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Abstract

Cache hierarchies are increasingly non-uniform and difficult

to manage. Several techniques, such as scratchpads or reuse

hints, use static information about how programs access

data to manage the memory hierarchy. Static techniques are

effective on regular programs, but because they set fixed

policies, they are vulnerable to changes in program behavior

or available cache space. Instead, most systems rely on

dynamic caching policies that adapt to observed program

behavior. Unfortunately, dynamic policies spend significant

resources trying to learn how programs use memory, and yet

they often perform worse than a static policy.

We present Whirlpool, a novel approach that combines

static information with dynamic policies to reap the benefits

of each. Whirlpool statically classifies data into pools based

on how the program uses memory. Whirlpool then uses

dynamic policies to tune the cache to each pool. Hence, rather

than setting policies statically, Whirlpool uses static analysis

to guide dynamic policies. We present both an API that lets

programmers specify pools manually and a profiling tool that

discovers pools automatically in unmodified binaries.

We evaluate Whirlpool on a state-of-the-art NUCA cache.

Whirlpool significantly outperforms prior approaches: on

sequential programs, Whirlpool improves performance by up

to 38% and reduces data movement energy by up to 53%; on

parallel programs, Whirlpool improves performance by up to

67% and reduces data movement energy by up to 2.6×.

Categories and Subject Descriptors B.3.2 [Memory Struc-

tures]: Cache memories

Keywords Multicore, Non-uniform cache access (NUCA),

Data movement, Static analysis, Cache modeling.
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1. Introduction

Future systems will be limited by data movement, which

is orders of magnitude more expensive than basic compute

operations. For example, at 28 nm a 64-bit floating-point

multiply-add consumes 20 pJ, while sending 256 bits across

the chip costs 300 pJ, an on-chip access to a 1 MB cache

costs about 1 nJ, and an off-chip DRAM access costs 20-

50 nJ—1000× more energy than the multiply-add [21, 36, 59].

The trend towards lean, specialized cores means that, for

efficiency reasons, caches are increasingly distributed across

the chip and have non-uniform access latencies (NUCA [37]).

While distributed caches are more efficient, they are also

harder to manage. Their non-uniform latency and energy

means that data placement is critical to limit data movement.

But data placement is hard: applications need to fit their most

intensely-used data in nearby banks, while competing with

each other for scarce capacity. Data placement is a spatial

scheduling problem that, to solve well, requires accurate

information about how programs use memory.

Unfortunately, all the relevant information is not gener-

ally available: static analysis or profiling can reveal program

semantics (i.e., how a program uses memory), but not its

dynamic or input-dependent behavior; and dynamic policies

have difficulty efficiently recovering program semantics. To

see this in more detail, consider the extremes of static vs.

dynamic design. At one extreme, scratchpad-based systems

expose the distributed memories to software, relying on static

analysis to place data. Scratchpads work well on regular ac-

cess patterns, but cope poorly with irregular, input-dependent,

or rapidly changing patterns and varying resources in shared

systems [38, 41]. At the other extreme, cache-based systems

expose a flat address space that programs access through un-

differentiated loads and stores, relying on hardware-managed

caches to transparently retain the right data. Most memory

systems are cache-based, but recovering program semantics

from this limited interface is difficult and expensive. For ex-

ample, classic dynamic NUCA schemes migrate data towards

the requester in response to each access, which increases

data movement and requires expensive lookups [7, 9, 28]. As

memory systems become more complex, ignoring program

semantics becomes increasingly inefficient.
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Prior work exploits static information in cache-based sys-

tems through prefetch [34], bypass [48], and cache prior-

ity [27] hints. Hints let software override dynamic policies

and control the cache, reaping the benefits of static informa-

tion when it is accurate. However, hints suffer from the same

problems as scratchpads: with uncertain or dynamic behavior,

hints are often inaccurate and hurt performance [41, 47].

