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What we have discussed

• Piecewise Polynomials and Splines

• Natural cubic splines

• Two examples about splines

• Filtering and Feature Extraction (Part)
– Phoneme Recognition
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Today’s Outline 

• Smoothing Splines
– Comparison with projection splines
– Comparison with chapter 3 (shrinkage)
– Automatic selection of smoothing parameters

• Multidimensional Splines

• Filtering and Feature Extraction (cont.)
• Nonparametric Logistic regression
• Wavelet Smoothing
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2. Smoothing Splines (roadmap)
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2.1 Smoothing Splines

• Why use smoothing splines?  Intuition 
– Aim: to avoid the knot selection problem completely

– So use a maximal set of knots –> N sample points

• Problem:
– Among all functions f(x) with two continuous

derivatives, to find the one minimize
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2.1 Smoothing Splines

• This RSS has a finite-dimensional unique 
minimizer

– natural cubic spline having N knots just at the 
N sample points �
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Solution: ( Similar with Page. 60 – (3.43), (3.44))
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2.1 Smoothing Splines->Smoother Matrix

• Smoother Matrix
– are linear combination of yi  ( linear smoother)

– For N sample points: (Two N here: number /basis matrix)

– Smoother matrix depends only on xi and 

– Important Property of Smoother matrix : 
• Positive semidefinite: all its eigenvalues>=0 ( <=1 from 2.4)
• Rank: N 
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2.2 Projection Matrix ξH

• Projection Matrix
– Use M (M<<N) cubic-spline basis functions

– Knot sequence
– is N*M (N sample points, M basis functions)

– Important Property
• Projection Matrix is one kind of special matrix
• Positive semidefinite: all its eigenvaluesare 1 or 0
• Rank M
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)( ξHtraceMrank ==• Projection Matrix:

– The trace of a square matrix is: 

– Sum of eigenvaluesare trace:

– The rank of an symmetric idempotent matrix is equal to
its trace

– Special properties of projection matrix - file
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2.2 Projection Matrix
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• Projection
– symmetric

– N*N

– positive semidefinite
• Eigenvalues1 or 0

– Rank : M

– Idempotent

• Smoother
– symmetric

– N*N

– positive semidefinite
• Eigenvalues >=0, <=1 ( in 2.4)

– Rank: N

– Shrinkingξξξ HHH = λλλ SSS ≤

2.3 Projection Matrix & Smoother 
Matrix 

(The eigenvalues of a positive semidefinite matrix are non-negative)

For any symmetric A, the eigenvalues of A^2 are the square of 
those of A, and the eigenvectors are the same.
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• Projection
– Dimension of 

projection space

·

• Smoother
--* Effective degree of 

freedom
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2.4 Smoother Matrix – Effective degrees of freedoms

Sum of eigenvalues are trace !   

define Effective degrees of freedomsof a smoothing splineby 
analogy to projection matrix

???


