TEACHING AN OLD CACHE NEW TRICKS:
LEARNING BETTER CACHING POLICIES ONLINE

Nathan Beckmann, CMU
ML for Systems @ISCA2019
Learning better caching policies online

• **Caching matters:** Caches are everywhere & often determine systems’ end-to-end performance.

• **Caching is hard:** Deciding *what to keep in the cache* is hard. Workloads vary too much & the cache has ~no control over its input trace.

• **Caching practice is expensive & fragile:** Most caches use hand-tuned heuristics

• We’ll discuss **caching policies that learn online** to tune themselves w/o heuristics

 • Vanilla reinforcement learning does **not** work!
 • Option #1: Cache modeling + Bayesian inference
 • Option #2: Learn to imitate optimal
Caching matters!

Cache is 100\times faster than back-end system

Even small hit rate improvements matter

E.g., 1% better hit ratio \rightarrow 35% lower latency [Atikoglu, Sigmetrics’12]
Think smarter, not larger

- Empirically, hit ratio follows log-linear law: $2 \times$ larger cache $\Rightarrow +\Delta$ hit ratio

![Graph showing miss ratio vs. cache size with a note indicating better caching policy]

Lower is better
Finding a good eviction policy is hard

• Applications vary a lot
 • Access objects in different patterns
 • Objects have different sizes

• Prior policies use heuristics that combine recency and frequency
 • No theoretical foundation
 • Require hand-tuning ➔ fragile to workload changes

• No single policy works for all workloads

Web caching: Object sizes vary by 9 orders of magnitude [Berger+, NSDI’17]
THEME: LEARNING ALONE IS NOT ENOUGH!

›

COMBINE LEARNING W/ CACHE THEORY
Reinforcement learning struggles in caching

- “Harvesting randomness to optimize distributed systems” [Lecuyer+, HotNets‘17]
Learning online ➔ Much better cache performance!

MSR “src1_0” storage workload

[Beckmann+, NSDI’18]
CACHE THEORY + BAYESIAN INFERENCE

Maximizing Cache Performance Under Uncertainty
Nathan Beckmann, Daniel Sanchez – HPCA‘17

LHD: Improving Cache Hit Rate by Maximizing Hit Density
Nathan Beckmann, Haoxian Chen, and Asaf Cidon – NSDI‘18
Q: WHAT’S THE “RIGHT” METRIC FOR CACHING POLICIES?
Caching theory: The “big picture”

• *Goal*: Maximize cache hit rate

• *Constraint*: Limited cache space

• *Uncertainty*: In practice, don’t know what is accessed when
Where does cache space go?

- Let’s see what happens on a short trace...
Where does cache space go?

- Green box = 1 hit
- Red box = 0 hits
- ➔ Want to fit as many green boxes as possible
- Each box costs resources = area
- ➔ Cost proportional to size & time spent in cache
THE KEY IDEA: HIT DENSITY
Our metric: Hit density (HD)

- Hit density combines **hit probability** and **expected cost**

\[
\text{Hit density} = \frac{\text{Object's hit probability}}{\text{Object's size} \times \text{Object's expected lifetime}}
\]

- Least hit density (LHD) policy: Evict object with smallest hit density
- But how do we predict these quantities?
Estimating hit density (HD) via probability

• Age – # accesses since object was last requested

• Random variables
 • H – hit age (e.g., $P[H = 100]$ is probability an object hits after 100 accesses)
 • L – lifetime (e.g., $P[L = 100]$ is probability an object hits or is evicted after 100 accesses)

• Easy to estimate HD from these quantities:

\[
HD = \frac{\sum_{a=1}^{\infty} P[H = a]}{\text{Size} \times \sum_{a=1}^{\infty} a \ P[L = a]}
\]
Bayesian inference from an object’s age

- Estimate HD using **conditional probability**
- Monitor distribution of H & L online

- By definition, object of age a wasn’t requested at age $\leq a$
 - \Rightarrow Ignore all events before a

- Hit probability $= P[\text{hit} \mid \text{age } a] = \frac{\sum_{x=a}^{\infty} P[H=x]}{\sum_{x=a}^{\infty} P[L=x]}$

- Expected remaining lifetime $= E[L - a \mid \text{age } a] = \frac{\sum_{x=a}^{\infty} (x-a) P[L=x]}{\sum_{x=a}^{\infty} P[L=x]}$
LHD by example

- Users ask repeatedly for common objects and some user-specific objects

Best hand-tuned policy for this app:
Cache common media + as much user-specific as fits
Probability of referencing object again

- Common object modeled as scan, user-specific object modeled as Zipf
LHD by example: what’s the hit density?

Hit density large & *increasing*
Hit density small & *decreasing*

High hit probability

- Older objects closer to peak expected lifetime decreases with age
- Older objects are probably unpopular ➔ expected lifetime increases with age

Low hit probability

- Hit density large & increasing
- Hit density small & decreasing

Reference Probability

Age (accesses since reference)

[Diagram showing the relationship between hit density, age, and hit probability]
LHD by example: policy summary

LHD automatically implements the best hand-tuned policy:
First, protect the common media, then cache most popular user content.
Improving LHD using additional object features

• Conditional probability lets us easily add information!