The key idea of this paper is to combine static information

with dynamic policies to reap the benefits of each. Rather

than using static information to set fixed policies, we instead

use it to inform dynamic policies. The insight is that, while

uncertainty makes it hard to statically predict how data will

be used, it is often easy to accurately group data with similar

usage patterns. This approach lets dynamic policies make

better decisions at lower overhead.

We demonstrate this idea through Whirlpool, a classification-

based approach to improve data placement in multicores. In

Whirlpool, programs divide their data into a small number of

memory pools, e.g. one for each major data structure. We find

that for most programs, a few pools (three or four) suffice.

Hardware then monitors each pool dynamically and adapts

the memory system to keep the most valuable data near where

it is used. Unlike hints, pools do not encode static policies;

rather, they make it easy for hardware to find the right policies

dynamically. Whirlpool thus combines static program seman-

tics with dynamic policies, and robustly adapts to changes in

program behavior or available resources (Sec. 2).

Whirlpool has both software and hardware components

(Sec. 3). In software, Whirlpool provides a memory allocator

that groups semantically similar data and tags each page

with a pool id. In hardware, Whirlpool extends prior NUCA

techniques [9, 11] to monitor each pool and control its

placement. Whirlpool needs only a few pools, so it adds small

overheads. We first evaluate Whirlpool by manually applying

it to several SPEC CPU2006 and PBBS benchmarks. We show

that Whirlpool achieves significant performance gains, of up

to 38%, when managing a large NUCA cache, and reduces

data movement energy by up to 53%. Through case studies,

we also show that Whirlpool improves the performance of

parallel applications on a 16-core chip by up to 67% and

reduces data movement energy by up to 2.6×.

We then use the insights gained from manually porting

applications to design WhirlTool, a profiling tool that auto-

matically discovers pools in unmodified binaries (Sec. 4). We

evaluate WhirlTool on a comprehensive set of benchmarks

and program mixes, and find that it works as well or better

than our careful manual classification.

In summary, Whirlpool gives a promising way to combine

static program semantics and dynamic policies to reduce data

movement.

2. Motivation and Background

In this section, we motivate Whirlpool’s hybrid, static-

dynamic design and discuss related work.

2.1 How static classification reduces data movement

Consider the multicore shown in Fig. 1. This chip has a

NUCA cache of twenty-five 512 KB banks shared by four

surrounding cores, similar to the Oracle SPARC M7 [3]

(see Appendix A for detailed methodology). We consider

the benchmark dt (Delaunay triangulation) from the PBBS

suite [60], running in the leftmost core. Our goal is to use this

distributed cache capacity as efficiently as possible by placing

dt’s most intensely used data near where dt is running.

dt

Figure 1: Multicore chip with a

distributed last-level cache.
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Figure 2: Breakdown of

dt’s working set and

access pattern.

Fig. 2 shows how dt accesses memory. It has a 6 MB

working set that easily fits in the cache. It accesses three

data structures: points, vertices, and triangles, which take

0.5 MB, 1.5 MB, and 4 MB, respectively. Accesses are split

roughly evenly across the three data structures, so their access

intensity (i.e., accesses per MB) varies: points are accessed

most intensely, followed by vertices and triangles.

How should we place dt’s data to reduce data movement?

Many commercial processors adopt a static NUCA (S-NUCA)

design that hashes addresses evenly across banks [37, 53].

Fig. 3 shows how S-NUCA places dt’s data. This figure

shows all 25 cache banks, with colors indicating where data

is placed. Because S-NUCA spreads dt’s 6 MB working set

across 12.5 MB of cache, banks are left half-empty.

dt

Triangles

Vertices

Points

Figure 3: S-NUCA places dt’s data unnecessarily far away.

