
Reasoning about a Temporal Scenario in Natural Language

Benjamin Han
IBM Watson Research Center

1101 Kitchawan Road, Yorktown Heights, NY 10598, U.S.A.
dbhan@us.ibm.com

Abstract

Linguistically the temporal information of an event is
often introduced in an incremental and incomplete fash-
ion, and understanding a complete temporal scenario
requires both a flexible event-level representation and
a global model capable of capturing the interactions
among them. In this paper we describe a method of
constructing a Dependency Simple Temporal Problem
with Mixed Granularities (DGSTP) from a set of event-
level representations. The constraint network can then
be solved to obtain a set of possible times for the events
and to discover implicit temporal relationships among
them.

Introduction
The capability to deduce the temporal location of an event
described linguistically can benefit many real-world appli-
cations such as question answering, text summarization and
intelligence analysis. Like many phenomena in natural lan-
guage, however, temporal information about events are usu-
ally given throughout a discourse in a piecemeal fashion,
often incomplete. For example, consider the following sen-
tence in a news story published on Aug 16, 2006:

Karr admitted to being involved in the death of the 6-
year-old beauty pageant winner.

Lacking any additional information, one might assume that
the death had occurred in the same year as the publication
and be tempted to conclude that the victim was born in year
2000. But if the reader is given another sentence from the
same story:

Authorities are examining John Mark Karr’s writings
for clues that might link him to the death of JonBenet
Ramsey 10 years ago.

It is then possible to conclude that the victim was born in
1990, assuming that the two death events described are iden-
tical. These observations can be summarized using the fol-
lowing fomulae:

t1 B {t0 + |6year|} (1)
t2 B {{2006year, aug, 16day} − |10year|,= t1} (2)

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Each formula encodes the local temporal information of a
death event: (1) defines temporal variable t1 to be a time
point 6 years after the birth of the victim (t0), and (2) defines
variable t2 to be a point 10 years before the publication date.
The assumption that the two events are identical is then ex-
plicated as a conjunctive constraint in the second half of (2)
(= t1) - this assumption can come from an automatic event
coreference system, or simply come from a human analyst
performing a what-if experiment.

In the above we have captured the global information of a
temporal scenario in a set of time formulae, and all there is
left is a way to systematically solve for the variables. In this
paper we will describe a method for solving such formulae
by constructing a temporal constraint problem called Depen-
dency Simple Temporal Problem with Mixed Granularities
(DGSTP), where temporal relations among events are en-
coded as temporal constraints among the temporal variables.
The resulting constraint network can then be solved to deter-
mine its consistency, to obtain a set of possible times for the
variables, and to discover other valid temporal relationships
among the variables.

In the next section we will first make a brief introduction
on our event-level temporal representation called TCNL. We
will then describe in the following three sections a progres-
sion of three classes of temporal constraint problems: Tem-
poral Constraint Satisfaction Problems (and in particular its
subclass STP), GSTP as an extension to STP with mixed
granularities, and the further extension DGSTP. In particu-
lar the core solution procedures are described in the section
Modeling Temporal Scenarios, and the methods for translat-
ing TCNL formulae into a DGSTP, our tool for modeling a
temporal scenario, are discussed in the section From Formu-
lae to Dependency GSTP. Finally we conclude the paper and
suggest future work in the final section.

Event-Level Representation
Temporal information of an event can be conveyed linguis-
tically via verbal tenses, temporal expressions (“10 years
ago”), prepositional words (“before” and “during”) and as-
pectual relations (“admitted to being involved” where the ad-
mission happened after the involvement). We encode this
information using an arithmetic-like formalism called Time
Calculus for Natural Language (TCNL), where temporal in-
formation is viewed as constraints to the possible times an

event can take place. In the recent years TCNL has been
successfully applied to the task of normalizing temporal ex-
pressions found in emails (Han, Gates, and Levin 2006b),
newswire and web texts (Florian et al. 2007). In this sec-
tion we will provide a concise review of TCNL, but readers
are recommended to refer to (Han, Gates, and Levin 2006a)
and (Han 2008) for a more detailed description.

Calendar Models
The foundation of TCNL is a constraint-based calendar
model providing a repertoire of temporal concepts for writ-
ing time formulae. There are two kinds of concepts: tem-
poral units (e.g., month) and temporal values (e.g., feb),
and each unit can take on a set of fully ordered values. The
entire calendar model is therefore a constraint satisfaction
problem (CSP) (Dechter 2003), with each temporal unit act-
ing as a variable, and the modeling task involves designing
constraints among a set of units (e.g., February in a non-leap
year cannot have 29 days).

