�erence in deciding if two diagnoses are
homogeneous or not since all the components considered in such decisions
actually show up in at least one MCS. Nevertheless, if we follow De®nition
3.1 strictly Procedure 4.5 (2) will be rendered redundant, and at the same time
we have the following corollary derived directly from De®nition. 3.1 and
Theorem 4.4.

Corollary 5.2. An equivalence class will only split into small classes; it will never
grow.

Therefore there cannot exist any new a � b for �SD;COMP;OBS [ fPg�
described in Procedure 4.5 (4). This result makes Procedure 4.5 (4) redundant
as well. Consequently, Procedure 4.5 can be simpli®ed to consist of only two
rules as follows.

Procedure 5.3. Update equivalence classes of components as follows:
1. For every a � b for (SD, COMP, OBS), if one determines a � b based on all

MCSs P1; . . . ; Pm for �SD;COMP;OBS [ fPg� resulting from P, then one
has a � b for �SD;COMP;OBS [ fPg�. If one determines a¿ b based on
P1; . . . ; Pm, then one has a¿ b for �SD;COMP;OBS [ fPg�.

2. For every a¿ b for (SD, COMP, OBS), one must have a¿ b for
�SD;COMP;OBS [ fPg�, and pay no particular attention to whether
a � b or a¿ b based on P1; . . . ; Pm.
Now we show an observation concerning diagnoses and the equivalence

relation.

Corollary 5.4. Let D be a diagnosis for (SD, COMP, OBS). Then for all distinct
di; dj 2 D; di ¿ dj.

Proof. Assume that there exist distinct di; dj 2 D such that di � dj. Then both
di and dj must hit the same MCS for (SD, COMP, OBS), for if not, by De®-
nition 4.1 neither of them is a member of any MCS for (SD, COMP, OBS), and
D cannot contain them. Without the loss of generality, assume that Dÿ fdig
does not intersect some MCS P. But then P does not contain dj, and di ¿ dj, a
contradiction. �
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The above corollary then leads us to an useful property for updating the
homogeneity relation.

Corollary 5.5. If D1 � D2, then jD1j � jD2j.

Proof. Assume that jD1j < jD2j, then by De®nition. 4.2 there exist di 2 D1 and
distinct dj; dk 2 D2 such that di � dj and di � dk. But then we have dj � dk, a
contradiction. �

Corollary 5.5 suggests an improvement on ®nding homogeneous diagnoses:
we do not have to compare two diagnoses with di�erent sizes. A ¯ash of re-
¯ection then leads us to another would-be-useful corollary.

Corollary 5.6. Let n be the number of equivalence classes. Then all diagnoses of
size n are homogeneous.

Proof. From Corollary 5.4 we know that for a diagnosis D such that jDj � n,
every c 2 D comes from one of n di�erent equivalence classes. �

It seems that Corollary 5.6 could be used to improve the e�ciency of con¯ict
recognition, however, it is not the case. It is interesting to see why rarely the
size of a diagnosis reaches the magnitude of n. To be more speci®c, we shall
prove that only when we have the same number of equivalence classes and
MCSs, and no two MCSs intersect each other, does the cardinality of a di-
agnosis equal the number of equivalence classes. First we de®ne an equivalence
matrix as follows.

De®nition 5.7. Let MCS1;MCS2; . . . ;MCSm be m minimal con¯ict sets and
EC1;EC2; . . . ;ECn be n equivalence classes for (SD, COMP, OBS). An
equivalence matrix (EM) for (SD, COMP, OBS) at a particular moment is
de®ned as an n� m matrix such that the element ei;j at the intersection of the
ith row and the jth column is 1 if ECi �MCSj, otherwise ei;j is 0.

From this point we shall denote the ith row in an EM by Ri, the jth column
by Cj and the element at their intersection by ei;j.

LetÕs take an example to show a particular EM for a set of MCSs and ECs.

Example 5.8. Assume that we have three minimal con¯ict sets:

MCS1 � fc1; c2; c3g; MCS2 � fc1; c2; c4; c5g; MCS3 � fc4; c6g:

The corresponding equivalence classes are
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EC1 � fc1; c2g; EC2 � fc3g; EC3 � fc4g; EC4 � fc5g;
EC5 � fc6g; EC6 � fc7g:

Then we have the equivalence matrix EM as shown below.

