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Multidimensional Splines

• Suppose
• We have a separate basis of functions for 

representing functions of X1 and X2

• The M1xM2 dimensional tensor product basis is

X ∈ R2

h1k (X1), k =1,...,M1

h2k (X2), k =1,...,M2

g jk = h1 j (X1)h2k (X2), j =1,...,M1, k =1,...,M2
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Tensor Product

• Or direct product, or Krondecker product…

-A is an m by n matrix, B is a p by q matrix

-C is an mp by nq matrix with elements
C = A ⊗ B

cαβ = aijbkl

α = p( i − 1) + k

β = q( j − 1) + l

2D Function Basis

• Can be generalized to higher dimensions
• Dimension of the basis grows exponentially in the 

number of coordinates (curse of dimensionality)
• MARS (Ch 9) is a greedy algorithm for including 

only the basis functions deemed necessary by least 
squares

g(X) =
j=1

M 1

θ jkg jk (X)
k=1

M 2
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Questions

• 1. In Figure 5.11 The tensor product spline is said to have some 
"spurious"boundaries. From the figure they seem a little more 
serious than that, especially the cut in the far left of the figure. 
This seems like a similair effect to the "flapping" described 
earlier in the chapter at the boundary conditions. Does this 
mean that we have to deal with the boundaries more carefully 
when using tensor products?
– Ashish
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Questions

• 2. Smoothing as defined as the penalty component in the 
optimization seems to be "independant" from the the choice of 
the type of basis. Could using more complex basis function 
imply more creaticvity is required in thesmoothing function, like 
using second/tensor derivatives?

• 3. p140 J(F) finds one lambda over both X1, X2 derivate 
constraints. Could we generalize further by finding a separate 
lambda for each xi instead? What would the effects on the final 
function be?

– Ashish

Higher Dimensional Smoothing
Splines

• Suppose we have pairs 

• Want to find d-dimensional regression 
function f(x)

• Solve

• J is a penalty functional for stabilizing f in 

y i,x i, x i ∈ Rd

Rd

min
f

{ y i − f (x i)}
2 + λJ[ f ]

i=1

N
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2D Roughness Penalty

• Generalization of 1D penalty

• Yields thin platespline (smooth 2D surface)

J[ f ] = [(
∂2 f (x)

∂x1
2

)2 + 2(
∂2 f (x)
∂x1∂x2

)2 + (
∂2 f (x)

∂x2
2

)2]dx1dx2R 2

Thin PlateSpline

• Properties in common with 1D cubic 
smoothing spline
– As λ → 0, solution approaches interpolating fn
– As λ → ∞, solution approaches least squares 

plane
– For intermediate values of λ, solution is a linear 

expansion of basis functions with coefficients 
obtained by a generalized form of ridge 
regression
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Thin Plate Spline

• Solution has form

• hj are radial basis functions

• Can be generalized to arbitrary dimension

f (x) = β0 + βT x + α jh j (x)
j=1

N

h j (x) = η( x − x j )

η(z) = z2 logz2

Computational Speed-ups

• Unlike 1D splines (which can be O(n)), 
complexity of thin plate splines is O(n^3) 
since there isn’ t sparse structure to exploit

• Can use fewer than N knots (lattice over 
domain)

• Using K knots reduces order to 
O(NK^2+K^3)
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Additive Splines

• Function of the form

• Each fi is a univariate spline

• Assume f is additive and impose a penalty 
on each of the component functions

f (X) = α + f1(X1) + ...+ fd (Xd )

J[ f ] = J( f1 + ...+ fd ) = f j ' '(t i)
2dt j

j=1

d

Additive vs Smoothing
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ANOVA Spline Decomposition

• Extension of additive splines

• Choices
– Maximum order of interaction
– Which terms to include
– What representation

• Regression splines with a small number of basis fns per coord
• A complete basis as with smoothing splines

f (X) = α + f j (X j )
j

+ f j (X j ,Xk )
j<k

+ ...

Questions

• A general question: can you give us a general method of how to 
choose the basis functions? What I mean does not refer to the 
model selection methods, like AIC, BIC, CV and etc, but refer to
question such as have a quite skewed dataset, what kind of 
basis functions I should use to model this?  (This might serve as 
a guidance to do AIC, BIC and etc instead of doing a full search
in the mode space)
– Yan Lui
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Questions

• p. 140 Comparison of Additive Natural Cubic Splines to Natural 
Cubic Splines - Tensor Product.  In text, "The tensor product 
basis can achieve more flexibility at the decision boundary, but
introduces some spurious structure along the way."

• Based on the descriptions they give and the figures, I have 
trouble seeing when I'd desire the extra flexibility (and it isn't 
likely too hurt), or is it the case that the tensor product form is 
only useful in practice when included as part of a procedure like 
MARS?

– Paul Bennet