Temporal units in the calendar model are ordered by two
relations: the measurement relation and the periodicity rela-
tion. Unit ui is measured by u j, written as u j ≤̇ ui, if every
value of ui can be mapped to a set of consecutive values of u j
on a time line; e.g., month is measured by day. A unit u j is
periodic in ui, written as u j � ui, if u j is measured by ui and
iterating through the values of u j does not advance the value
of ui;1 e.g., day (days of a month) is periodic in month but is
not periodic in week, because iterating through all possible
values of days of month surely advances the time from one
week to another. These two relations play a crucial role in
defining the concepts of granularity and the anchoring status
of a time entity.

TCNL Formulae
Built on top of the constraint-based calendar model is a
way of representing temporal semantics via formulae. Ev-
ery TCNL formula is of one of the three possible types:
coordinates (�), quantities (�) and enumerations (�).2 A
coordinate represents a time point and is essentially a set
of assignments to the temporal units of a calendar model;
e.g., {fri, 13day} represents the under-specified expression
“Friday the 13th”.3 A quantity represents a certain num-
ber of temporal units or coordinates; e.g., |2day| means “2
days” and |2{fri}| represents “two Fridays”. Finally an enu-
meration represents a set of coordinates such as intervals
([{wed} : {fri}] for “Wednesday to Friday”) and discontigu-
ous sets ([{wed}, {fri}] for “Wednesday and Friday”). The
basic idea behind a TCNL formula is to translate whatever is
said in an expression into a constraint satisfaction problem
in the hope of inferring more information.

1This is a simplified definition – the complete definition in-
volves concepts of periods and the immediate measurement rela-
tion (Han 2008)

2We use {·}, | · | and [·] respectively to mark the formulae of
these types.

3Subscript dow (day-of-week) is dropped for fri since there is
no ambiguity.

Associated with a formula f is its granularity: it is the set
of minimal units (under the measurement relation) appearing
in f :

g(f) = min({u|u ∈ f }) (3)

For examples g({2006year, aug}) = {month} (because
month ≤ year) and g(|2day|) = {day}. We also say g(f1) ≤
g(f2) if for every unit ui ∈ g(f1) we can find u j ∈ g(f2) such
that ui ≤̇ u j. Granularity of a coordinate can also be used
to check the “anchoring” status of a coordinate. Intuitively
{2007year, may} (“May 2007”) is anchored in the sense that
it can be identified as a unique interval on a timeline, but
{may} is not. This distinction is defined as follows: a coor-
dinate c is anchored if for every u1 ∈ g(c) there exists a path
〈un, . . . , u1〉 such that πui (c) is defined, where ui � ui+1 for
i = 1 . . . (n − 1) and un is a maximal unit under the mea-
surement relation. E.g., c = {2007year, may} is anchored be-
cause month ∈ g(c), πmonth(c) = may and πyear(c) = 2007,
month� year and year is a maximal unit under the mea-
surement relation.

Operators and Relations
The representational power of TCNL mostly comes from its
set of infix operators and relations (see Table 1 and 2). Each
of them has a set of type requirements stipulating the types
of its operands; e.g. in { + |1day|} (“the next day”) the left
operand ‘ ’ (a temporal variable representing the temporal
focus) must be of type � or �, the right operand |1day| must
be of type �, and the entire term is of type �. Each opera-
tor also ensures the result is at the granularity of one of its
operands. The operators ‘+’/‘−’ implement a granularity-
sensitive arithmetic: the granularity of the left operand (opl)
will first be converted to that of the right operand (opr) be-
fore the addition/subtraction, therefore the result is at the
granularity g(opr); e.g., {{2006year, feb, 1day}+|2month|} is
evaluated to {2006year, apr}, with the information at day
granularity eliminated. The selection operator ‘@’ picks
time points from opr based on the constraints given by opl,
therefore the result granularity is g(opl). Finally the merg-
ing operator ‘&’ merges the non-conflicting constraints from
opl to opr (result granularity is g(opl)) and the proximity op-
erator picks the nearest time point around opl that satisfies
the constraints given in opr (result granularity is g(opr)).

Temporal Variables
Temporal variables in TCNL serve two purposes: they are
used to represent contextual information and to encode in-
teractions among formulae. There are two kinds of variables
in TCNL: the pre-defined variables speech time ‘now’ (of
type �) and temporal focus ‘ ’ (of type � or �), and user
variables (can be of type � or �). Formulae making refer-
ences to only the pre-defined variables are always easy to
evaluate – we just need to substitute the variables with their
denotations and evaluate away4. On the other hand, formu-
lae using user variables are not always straightforward; e.g.,

4The denotation of ‘ ’ needs to be determined by an external
module.