An intuition follows immediately after the de®nition. Since a diagnosis is an
MHS for the collection of MCSs, we can ®rst choose a minimal set X of ECs
such that X ÔcoversÕ each MCS, i.e. for each MCS it intersects some EC in X,
then we pick up one element from each EC in X to form a diagnosis. The
procedure is described below.

Procedure 5.9. Derive diagnoses by simplifying an EM.
Let EM be an n� m equivalence matrix for EC1; . . . ;ECn and MCS1;

. . . ;MCSm.
1. Let R denote the ®rst row and X be an empty set.
2. If R has no entry with value 1, let R be the next row and return to step 2.
3. Add the corresponding EC of row R to set X.
4. For each entry with value 1 in R, delete the corresponding column. Also de-

lete row R itself.
5. If the simpli®ed EM still has elements, advance R to the next row and go

back to step 2.
6. For each EC in X pick an element and collect them to form a new diagnosis.

Note that in the above procedure we follow a strict top-down order to
simplify the equivalence matrix and therefore the ®nal set of diagnoses we have
is only a subset of the real solution. Though one can obtain the complete set of
diagnoses by furnishing the procedure with additional backtracking mecha-
nism, it su�ces for our purpose to prove our claim concerning Corollary 5.6.

Now we give an example showing how to derive (partial) diagnoses by
simplifying the EM of Example 5.8.

Example 5.10. Let EM denote the same equivalence matrix shown in Example
5.8. First we observe that the ®rst row has two entries with value 1: the ®rst and
the second entry. We then delete the ®rst and the second column together with
the ®rst row itself. The simpli®ed EM is shown below:
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0
1
0
1
0

266664
377775:

Next we observe that the second row of the simpli®ed matrix has an entry
with value 1, and delete the only remaining column. The corresponding ECs
we have chosen are fc1; c2g and fc4g. By picking one element from each of
the ECs we have chosen we form two diagnoses fc1; c4g and fc2; c4g. Note
that the diagnoses we have derived are only part of the complete set of
diagnoses.

Still we have other useful observations about De®nition 5.7.

Theorem 5.11. Let EM � fei;jgn�m be an equivalence matrix for (SD, COMP,
OBS). Then we have the following properties:
1. If column Cj contains only one entry ei;j such that ei;j � 1, then for all elements

ei;k with k 6� j; ej;k must be 0.
2. If row Ri has more then one entry with value 1, then for each column Cp and Cq

which has an entry with value 1 in row Ri, there must be element ex;p and ey;q

with value 1, where x 6� y 6� i.

Proof.

1. The assumption that there is an element ei;k with value 1 implies that
ECi �MCSk. Since we have MCSj � ECi based on the fact that the column
Cj contains only one entry ei;j such that ei;j � 1, we conclude MCSj �
MCSk, a contradiction.

2. Let Hp � fxjex;p � 1 in Cp where x 6� ig. Assume that Hp � Hq, then we
have MCSp �MCSq, a contradiction. �

Now we shall show that only when we have equal number of MCSs and ECs
and no two MCSs intersect each other do we have a diagnosis with its size
being equal to the number of ECs.

Theorem 5.12. Given m MCSs and n ECs, we have a diagnosis of size n iff m � n
and no two MCSs intersect each other.

Proof. ())Assume m 6� n, we have two cases shown below.
Case I. m < n. From Procedure 5.9 we know that every selected row must

have at least one column deleted. By selecting each row (EC) we then must
have at least n columns deleted, which is a contradiction.

Case II. m > n. Since every EC has to be selected during the simpli®cation
process, without loss of generality we can rearrange the order of columns so
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that the equivalence matrix is partitioned into an n� n diagonal matrix and an
n� �mÿ n� matrix, as shown below:

For column Cn�1; . . . ;Cm each column must have at least one entry with
value 1. In fact, by Property (2) in Theorem 5.11 we know that such column,
Cj�n� 16 j6m�, must have an additional entry with value 1, say entry ei;j.
Then again by Property (2) in Theorem 5.11 we know Ci�06 i6 n� must have
one additional entry ek;i with value 1, where k 6� i. Therefore in the left diagonal
matrix at least one row Rk has at least two entries with value 1.