Since capacity is available in closer banks, we can reduce

data movement by concentrating dt’s data closer to where

dt is running. Fig. 4 shows how Jigsaw [9, 11], the NUCA

scheme that Whirlpool builds on, places dt’s data. Jigsaw

tightly packs dt’s working set near the left of the chip, but
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it cannot distinguish between the different data structures

because it is blind to program semantics.

dt

Triangles

Vertices

Points

Figure 4: Jigsaw places dt’s data closer, but does not distin-

guish between types of data.

We can reduce data movement further by placing the most

intensely accessed data even closer to where dt is running.

Fig. 5 shows how Whirlpool places dt’s data. Whirlpool

classifies data into pools statically, but dynamically monitors

each pool to decide data placement. In this case, because

points is most intensely accessed, it is placed in the closest

cache banks. Likewise, vertices is placed in three next-

closest banks, and triangles in the closest remaining banks.

dt

Triangles

Vertices

Points

Figure 5: Whirlpool statically classifies dt’s data into pools,

and dynamically places intensely-accessed pools nearby.

Whirlpool improves dt’s performance by 19% over S-

NUCA and by 15% over Jigsaw, and reduces data movement

energy (cache and memory dynamic energy) by 42% over

S-NUCA and by 27% over Jigsaw.

This example shows how static, program-level data classi-

fication can help dynamic policies reduce data movement. By

identifying key data structures statically, Whirlpool can place

data without wasting resources in learning how data is used.

By contrast, many prior schemes that achieve a similar data

placement do so by migrating data on demand [18, 43, 68].

The extra data movement from migrations can exceed the

energy savings of smart data placement (see Sec. 2.3). Hence,

static classification is crucial to Whirlpool’s benefits.

2.2 How dynamic policies reduce data movement

Whirlpool leverages static data classification from either the

programmer or an automatic profile-guided tool. Whirlpool

also monitors each pool at run-time and uses this dynamic

information to reconfigure the cache. By decoupling clas-

sification and policy, Whirlpool robustly adapts to changes

in application behavior and system configuration. By con-

trast, other techniques that involve application-level or

code changes, such as software prefetching [47], reuse/non-

temporal hints [12, 14, 27, 48, 63], or loop tiling [20, 39, 64],

directly encode a fixed policy in the program and cannot

adapt to changing application or system behavior.

To see why adapting dynamically is important, consider

lbm from SPEC CPU2006. On each timestep, lbm operates on

two grids, source and destination, with markedly different

access patterns: source is accessed more often and enjoys

good reuse, while destination sees little reuse. At the end of

each timestep, lbm swaps the source and destination pointers,

resulting in an alternating access pattern to both memory

pools, shown in Fig. 6. Whirlpool continuously monitors

both pools and adopts different policies on even and odd

phases, caching source data near lbm and bypassing accesses

to the destination grid. As a result Whirlpool outperforms

Jigsaw by 4.8%, and reduces data movement energy by 12%.

By contrast, each pool looks the same on average, so the best

static placement yields no improvement over Jigsaw.
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Figure 6: lbm has two pools that, though indistinguishable on

average, have markedly different access patterns in alternat-

ing program phases.

This example shows that while static classification into

pools may suffice, dynamic policies are needed to reduce

lbm’s data movement. Moreover, program phase changes

are not the only source of unpredictability. The appropri-

ate caching policy depends on many factors that are hard to

capture statically: irregular reference patterns, different pro-

gram inputs, cache contention in shared systems, etc. Sec. 3

explores how Whirlpool’s dynamic policies adapt to these

sources of dynamic variability.

2.3 Related work

Whirlpool builds upon many prior memory management

techniques. Broadly, these techniques fall into two categories,

based on whether they consider modifying the program to

improve memory system behavior. Table 1 summarizes the

pros and cons of each technique.