Operator Semantics Type
requirements

Result granularity Example

+ and - Arithmetic (� | �) × �→ � g(opr) { + |1day|} (“the next day”)
@ Selection � × (� | �)→ �

(� | �)×(� | �)→
�

g(opl) {|2{sun}|@ {now + |0{may}|}} (“the 2nd Sunday
this May”)
[{9hour}@ [{now + |0{wed}|} : {fri}]] (“9am on
this Wednesday, Thursday, and Friday”)

& Merging � × �→ � g(opl) {now & {now + |1year|}} (“this time next year”)
∧ Proximity (� | �) × �→ � g(opr) {{|1{mon}|@ {now + |0sep|}} ∧ {weekend}} (“this

Labor Day weekend”)

Table 1: Operators in TCNL; opl/opr is the left/right operand.

Relations Semantics Type
requirements

Examples

<, <=, =, >=, > before, before or equal-to, equal-to, af-
ter or equal-to, and after

� × � {< {2006year, may}}
(“sometime before May 2006”)

b , s , d , de , f , di before, starting, during, during/equal,
finishing, and after; de B(s or d or
f)

� × � {d [{now + |0day|} : |3day|]}
(“sometime during the 3-day period starting from
today”)

b , s , f , bi before, starting at, finishing at, and after � × � [s now] (“from now on”)
b , m , o , s , d , f , = ,
fi , di , si , oi , mi , bi

See (Allen 1984). � × �

Table 2: Selected relations in TCNL.

{t0+|6year|} is resolvable only when t0 is defined with a re-
solvable formula t0 B {1990year} (or we say when t0 is re-
solvable). For a unresolvable formula the process of variabi-
lization kicks in to automatically introduce a variable repre-
senting the formula (e.g., t1 B {t0+|6year|}), and the con-
straints between this variable and the others in the formula
can then be extracted for constraint solving (described later).

Temporal Constraint Satisfaction
As motivated in Introduction, to fully understand a tem-
poral scenario it is often insufficient to consider events in-
dividually. Instead we will capture the temporal relations
among events by way of constructing a variation of Tempo-
ral Constraint Satisfaction Problems (TCSP). This section
introduces the basic concepts behind TCSP and its subclass
STP.

A TCSP is a particular kind of constraint satisfaction
problems (Dechter, Meiri, and Pearl 1991): it contains a
set of temporal variables {t1, . . . , tn} with continuous do-
mains and a set of unary/binary constraints. A binary con-
straint between variable ti and t j must be formulated as a dis-
junction of allowed time differences between the variables:
(a1 ≤ t j − ti ≤ b1) ∨ . . . ∨ (ak ≤ t j − ti ≤ bk) (also written
as a set of disjunctive intervals {[a1, b1], . . . [ak, bk]} and is
said to have a scope {ti, t j}), and a unary constraint on ti is
encoded as a binary constraint between ti and t0, which is an
artificially introduced variable with a singleton domain {0}.
A tuple (a1, . . . an) is a solution to a TCSP if the assignment
(t1 = a1, . . . tn = an) violates no constraint, and a TCSP is
consistent if there exists at least one solution to the problem.

Solving a TCSP is a NP-hard problem. However if no
disjunction is allowed in any constraint, solving the problem
- a Simple Temporal Problem (STP) - takes only polynomial

time. This is done by converting an STP to its corresponding
“distance graph”: for a constraint [ak, bk] from variable ti to
t j, we add an edge (ti, t j) of distance bk and an edge (t j, ti) of
distance −ak to the graph. We can then run Floyd-Warshall’s
all-pairs-shortest-paths algorithm on the distance graph to
derive the minimal but equivalent STP (takes O(n3) time): a
constraint from ti to t j is [a′k, b

′
k] when the shortest distance

from ti to t j (or t j to ti) is b′k (or −a′k). The STP is consistent
if no negative cycle is detected, and a backtrack-free search
can be used to assemble a solution.

Despite its no-disjunction-allowed restriction, STPs are
attractive in its simplicity and efficiency. We shall therefore
focus on STPs in the rest of the work.

Modeling Temporal Scenarios
STPs have many deficiencies for our purpose due to their
disconnect from natural language. For one they do not ac-
commodate temporal constraints expressed in mixed granu-
larities (e.g., [10, 20]day and [5, 10]month). Another prob-
lem is their use of the artificial “origin of time” (t0) to trans-
form unary constraints into binary ones: this approach is not
applicable to many unary constraints often encountered in
natural language, such as “variable t2 must be a Tuesday.”

In this section we describe GSTP as an extension to STP
that allows mixed granularities. Our formulation is based
on (Bettini, Wang, and Jajodia 2002) but specifically de-
signed to work with our event-level representation TCNL.