Now consider Procedure 5.9. Since in the diagonal matrix there exists one
row which has at least two entries with value 1, by selecting this row at least
two columns of the diagonal matrix will be deleted. Therefore during the ®rst
�nÿ 1� row selections all columns in the diagonal matrix will be deleted. Now
we show that all columns in the right n� �mÿ n� matrix will also be deleted
before the last row selection could happen. Assume that column
Cj�n� 16 j6m� remains after the ®rst �nÿ 1� row selections and deletions.
Since we know that in the unsimpli®ed matrix element en;n � 1, by Property (2)
in Theorem 5.11 we know that at least one entry in Cj, say ek;j must have value
1, where k < n. Then Cj must have been deleted when selecting Rk, which is a
contradiction.

(() Since no two MCSs intersect each other, no two columns can have an
entry with value 1 in the same row. Furthermore, since m � n we have entries
with value 1 distributed in every row. This in turn implies that each column can
only have one entry with value 1, for if not the corresponding MCS intersects
another one. By Property (1) in Theorem 5.11 we then know that each row
contains only one entry with value 1, which guarantees that a diagnosis of size
n exists. �

Theorem 5.12 clearly shows that only when we have the same number of
MCSs and ECs and no two MCSs intersect each other could Corollary 5.6 be
useful. Note that the condition here is equivalent to that each MCS is an EC by
itself. In practical situations this rarely occurs since usually only a small subset
of all components is involved in the con¯ict sets. Therefore our claim con-
cerning Corollary 5.6 is veri®ed.

Having the results above we are now ready to give a complete procedure for
updating homogeneity classes of diagnoses. Although in Theorem 4.4 Hou has
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shown the dynamics of the equivalence relation when adding more measure-
ments, a corresponding result concerning homogeneity classes of diagnoses, as
shown below, is not presented.

Corollary 5.13. For every Di ¿Dj for (SD, COMP, OBS), we still have Di ¿Dj

for �SD; COMP ; OBS [ fPg�, where Di and Dj are two diagnoses predicting P.

Proof. Case I. jDij 6� jDjj. By Corollary 5.5 we know Di ¿Dj for �SD;
COMP;OBS [ fPg�.

Case II. jDij � jDjj. Since there must be a 2 Di and b 2 Dj such that a¿ b for
(SD, COMP, OBS), from Theorem 4.4 we know that a¿ b for �SD;COMP;
OBS [ fPg�, which implies Di ¿Dj for �SD;COMP; OBS [ fPg�: �

In summary, to update homogeneity classes of diagnoses, one follows the
procedure below:

Procedure 5.14. Let D be a new diagnosis after adding a measurement P.
Update homogeneity classes of diagnoses as follows:
1. For each homogeneity class, delete the diagnosis which predicts :P.
2. For every Di � Dj for (SD, COMP, OBS), determine if Di � Dj or Di ¿Dj

based on the updated equivalence classes.
3. For every Di ¿Dj for (SD, COMP, OBS), one must have Di ¿Dj for
�SD;COMP;OBS [ fPg�, and pay no particular attention to whether
Di � Dj or Di ¿Dj based on the updated equivalence classes.

4. If jDj � m 6� n, compare D with Dm, where jDmj � m, as follows: if 8di 2 D
there exists dj 2 Dm such that di � dj, then D � Dm. If no such Dm exists, D
forms a Singleton homogeneity class.

6. Conclusion

Hou [3] presented an e�cient incremental method for computing all di-
agnoses upon measurement. The method allows old diagnoses to be re®ned
to generate new diagnoses when a measurement is made, avoiding generating
new diagnoses from the scratch. We have presented some clari®cations to
HouÕs method. We described an elaborate picture of the relationships among
measurements, con¯ict sets and diagnoses. We also presented some com-
ments on the equivalence relation and HouÕs procedure for con¯ict recog-
nition.
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