Techniques that require program changes: Architectures

with software-managed scratchpad memories provide the

highest efficiency and degree of control, letting programmers
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Scheme Static
inform

atio
n

Dynamic
polic

y

Spatia
l placement

Single-lo
okup

Easy
to

use

Scratchpads ✓ ✗ ✓ ✓ ✗

Code hints ✓ ✗ ✗ ✓ ✓

Cache replacement ✗ ✓ ✗ ✓ ✓

Private D-NUCA ✗ ✓ ✓ ✗ ✓

Shared D-NUCA ✗ ✓ ✓ ✓ ✓

Whirlpool ✓ ✓ ✓ ✓ ✓

Table 1: Desirable properties achieved by prior memory

system management techniques.

or compilers manage data placement and movement. But

scratchpads are hard to use. Even with advanced compilers,

only highly regular programs can use them well [41]. Scratch-

pads also do not support dynamic adaptation.

For these reasons, most memory systems use cache hierar-

chies instead. Caches are transparent by default, but programs

can include various types of access hints such as software

prefetch instructions and non-temporal hints to bypass the

cache hierarchy [12, 14, 27, 48, 63]. However, these tech-

niques embed specific static policies in the program, which

may degrade performance.

The common drawback of these techniques is their lack of

dynamism, which makes these optimizations risky: changes

in workload behavior or system configuration may make these

optimizations ineffective or detrimental to performance.

Techniques that work transparently: High-performance

replacement policies often dynamically classify data and

treat lines of each class differently. For example, RRIP [33]

classifies lines as reused and non-reused; IbRDP [50] classifies

them by the PC of their last memory access; and SHiP [65]

classifies lines by PC or memory address.

Similarly, Whirlpool’s classification could also improve re-

placement decisions. We explored a Whirlpool-based replace-

ment policy that extends DRRIP [33] to adapt insertion priority

across pools (similar to TA-DRRIP [32, 33] and CAMP [49]).

However, we found that the benefits from static classifica-

tion within a monolithic cache were marginal: cache replace-

ment is a simpler problem than data placement, and dynamic

replacement policies like DRRIP and SHiP perform well at

relatively low overhead. We therefore focus on the harder

problem of NUCA data placement.

Dynamic NUCAs (D-NUCAs) try to reduce data movement

by placing data near where it is used. These schemes can be

broadly classified into two categories based on whether they

start from a private or shared cache organization.

Private-baseline D-NUCAs treat the cache as a fine-grained

hierarchy, accessing the closest banks first, then checking

farther-away banks on a miss [6, 37, 68]. Upon a hit, these

D-NUCAs move data closer to the accessing core, displacing

other data further away, similar to how high-performance

replacement policies promote lines upon reuse. Hence, over

time, private-baseline D-NUCAs gradually place frequently-

used data nearby.

However, private-baseline D-NUCAs suffer from two prob-

lems. First, migrating data in response to each access in-

creases overall data movement and wastes significant en-

ergy [7]. Second, since addresses do not have a known lo-

cation, they also require complex lookup mechanisms (e.g.,

multi-level lookups, broadcasts, or directories) that add area,

latency, and energy [6, 51, 68]. For example, schemes that use

global directory lookups beyond the local cache bank would

not reduce dt’s data movement for vertices or triangles—

the majority of its data accesses. As a result, prior work has

consistently shown that it is far more efficient to avoid moving

data among banks in response to accesses [7, 9, 22, 28, 51].

Shared-baseline D-NUCAs [4, 9, 19, 28] leverage the virtual

memory system to control data placement. A page’s location

is tracked in software and infrequently updated in response to

program behavior. Unlike private-baseline D-NUCAs, shared-

baseline D-NUCAs can locate data in a single lookup and

thereby avoid excessive data migration. However, they re-

spond more slowly to changes in program behavior and must

also place data at a page granularity.

We compare against schemes from each class: IdealSPD,

an idealized private-baseline D-NUCA, and Awasthi et al. [4],

a representative shared-baseline D-NUCA (see Appendix A).

Whirlpool achieves the advantages of the above tech-

niques while minimizing their drawbacks. It leverages static,

program-level data classification to achieve a good data place-

ment without frequently migrating data, and it adapts to un-

predictable run-time variability.