Formulating the GSTP
In our version of GSTP each variable can have a set of unary
constraints specified in the form of a (usually unanchored)
coordinate, and the domain of the variable contains all possi-
ble anchored coordinates satisfying the constraints (e.g., the

domain of variable t2 in Fig. 1 contains all possible Tues-
days). Each binary constraint tc in a GSTP is colored by
a temporal unit u, and we overload the granularity function
in (3) to give g(tc) = {u}. The granularity of a variable t,
on the other hand, is determined by its unary constraints uc
(a coordinate) and TC, the set of binary constraints whose
scopes include t:

g(t) = glb((
⋃

tci∈TC

g(tci)) ∪ g(uc)) (4)

glb(·) is a function returning the greatest lower bound unit of
the input set under the measurement relation. For example
in Fig. 1 we have g(t3) = glb(month, day) = {day} (recall
day ≤̇ month).

In an STP a qualitative constraint such as ti <= t j can be
represented by converting it into its quantitative counterpart
[0,∞]. In a GSTP this can be done similarly with special
care taken to infer appropriate granularity for the resulting
constraints: for a qualitative constraint tc whose scope is
{ti, t j}, we add a quantitative constraint of granularity {uk}

for every uk ∈ min(g(ti) ∪ g(t j)). E.g., if g(ti) = {day} and
g(t j) = {hour}, we can convert ti <= t j into [0,∞]hour,
or ti < t j into [1,∞]hour. It can be easily shown that this
conversion will ultimately lower every variable weakly con-
nected by qualitative constraints into a common granularity
(because of (4)), but it will not alter the granularity of any
of the other variables. This allows us to use the following
one-pass procedure for inferring granularity in a GSTP with
both quantitative and qualitative constraints:
Procedure 1 (Granularity inference).
1. For every variable t compute g(t) according to (4) if pos-

sible; if not (because t has no unary constraint and partic-
ipates no quantitative constraint), assign a default granu-
larity to g(t).

2. For a set of variables T weakly connected by qualitative
constraints, assign g(t j) = glb(

⋃
ti∈T g(ti)) for all t j ∈ T .

Constraint Propagation
Using a coordinate as the implicit domain of a variable has
two consequences: the domain is no longer contiguous, and
the propagation processes of the unary and the binary con-
straints are now separate. The first consequence also im-
plies that disjunctions are back to the GSTP, thus break-
ing the decomposability that enables a backtrack-free search
for solutions (Dechter, Meiri, and Pearl 1991). Assuming a
GSTP with only quantitative constraints (i.e., all qualitative
constraints are already quantified), we use an approximate
method similar to the one described in (Bettini, Jajodia, and
Wang 2000) to propagate the binary constraints (pictorially
depicted in Fig. 1):
Procedure 2 (Approximate constraint propagation).
1. We first decouple a GSTP into single-granularity STPui

where {ui} is a granularity.
2. We then run the all-pairs-shortest-paths algorithm on each

STPui to derive its minimized counterpart. If any nega-
tive cycle is detected, stop the algorithm and report the
inconsistency. E.g., in Fig. 1 the constraint [30, 60]day in
STPday is produced by this step.

3. For every STPui we convert its constraints into granular-
ity {u j} and add them into STPu j , meaning intersecting a
preexisting constraint between the same pair of variables
with the new one. If any constraint is refined as a result,
we go back to the previous step. E.g., in Fig. 1 the con-
straint from t2 to t3 in STPmonth was [−∞,∞] before this
step, and is refined to [1, 2]month afterwards. We will
come back to the granularity conversion of a constraint
later.

4. Finally we conjoin the constraints of all possible granu-
larities and produce a propagated GSTP.
Procedure 2 is an approximation because the granularity

conversion done in the step 3, although guaranteeing no loss
of solutions, could unduly enlarge the set of solutions. The
advantage of this procedure is its polynomial time complex-
ity: if we have m different granularities and n variables, the
overall runtime is O(mn2I(m + n)) where I is the number of
the iterations. For GSTP with single granularity this reduces
to O(n3), otherwise the loop can run at maximum mn2w iter-
ations (w is the maximum width of any constraint after the
first iteration). Although in practice the procedure seldom
runs longer than a few iterations, when quantifying a quali-
tative constraint we replace ∞ with a large number to avoid
this potentially infinite runtime.

Granularity Conversion
The step 3 of Procedure 2 converts a constraint [a, b]u1 into
[a′, b′]u2 where u1 and u2 are two different temporal units
and a ≤ b, b > 0. The conversion must satisfy one crite-
rion: if an assignment satisfies [a, b]u1, the same assignment
must also satisfy [a′, b′]u2 (i.e., no loss of solutions). E.g.,
in Fig. 1 the constraint [0, 1]month is a valid conversion of
[10, 20]day since all possible assignments of t1 and t2 with
difference between 10 to 20 days must also fall within a 0-
to 1-month window. It is therefore clear that we prefer a
“tighter” conversion since the target constraint can be made
arbitrarily lenient to let in more assignments.