• Condition H & L upon additional informative object features, e.g.,

 • Which app requested this object?

 • How long has this object taken to hit in the past?

• Features inform decisions \Rightarrow LHD learns the “right” policy w/out heuristics
Inferring HD from add’l object features

• Bayesian inference accepts arbitrary new features
• E.g., suppose for an object feature Y takes value y

\[
\text{Hit Density } | \ Y = y = \frac{\text{Hit probability } | \ Y = y}{\text{Expected remaining lifetime } | \ Y = y}
\]

\[
\text{Hit probability} = P[\text{hit } | \ Y = y, \text{ age } a] = \frac{\sum_{x=a}^{\infty} P[H = x, Y = y]}{\sum_{x=a}^{\infty} P[L = x, Y = y]}
\]

\[
\text{Expected remaining lifetime} = E[L - a \mid Y = y, \text{ age } a] = \frac{\sum_{x=a}^{\infty} (x - a) P[L = x, Y = y]}{\sum_{x=a}^{\infty} P[L = x, Y = y]}
\]
LHD gets more hits than prior policies

Lower is better!
LHD gets more hits across many traces.

(a) Memcached
(b) MSR src1_0
(c) MSR src1_1
(d) MSR usr_1
(e) MSR proj_1
(f) MSR proj_2
TRANSLATING THEORY TO PRACTICE
Good hit ratio ⇔ Poor throughput?

• Prior complex policies require **complex data structures**
 • Synchronization ⇒ poor scalability ⇒ unacceptable request throughput
 • E.g., GDSF uses $O(\log N)$ heaps

• Even $O(1)$ LRU is sometimes too slow because of synchronization

• ⇒ Many key-value systems approximate LRU with CLOCK / FIFO
 • MemC3 [Fan, NSDI ’13], MICA [Lim, NSDI ’14]...

• *Can LHD achieve similar request throughput to production systems?* YES!
LHD implementation sketch (time view)

- Count when hits & evictions happen (i.e., object age)
- Few thousand requests

Rank objects by pre-computing hit density
(Indexed by object age, ...)

Compute estimated hit density for different object features (age, app id, etc)
LHD implementation sketch (structures)

- **Key, ...**
- **Timestamp**
- **Cache**
- **Global timestamp**
- **Objects**
- **Hit density**
- **Ages, features**
- **Hit/eviction event counters**
- **Metadata**

Bayesian estimation of hit density
Fast evictions in LHD

• No global synchronization ➔ Great scalability!
 (Even better than CLOCK/FIFO!)

Miss!

Sample objects

Lookup hit density (pre-computed)

Repeat if race detected

Evict E
CLOCK doesn’t scale when there are even a few misses!

LHD scales well with or without misses!

LHD gets best throughput
Future directions in Bayesian caching

• **Machine learning**: Learn which features matter
 • Many possible features (age, app id, size, frequency, burstiness, etc.)
 • Only a few features can be used (sample quality, runtime & memory overhead)
 • Caching systems should *learn* which features are important for a given workload online

• **Systems**: Real systems care about more than object hit ratio
 • Dynamic latency / bandwidth optimization
 • Optimizing end-to-end response latency (multi-object requests) [Berger+, OSDI’18]
 • Full system modeling (write endurance in FLASH/NVM, replicas in a distributed system)
CAN WE DO BETTER?
LEARNING FROM OPTIMAL

Work by many others...

Back to the Future: Leveraging Belady’s Algorithm for Improved Cache Replacement [Jain and Lin, ISCA’16]

Ongoing work by [Song, Berger, Li, Lloyd]
Reinforcement learning struggles in caching

- Caching is a chaotic, input-driven environment
 1. Little to no control over input
 2. Weak signal between decision (eviction) and reward (later hits / evictions)

- RL often struggles in input-driven environments [Mao+, ICLR'19]
- Need to reduce noise & enhance reward response

- Can avoid these problems by learning to imitate OPT
Learning the optimal caching policy

- HawkEye learns to mimic Belady replacement for CPU caches \[\text{[Jain & Lin, ISCA'16]}\]
- Load PC is a good predictor for caching policies \[\text{[Khan+, MICRO'10][Wu+, MICRO'11]}\]
- HawkEye realizes that load PC also correlates strongly with OPT’s decisions
- \(\Rightarrow\) Simple hardware can learn OPT very effectively
Comparing learning approaches

- [Song+; ongoing work] learns to imitate OPT using various object features (age, size, etc.)
- [Vietri+, HotStorage’18] tunes parameters w/ RL

⇒ Imitating OPT is more effective!

 - (Pure RL is very bad, off bottom of figure)
COMPUTING THE OPTIMAL POLICY

Practical Bounds on Optimal Caching with Variable Object Sizes
Daniel Berger, Nathan Beckmann, and Mor Harchol-Balter
SIGMETRICS’18
How much better can we do?