2.4 Jigsaw: Our baseline system

Whirlpool builds on Jigsaw, a partitioned, shared-baseline

D-NUCA. We now briefly describe Jigsaw’s main features;

please see prior work for details [8, 9, 11].

Virtual caches: Jigsaw builds virtual caches (VCs) by com-

bining partitions of physical cache banks, as shown in Fig. 7a

(colors represent VCs). Pages are mapped to a specific VC

through the TLB. Jigsaw uses three kinds of VCs: each thread

has a thread-private VC; all threads in the process share a

process VC; and all threads in the system share a global VC.

Pages start as private to the thread that allocates them, and are

upgraded lazily: an access from another thread upgrades the

page to the process VC, and an access from another process

upgrades the page to the global VC.

To support Whirlpool, we extend Jigsaw to allow applica-

tions to define additional VCs and map pages to them.

Single-lookup accesses: Jigsaw stores the placement of

each VC in a small structure called the virtual cache transla-

tion buffer (VTB). In Jigsaw, each core requires just 3 VTB

entries (for its thread-private, process, and global VCs). Each

VTB entry is essentially a configurable hash function that

maps an address to its unique location—in Jigsaw, data does

not migrate in response to accesses. Jigsaw thus provides
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(a) Jigsaw groups bank partitions

into virtual caches (VCs).

Accesses

H

VTB

X Y Y Y … X Y Y Y

(b) The VTB controls data

placement across banks.

Figure 7: Overview of Jigsaw, our baseline NUCA system.

single-lookup accesses. The VTB controls data placement by

dividing the access stream across banks, as shown in Fig. 7b.

Reconfigurations: A lightweight OS runtime periodically

(every 25 ms in our implementation) reconfigures the cache,

sizing and placing VCs to minimize data movement. It does

so using a simple model of memory access time that accounts

for both cache misses and cache access latency. To account

for cache misses, Jigsaw monitors miss rate curves, i.e. miss

rate vs. VC size [11, 52]. To account for cache access latency,

Jigsaw uses the average latency to the closest cache banks

needed for a given VC size. From these components, the total

latency of a VC is simply the sum of VC access latency (access

rate × network and bank latency) and memory latency (miss

rate × miss penalty).1

The runtime builds the total latency curves for each

VC and uses them to partition cache capacity. Traditional

cache partitioning schemes try to minimize cache misses and

partition using miss rate curves [52, 55]. By using latency

curves instead of miss rate curves [11], Jigsaw will not use

cache banks when their reduction in miss rate does not offset

their added network latency. For example, dt fits in half the

cache banks, so the remaining banks are not used (Fig. 4).

Whirlpool chooses VC sizes identically to Jigsaw, with the

only difference being that each memory pool gets its own VC.

Fig. 8a shows the miss rate curves for dt, and Fig. 8b shows

the latency curves and the sizes chosen for each VC: in this

case, the full working set fits on cache, so Jigsaw chooses the

sizes that minimize each VC’s total latency.

After sizing VCs, the reconfiguration algorithm places

them in cache banks. We use Jigsaw’s trading placement

algorithm [11], which initially places data using a simple,

greedy heuristic, and then trades capacity between VCs to

reduce data movement. The key idea is access intensity: lines

that are accessed more frequently pay a larger penalty for

poor placement, and should therefore be placed closer to

cores that access them. Intensity is given as access rate per

capacity, i.e. a VC’s access rate divided by its size (APKI per

1 This simple model ignores memory-level parallelism, but we find it works

well. Alternatively, we could model energy; this would penalize misses more

and change tradeoffs somewhat.
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Figure 8: dt’s memory performance vs. VC size: (a) Last-

level cache misses. (b) Cycles per instruction stalled on data.