In general this conversion task can be very difficult be-
cause temporal granules do not always have fixed sizes. As
an example, we could argue that in Fig. 1 [1, 2]month is not
the tightest conversion possible for [20, 40]day from vari-
able t2 to t3, since the difference between March 1, 2006 and
April 9, 2006 is clearly less than two months. Our approach
is only a result of compromise: it is a constant-time oper-
ation and it requires much simpler engineering in terms of
calendar modeling.

We first define two utility functions minsize(ui, u j) and
maxsize(ui, u j) where ui and u j are two temporal untis and
u j ≤̇ ui: the functions return the min/max number of con-
secutive granules of u j that can overlap on a timeline with
a granule of ui. E.g., minsize(month, day) = 28 and
maxsize(month, day) = 31. The conversion is then given
as follows (u = glb(u1, u2)):

b′ =
⌈
(b + 1) ·maxsize(u1, u) − 1

minsize(u2, u)

⌉
a′ =
⌊
(a − 1) ·minsize(u1, u) + 1

maxsize(u2, u)

⌋
(if a > 0)

➡

➡

decouple into single-
granularity STPs

Converting
constraints
between

granularities

conjoin constraints
of all granularities

if any constraint is
revised, go back

O(m·n3)

O(m2·n2) O(m·n2)

O(m·n2)

m: # of granularities
n: # of variables

Maximal # of iterations = m·n2·w where w is the max. width of a constraint

t1

t2

t3

[2, 2] month

[20, 40] day

[10, 20] day

t2:{tue}

t1:{2006year, feb, 1day}
t1

t2

t3[20, 40] day

[10, 20] day t1

t3

[2, 2] month[30, 60] dayt2:{tue}

t1:{2006year, feb, 1day}

t1

t2

t3[20, 40] day

[10, 20] day

[30, 60] day

t1

t2

t3

[2, 2] month

[1, 2] month

[0, 1] month

t2:{tue} t2:{tue}

t1:{2006year, feb, 1day}

t1

t2

t3

[2, 2] month

[1, 2] month

[0, 1] month

[20, 40] day

[10, 20] day

[30, 60] dayt2:{tue}

t1:{2006year, feb, 1day}

Run All-Pairs-Shortest-
Paths Algorithm on

each STP

Figure 1: Approximate method for constraint propagation on a GSTP.

Note when a ≤ 0 we can simply swap the two bounds and
treat −a as an upper bound.

Assembling Solutions
After constraint propagation is done on a GSTP and no in-
consistency is reported, we still need to check if any solution
exists to confirm its consistency. For certain applications it
is also desirable to find some or all solutions of a GSTP. For
these purposes we use a simple backtracking method for as-
sembling solutions of a propagated GSTP:
Procedure 3 (Backtracking search for solutions of a propa-
gated GSTP).

1. For each variable ti compute its initial domain.
2. From a list of unassigned variables pick ti.
3. Pick the next possible anchored coordinate from the do-

main of ti at its inferred granularity; if it is not possible,
backtrack to the previously assigned variable as the new
ti and re-run this step; if no previously assigned variable
is available, stop.

4. For each possible granularity and variable t j , ti, up-
date the domain of t j based on the constraint from ti to
t j in that granularity. If the domain of t j should become

empty, return to 3. Note that when updating domains we
use the TCNL operator ‘+’ and invoke granularity conver-
sion on coordinates if necessary. Continuing the exam-
ple given in Fig. 1, assuming t1 is already assigned with
{2006year, feb, 1day} and we want to update t3 using the
constraint [2, 2]month, we first compute {t1 + |2month|} =
{2006year, apr}. We then convert the granularity of the
result to g(t3) = {day} and derive the new bounds
{2006year, apr, 1day} and {2006year, apr, 30day}.

5. ti is now assigned; if there is no unassigned variable left,
report all possible assignments as solutions, then back-
track to the previously assigned variable as the new ti and
return to 3. Otherwise return to 2.

Note that the ordering of the unassigned variables in step 2
can greatly affect the performance of the procedure. One
useful ordering is to pick a more constrained variable with a
smaller domain earlier in the search process. For example, in
Fig. 1 we use the ordering t1 → t2 → t3: after assigning the
only possible coordinate {2006year, feb, 1day} to t1 we up-
date the domain of t2 to contain only {2006year, feb, 14day}
and {2006year, feb, 21day} and the domain of t3 to contain
only {2006year, apr, 1day} and {2006year, apr, 2day}. Later

iterations will eliminate {2006year, feb, 14day} from the do-
main of t2 and give us two solutions in total.

From Formulae to Dependency GSTP
We are now left with the final task of translating a set
of TCNL formulae into a GSTP. Naturally this translation
needs to deal with the various syntactic and semantic de-
vices provided by TCNL. An immediate complication is that
several of the TCNL operators – such as the proximity op-
erator ‘@’ – have semantics not expressible in the form of
a time-difference constraint. We will propose an extension
Dependency GSTP (DGSTP) to address this problem.