- Computing optimal can be easy or hard, depending on caching problem

- **Easy**: Objects are the same size & cost ➔ Belady (i.e., evict max. next-use distance)

- **Less easy**: Objects have different costs ➔ Network flow methods

- **Hard**: Objects have different sizes ➔ **Strongly NP-hard!**

- **Hard**: Writes cost more than reads ➔ **MaxSNP-hard!**

Web caching: Object sizes vary by 9 orders of magnitude
Three lessons from this work:

1. **Optimal can be approximated efficiently**
 (Even when computing it exactly is hard)

2. **Obvious extensions to Belady don’t always work well**
 (e.g., Next-use distance \times object size, Knapsack heuristics)

3. **There is significant room for improving current policies:**
 (Large gap between the best online policies & optimal)
Prior OPT approximations

<table>
<thead>
<tr>
<th>Technique</th>
<th>Time Complexity</th>
<th>Approximation Guarantee</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFMA [STOC’97]</td>
<td>$O(N^2)$</td>
<td>$O(\log \text{cache size})$</td>
</tr>
<tr>
<td>LP rounding [SODA’99]</td>
<td>$O(N^5)$</td>
<td>$O(\log (\max_{\text{size}}/\min_{\text{size}}))$</td>
</tr>
<tr>
<td>LocalRatio [JACM’01]</td>
<td>$O(N^3)$</td>
<td>4</td>
</tr>
</tbody>
</table>

State-of-the-art 4-approximation not useful

$O(N^3)$ is too slow anyway
Computing OPT efficiently on real traces

- **Insight:** Traces are not adversarial in practice
- **Idea:** Map OPT to min-cost flow problem $\mathcal{O}(N^2 \log^2 N)$ solution
 - We prove that FOO introduces negligible error on real traces (specifically, under IRM)
 - We design efficient algorithms to compute upper/lower bounds on OPT

FOO:
- Flow-based
- Offline
- Optimal
FOO is accurate & efficient

<table>
<thead>
<tr>
<th>Technique</th>
<th>Time Complexity</th>
<th>Approximation Guarantee</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFMA [STOC'97]</td>
<td>$O(N^2)$</td>
<td>$O(\log \text{cache size})$</td>
</tr>
<tr>
<td>LP rounding [SODA'99]</td>
<td>$O(N^6)$</td>
<td>$O(\log (\max_{\text{size}}/\min_{\text{size}}))$</td>
</tr>
<tr>
<td>LocalRatio [JACM'01]</td>
<td>$O(N^3)$</td>
<td>4</td>
</tr>
<tr>
<td>FOO*</td>
<td>$O(N^2 \log^2 N)$</td>
<td>1</td>
</tr>
</tbody>
</table>

* On non-adversarial traces seen in practice.
FOO is accurate & efficient

<table>
<thead>
<tr>
<th>Technique</th>
<th>Time Complexity</th>
<th>Approximation Guarantee</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFMA [STOC’97]</td>
<td>$O(N^2)$</td>
<td>$O(\log \text{cache size})$</td>
</tr>
<tr>
<td>LP rounding [SODA’99]</td>
<td>$O(N^5)$</td>
<td>$O(\log (\max_{\text{size}}/\min_{\text{size}}))$</td>
</tr>
<tr>
<td>LocalRatio [JACM’01]</td>
<td>$O(N^3)$</td>
<td>4</td>
</tr>
<tr>
<td>FOO</td>
<td>$O(N^2 \log^2 N)$</td>
<td>1^*</td>
</tr>
<tr>
<td>PFOO</td>
<td>$O(N \log N)$</td>
<td>$\approx 1.06^{**}$</td>
</tr>
</tbody>
</table>

* On non-adversarial traces seen in practice.
** On storage traces where IRM assumption does not hold.
FOO is accurate across different domains

1. PFOO gives tight bounds on OPT (blue lines)

2. There is significant room to improve online policies (green vs blue)

3. Prior heuristics are bad OPT bounds \Rightarrow false conclusions (green vs red)
FOO is accurate across different domains

1. PFOO gives tight bounds on OPT (blue lines)

2. There is significant room to improve online policies (green vs blue)

3. Prior heuristics are bad OPT bounds ➔ false conclusions (green vs red)
FOO is accurate across different domains

1. PFOO gives tight bounds on OPT (blue lines)

2. There is significant room to improve online policies (green vs blue)

3. Prior heuristics are bad OPT bounds → false conclusions (green vs red)
OPT is predictable!

• Boosted decision trees achieve 93% accuracy
 • Features: Object size, object retrieval cost, inter-request gap

• Classifier must be updated frequently
 • Big drop in accuracy when updating every few M requests
 • ➔ Online training is a must ➔ Training & computing OPT must be fast!

• Fortunately, we can learn OPT quickly
 • Converges within a few 10K requests
 • (Comparable to LHD)
Summary

• Caching policies that learn & adapt online are effective & address longstanding problems

• Caching has a ton of structure that should be exploited
 • Object hit density \Leftrightarrow Cache hit rate
 • Offline optimal \Leftrightarrow Min-cost flow

• There is ample opportunity to improve cache performance further
THANK YOU!