MB). For example, the pools in dt are accessed at a similar

rate, but since points is one-eighth the size of triangles, its

access intensity is 8× larger. Intensity essentially says how

many accesses are affected by placing a chunk of capacity of

fixed size, and it lets us compute if trading capacity between

two VCs reduces data movement.

Jigsaw outperforms state-of-the-art D-NUCAs and adds

small overheads [9, 11]. In hardware, Jigsaw adds less than

0.6% area overhead over LLC banks; in software, Jigsaw con-

sumes less than 0.4% of system cycles. Whirlpool extends

Jigsaw to support static classification of data into pools by

building VCs for each pool. We make small modifications to

Jigsaw to exploit opportunities presented by static classifi-

cation, but do not modify its core hardware mechanisms or

software reconfiguration runtime.

3. Whirlpool with Manual Classification

We now present the design of Whirlpool and explore how it

reduces data movement by combining static, program-level

classification with dynamic caching policies.

Whirlpool classifies data used by an application into

different regions, which we call memory pools. Memory

pools let Whirlpool manage data that has similar access

patterns as a single entity. It is also the granularity at which

Whirlpool gathers information to drive dynamic policies.

In this section, we present an interface that lets an appli-

cation programmer create memory pools and tag data used

by the application to different pools. We then explore how

Whirlpool improves placement through case studies. In Sec. 4,

we present a profiling framework that automatically classifies

data into memory pools.

3.1 Application programming interface

In our implementation, a pool is an independent region of

heap-allocated memory. Our memory allocator ensures that

pages belong to exactly one pool (or none) at a time, so that

we can use the virtual memory system to classify data into

pools, as in Jigsaw.

The programmer creates a new memory pool by calling:

pool_t pool_create();
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which returns an id for the newly created pool. To allocate

size bytes of memory from the pool, the programmer calls:

void* pool_malloc(size_t size, pool_t pool_id);

Similarly, other variants like pool_calloc, pool_realloc,

etc. augment the standard arguments with pool_id.

This API lets the programmer tune the application’s cache

performance by providing high-level hints at memory alloca-

tion time. At first, it might seem to be a tedious task for the

programmer to reason about the access patterns and cache

locality of different data. However, we find it often suffices

to identify a few prominent data regions and allocate them

to different pools. Thus, only a few lines of code need to be

modified to port applications manually to Whirlpool.

Table 2 shows the applications we have manually ported,

their key data structures, and the lines of code changed. Over-

all, Whirlpool improves performance on these applications

by 7.3% over Jigsaw and reduces data movement energy by

12%. Detailed results are presented in Sec. 4.

Application Pools Data structures LOC

Breadth-first search 4 Vertices, edges, frontier, visited 16

Delaunay triangulation 3 Points, vertices, triangles 11

Maximal matching 3 Vertices, edges, result 13

Delaunay refinement 3 Vertices, triangles, misc 8

Maximal independent set 3 Vertices, edges, flags 13

Spanning forest 3 Union-find parents, output tree,

input edges

13

Minimal spanning forest 3 Union-find parents, output tree,

input edges

11

Convex hull 2 Points, hull array 10

401.bzip2 4 arr1, arr2, ftab, tt 43

470.lbm 2 Source and destination grids 21

429.mcf 2 Nodes and arcs 14

436.cactusADM 2 Pugh variables, staggered-

leapfrog grid data

53

Table 2: Pools found manually in various applications, plus

lines of code (LOC) modified while porting to Whirlpool.

3.2 Modifications to baseline system

System calls to manage VCs: We expose VCs to user-level

programs with a few additional system calls: sys_vc_alloc

allocates a user-level VC, returning its unique id; sys_vc_free

deallocates an existing VC; and sys_vc_tag tags a range of

pages with a user-level VC. We also modify sys_mmap to op-

tionally tag new pages with a specific VC. These system calls

perform the adequate checks to ensure safety (e.g., allowing

each process to map pages only to its own user-level VCs).