At a higher level, since our GSTP extension only al-
lows variables with coordinate domains to be present, while
TCNL allows variables to be of type � or �, we need to
re-interpret a constraint to eliminate any possible variable
of type � in its scope. A corollary is that we need to infer
variable types first - this is our next topic below.

Variables and Their Types
Variables in a TCNL formula can be of type � or �. If a
variable is defined explicitly, it must have the same type as
its definition (e.g., in t B {t0 + |6year|} we have type(t) = �).
Otherwise its type can be inferred from the contexts as fol-
lows. For each context the variable is in, if it is used as an
operand to an operator/relation, the context allows the types
compatible with the requirements of the operator/relation
(see Table 1 and 2), otherwise we assume the context allows
both types. After considering all of the contexts, the variable
is assigned the type that is compatible to all: if both � and �
are compatible, � is picked, but if no compatible type can be
found, a type mismatch is detected and no more processing
is attempted. E.g., in {{15hour}@ t} we have type(t) = �,
but in formulae {t, 15hour} and [d t] we assign type(t) = �.

A slight complication for determining type(t) arises when
variable t is involved in relation ‘=’ (both a � × � and an
� × � relation): if we have t = t′ and type(t) = �, we will
assign type(t′) = � as well. This “type propagation” can be
easily done over the closure of the ‘=’ relation.

Having decided types for variables, for every variable t
of type � we then create two bound variables t−/t+ (of type
�) to represent its lower/upper bound, and we also add a
constraint t− ≤ t+ to relate the two. Our goal later in the sec-
tion Constraint Re-interpretation will be replacing all occur-
rences of t (of type �) in constraints with its bound variables
and re-interpreting the constraints.

Translating Coordinates
A coordinate formula in TCNL can pack a lot of infor-
mation. Among the terms that can appear inside a co-
ordinate are temporal values (e.g., {feb}), embedded co-
ordinates (e.g., {{feb}, 1day}), terms with operators (e.g,
{now + |6year|}) and relations (e.g., {< {2006year, may}}). A
unresolved variable can appear almost at any place where a
coordinate/enumeration is expected. Below we will discuss
each of the possibilities.

Translating a term with operator + or − is straightforward:
if a term t j+q (or t j−q) appears in the formula represented by

ti and g(q) = {u}, we add a constraint [q−, q+]u from variable
t j to ti (or from ti to t j, respectively), where q−/q+ is the
lower/upper bound of q. E.g., for t1 B {t0 + | <= |6year||} we
add a constraint [0, 6]year from t0 to t1.

We call the terms containing the other operators (@, &
and ∧) dependency terms (or d-terms for short) since there
are “dependencies” among the involved variables that can-
not be made explicit by a time-difference constraint. As a
simplification TCNL only allows resolvable formulae to be
used as the left operand for the operators ‘@’ and ‘&’ and
the right operand for the operator ‘∧’. From these terms
we can still add useful time-difference constraints based
on the semantics of the operators, thus making it possi-
ble for Procedure 2 to narrow down the domains of the in-
volved variables. We can also inversely infer the possible
values of a unassigned variable if some of the other vari-
ables in these terms are assigned. Consider the formula
t B {|2day|@ [t1 : t2]} (the second day between t1 and t2,
inclusive): obviously the constraints t1 ≤ t ≤ t2 and t1 ≤ t2
must be true, and if we know t2 is May 2, 2006 then t1 must
be on or before May 1, 2006 and t must be on or before
May 2, 2006. We will defer the discussion on the inverse
inference to the section Solviong DGSTP.

Fig. 2 shows the three allowed d-terms and their accompa-
nied time-difference constraints: q and c are a quantity and
coordinate constant respectively, and each d-term is repre-
sented by a new variable d. For all of the operators the d-
terms are obviously equal to t at the respective result gran-
ularity. For the merging operator ‘&’, we constrain t′ to be
equal to the result of the operator at the granularity lub(g(c)∪
g(t′)) (lub(·) returns the least upper bound unit of the input
set under the measurement relation) based on the intended
use case of the operator; e.g., in t B {{now+|0day|}&t′} for
“this day in that week”, we constrain the d-term with t′ via
constraint [0, 0]week (lub({day}∪ {week})). For the proxim-
ity operator ∧ we specify a “search window” by introducing
the constraint [−w,w]uw between the d-term and t′, because
the output of such a term cannot be constrained otherwise;
e.g., {t′ ∧ {fri, 13day}} (the closest Friday the 13th relative
to t′) can be earlier or later than t′ depending on what t′ is
resolved to.

Translating a term with a � × � relation (Table 2) is
straightforward since we can always quantify qualitative
constraints using Procedure 1. Translating terms with �×�
relations is also easy since we can reduce them into a con-
junctive set of � ×� relations; e.g., t B {d [t1 : t2]} is equiv-
alent to t B {> t1, < t2}.