Our allocator uses this low-level interface to map each

pool to a different VC and tag pages from each pool with the

right VC id. Our implementation is built on top of Doug Lea’s

malloc [40], but other allocators could be used instead.

Support for more VCs per core: The baseline Jigsaw sys-

tem supports 3 VTB entries per core for thread-private, pro-

cess, and global VCs. To support user-level VCs, we add extra

VTB entries and utility monitors (specifically, GMONs [11]).

As we will see, supporting up to 4 pools is enough for most

programs. In the 4-core system, Whirlpool adds 6 KB in VTB

entries and 24 KB of monitors, or 0.3% of cache area.

Bypassing VCs: Programs often have data structures that

get negligible reuse in the cache, and it is more efficient for

them to bypass the cache entirely [62]. Bypassing is partic-

ularly beneficial in Whirlpool, since its static classification

helps accurately identify data that should be bypassed.

We therefore extend Jigsaw to support bypassing VCs. We

add a bypass bit to each VTB entry. Bypassed VCs have no

LLC space allocated, and their L2 misses go directly to main

memory. Bypassing is allowed only if the VC is accessed

by a single thread. Coherence is maintained by invalidating

the VC in the LLC when it enters bypassing mode (extending

Jigsaw’s existing reconfiguration mechanism [11]), and by

invalidating the VC in the L2 when it exits bypassing mode.

Finally, Jigsaw’s software runtime decides whether to bypass

a VC by modifying the inputs to its existing partitioning

algorithm. Specifically, it excludes cache access latency in its

access latency model if the VC is allocated no space. With this

trivial change, the partitioning algorithm will only allocate

space to a VC when bypassing hurts performance (see below).

We evaluate both Jigsaw and Whirlpool with this optimiza-

tion, but since Jigsaw does not separate data that gets reuse

from data that does not, we find that VC bypassing is more

useful in Whirlpool.

Other Jigsaw components are unmodified. In particular,

the OS remains in charge of reconfiguring the cache, and the

reconfiguration algorithm stays the same. Additional VCs add

0.2% of system cycles to reconfigurations.

3.3 Whirlpool case studies

We now present several case studies that show how Whirlpool

adapts to various sources of variability.

Whirlpool benefits from bypassing: Whirlpool decides

whether to bypass VCs by modifying the latency curve. Fig. 9

shows how this is done for the PBBS benchmark mis (maxi-

mal independent set). Whirlpool changes Jigsaw’s memory

latency model to model bypassing for VCs accessed by a

single thread. Specifically, the total latency curve at a VC

size of zero excludes the cache access latency. This is the

only change needed, as the partitioning algorithm will then

only allocate space if doing so reduces data movement vs.

bypassing.

mis has two pools, vertices and edges. Vertices cache

well, but edges do not. Whirlpool gives the full cache to

vertices and bypasses edges. This is only possible because

of Whirlpool’s static classification, which quickly identifies

edges so they can be bypassed. Jigsaw does not separate

accesses to vertices and edges, so it cannot allocate capacity

specifically to vertices and it must always check the cache

to maintain coherence.

Fig. 10 analyzes mis’s performance, data movement en-

ergy, and LLC accesses. We compare Whirlpool against S-
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Figure 9: mis’s memory performance vs. VC size. Vertices

cache well, but edges are streaming. Whirlpool bypasses

edges and gives the cache to vertices.

NUCA caches with LRU and DRRIP replacement; IdealSPD,

an idealized private-baseline D-NUCA policy that is an upper-

bound over several prior D-NUCAs; the shared-baseline, page-

migration D-NUCA proposed by Awasthi et al. [4]; and Jigsaw,

extended to support bypassing (see Appendix A).
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Figure 10: Breakdown of mis’s performance, energy, and

accesses for different caching schemes.