For terms of sole variables such as t B {t′, . . .}, they have
different semantics compared to t B {= t′, . . .}: the former
uses t′ to build up t while the latter declares both variables to
be equivalent. They also contribute different constraints: the
former gives a quantitative constraint [0, 0]ui for every ui ∈

g(t′), but the latter gives a qualitative constraint t = t′, which
will result in a granularity propagation that brings both g(t)
and g(t′) to a common granularity according to Procedure 1.

Translating Enumerations
Given an enumeration formula [. . . , t′, . . .] where t′ is a un-
resolved term, from above we know a variable t of type �

t

d t1

t2 t

d t'

t

d t'
≤

g(c) = {u1,...}

[0,∞]u

[0,∞]u [0,0] u

[0,0]u [0,0] u1 ...

...

[0,0] u1 ...

[-w,w] uw

g(c) = {u1,...}g(q) = {u}

t ! {d ! q@ [t1 : t2], . . .} t ! {d ! c & t′, . . .} t ! {d ! t′ ∧ c, . . .}

lub(g(c)∪g(t')) = u

Figure 2: Converting dependency terms into constraints; lub(·) returns the least upper bound unit of the input set under the
measurement relation.

will be introduced via the variabilization process together
with two bound variables t−/t+. If type(t′) = �, we can ac-
count for the term by introducing constraints t− ≤ t′ and
t′ ≤ t+; otherwise we produce constraints t− ≤ t′− and
t′+ ≤ t+ if type(t′) = �.

For terms that use the selection operator @, we will in-
troduce constraints relating the bound variables of the host
formula and those of the right operand of the operator, i.e.,
for t B [c@ t′, . . .] where c is a coordinate constant and
type(t′) = �, constraints t− ≤ t′− and t′+ ≤ t+ will be intro-
duced.

Finally, terms using any relation involving type � in Ta-
ble 2 can easily be made to use a conjunctive set of � × �
relations; e.g., t1 B [b t2] (t2 is of type �) is equivalent to
t+1 B {< t−2 }.

Constraint Re-interpretation
When following the instructions given above to translate
TCNL formulae into constraints, we need to make sure ev-
ery variable appearing in the scope of a constraint is of type
�, since the final DGSTP only allows variables of type �.
E.g., we should translate t B {< t′} into a constraint t+ < t′−
(instead of t < t′) if both variables are of type �. In gen-
eral, when adding a constraint with scope {t, t′}, we should
re-interpret the constraint based on type(t) and type(t′) so no
enumeration variable can slip into the scope. We list below
the re-interpretations needed when type(t) = type(t′) = � (a
and b are integers and u is a temporal unit):

t < t′ → t+ < t′− (5)
t ≤ t′ → t− ≤ t′− and t+ ≤ t′+ (6)
t = t′ → t− = t′− and t+ = t′+ (7)

t − t′ ∈ [a, b]u→ t− − t′+ ∈ [a, b]u (8)

Note that (5) is essentially the � × � relation b , and (6) is
equivalent to the disjunction (b ; m ; o ; s ; f ;=). Also, (8) in
effect disallows overlapping between t and t′, and with (7)
they will force t− = t+ = t′− = t′+ when a = b = 0. This
might seem strange, but note that (8) is added only when a
quantitative constraint is introduced between t and t′, which
intuitively asserts that the two enumerations should never
overlap.

If type(t) = � but type(t′) = �, and t′ is not a bound

variable, the re-interpretations are

t < t′ → t+ < t′

t ≤ t′ → t+ ≤ t′

t > t′ → t′ < t−

t ≥ t′ → t′ ≤ t−

t − t′ ∈ [a, b]u→ t− − t′ ∈ [a, b]u

Note that t = t′ can never occur because of the type propa-
gation described earlier. If the types of both variables are the
same but t′ is a bound variable, the re-interpretations include
the above plus

t = t′ → t− = t′ (if t′ is a starting bound) (9)
t = t′ → t+ = t′ (if t′ is an ending bound) (10)

Note that (9) is equivalent to (t′ s t) and (10) is equivalent to
(t′ f t).

Solving DGSTP
Solving a DGSTP is almost identical to solving a GSTP:
we first run Procedure 2 to narrow down the domains of the
variables, we then run a revised backtracking search based
on Procedure 3 to assemble the solutions. This new search
method uses both propagated constraints and d-terms to up-
date variable domains: if a variable is assigned in a d-term,
we can inversely infer the possible values for the other. Here
we will only describe how the inverse inference procedure
works for the major cases in the d-terms of operator @ and
∧.

Consider the d-term d B {|nx|@[t1 : t2]} where n is an
integer constant and x is a unit or a coordinate. If only d
is assigned, we can infer that {−|(n + 1)x|@{<= d}} < t1 ≤
{−|nx|@{<= d}} and t2 ≥ d; e.g., if d is Sunday, Jan 21, 2007
in d B {|2{sun}|@[t1 : t2]}, we should have Jan 7, 2007 < t1 ≤
Jan 14, 2007 and t2 ≥ Jan 21, 2007. If only t1 is known, we
can easily compute d = {|nx|@{>= t1}} and t2 ≥ d. If only
t2 is known, than we should have d = {−|1x|@{<= t2}} and
{−|(n + 1)x|@{<= d}} < t1 ≤ {−|nx|@{<= d}}.

Consider the d-term d B {t∧c} where c is a coordi-
nate constant. If only d is known, we can find c1 =
{−|2c|@{<= d}} and c2 = {|2c|@{>= d}}, and compute δ1
and δ2 as the distance between c1 and d and between d and
c2, respectively. We can than infer that {d − |bδ1/2cu|} ≤ t ≤
{d + |bδ2/2cu|} where u is the greatest lower bound of g(c).

E.g., if d B {t∧{sun}} and d is Jan 21, 2007, we should have
Jan 18, 2007 ≤ t ≤ Jan 24, 2007.

We now present the revised search procedure:

Procedure 4 (Backtracking search for DGSTP). Replace
the step 4 in Procedure 3 with the following:

4′ For each possible granularity and variable t j , ti, update
the domain of t j based on the constraint from ti to t j in
that granularity. Additionally, if ti is a variable appearing
in a d-term, update the domains of the other variables in
the d-term using the inverse inference procedure. If any
of the updated domains should become empty, return to 3.

Conclusion and Future Work
In this paper we have described a method for modeling
a temporal scenario via Simple Temporal Problems with
Mixed Granularities (GSTP). More specifically, we capture
event-level semantics using a compact representation Time
Calculus for Natural Language (TCNL) and construct a De-
pendency GSTP (DGSTP) from a set of TCNL formulae
by: (1) creating variables for unresolved formulae and in-
ferring the variable types; (2) translating the formulae into
constraints whose scopes contain only coordinate variables;
and (3) inferring variable granularities and quantifying qual-
itative constraints accordingly (Procedure 1). We can then
propagate the constraints of the resulting DGSTP to narrow
down the variable domains (Procedure 2), and search for
the solutions by using a backtracking search method (Pro-
cedure 4). Finally, qualitative relations can be discovered by
inspecting the propagated domains of the relevant variables.

There are at least three parameters in our method that are
open for tuning. In the granularity inference procedure (Pro-
cedure 1) a default granularity is assigned to a variable if its
granularity cannot be inferred from its context. In such cases
if we know the typical durations of the events associated to
the variable (such information is learned in (Feng, Mulkar,
and Hobbs 2006)), we could assign a more sensible granu-
larity to it. A second parameter is the large number we use to
replace∞when quantifying a qualitative constraint (to avoid
the theoretical infinite run-time of Procedure 2). Again we
might be able to set this number based on the granularities
or the other contextual information of the involved variables.
Similarly, contextual information might also be useful in set-
ting the width of the search window imposed in the d-term of
the proximity operator ∧ (Fig. 2). In summary, these ques-
tions can only be answered from an empirical study using
real-world data.

References
Allen, J. F. 1984. Towards a General Theory of Action and
Time. Artificial Intelligence 23:123–154.
Bettini, C.; Jajodia, S.; and Wang, S. X. 2000. Time Gran-
ularities in Database, Data Mining, and Temporal Reason-
ing. Berlin: Springer-Verlag.
Bettini, C.; Wang, X.; and Jajodia, S. 2002. Solving multi-
granularity temporal constraint networks. Artificial Intelli-
gence 140:107–152.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Feng, P.; Mulkar, R.; and Hobbs, J. R. 2006. Learning
Event Durations from Event Descriptions. In Proceedings
of the 44th Annual Meeting of the Association for Compu-
tational Linguistics (COLING-ACL), 393–400.
Florian, R.; Han, B.; Luo, X.; Kambhatla, N.; and Zitouni,
I. 2007. IBM ACE’07 System Description. In Proceedings
of NIST 2007 Automatic Content Extraction Evaluation.
Han, B.; Gates, D.; and Levin, L. 2006a. From Language to
Time: A Temporal Expression Anchorer. In Proceedings
of the 13th International Symposium on Temporal Repre-
sentation and Reasoning (TIME 2006).
Han, B.; Gates, D.; and Levin, L. 2006b. Understanding
Temporal Expressions in Emails. In Proceedings of Hu-
man Language Technology conference - North American
chapter of the Association for Computational Linguistics
annual meeting (HLT-NAACL 2006).
Han, B. 2008. A constraint-based modeling of calendars.
Proceedings of AAAI Workshop on Spatial and Temporal
Reasoning.