Whirlpool reduces data movement because its static classi-

fication lets it adopt the right policy for each pool. Whirlpool

gives enough space to fit vertices, achieving a similar hit

rate to DRRIP and thus reducing memory energy. It also im-

mediately bypasses accesses to edges, without first checking

a cache bank. This reduces network and cache bank energy

significantly over the other policies. In contrast, IdealSPD

checks multiple banks (nearby banks first, then remote banks),

and thus consumes the most energy. Meanwhile, Awasthi gets

stuck at a small capacity allocation, incurring more misses

than the other schemes. (Although Awasthi performs poorly

on mis and several other benchmarks, it outperforms S-NUCA

and saves energy on average; see Sec. 4.) Whirlpool im-

proves mis’s performance by 38% over Jigsaw and reduces

data movement energy by 53%.

Whirlpool adapts to application phases: Unlike prior tech-

niques that leverage static information through fixed poli-

cies, Whirlpool uses dynamic policies that can adapt to time-

varying program behavior. Fig. 6 showed one example for the

SPEC CPU2006 benchmark lbm; Fig. 11 shows another for the

PBBS benchmark refine (Delaunay refinement).
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Figure 11: refine has irregular phase changes. Whirlpool

dynamically adapts its allocations and placement to retain the

data structures that have reuse.

refine accesses two main data structures, triangles and

vertices, as well as other miscellaneous data in the misc

pool. For most of refine’s execution, its working set fits

easily on chip (Fig. 11b). However, at irregular intervals,

its behavior changes for roughly 100 M cycles: vertices

becomes streaming, triangles starts fitting on cache, and

misc’s working set increases substantially (Fig. 11c).

Whirlpool adapts to this unpredictable behavior, changing

its allocations and placement to retain the data structures

that cache best. Fig. 11a shows how Whirlpool allocates and

places cache space for refine. Time is shown in cycles along

the x-axis, and allocations are indicated by color along the

y-axis. Additionally, allocations are sorted by distance from

the core along the y-axis from bottom to top.

For most of refine’s execution, triangles and misc are

given small allocations placed near the core, and vertices is

given most of the remaining cache space. This placement

minimizes data movement because it fits vertices in the

cache, and accesses to triangles and misc miss quickly. In

refine, bypassing triangles and misc is not advantageous

(see Fig. 11b), but placing them nearby helps by reducing

network traffic.

During phase changes, this pattern inverts: vertices is

streaming and is given a small allocation placed near the core,

and the remaining cache space is given to either triangles or

misc (depending on whether triangles fits).

3.4 Whirlpool with parallel applications

In addition to reducing data movement in sequential appli-

cations, Whirlpool benefits parallel applications by running
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tasks close to their data. Whirlpool makes small changes to

task-parallel runtimes, letting it rapidly benefit many applica-

tions with minimal programmer burden.

Conventional work-stealing: Work-stealing [13] is the

most widely-used scheduling technique for task-parallel

programs. Each thread has a queue of ready tasks, to which

it enqueues and dequeues work. When a thread runs out of

work, it tries to steal tasks from a randomly-selected thread’s

queue. Work-stealing makes task enqueues and dequeues

cheap and achieves good load balance, but, over time, each

core ends up accessing data used by many tasks, hurting

locality. Since work-stealing causes poor reference locality,

D-NUCAs alone cannot achieve a good data placement [11].

For example, as shown in Fig. 13, Jigsaw performs the same

as S-NUCA because most data is accessed from multiple cores

and mapped to the single process-level VC.

Partitioned work-stealing (PaWS): Inspired by prior work

on locality-aware placement and stealing [11, 16, 67], we

develop simple extensions to improve reference locality. We

leverage that, in many applications, the data accessed by

each task is known when the task is created. PaWS partitions

program data evenly among cores, and enqueues tasks to the

core that has its input data instead of the thread’s local queue,

as shown in Fig. 12. PaWS also preferentially steals tasks

from neighboring cores instead of at random.

Figure 12: Partitioned work-stealing (PaWS) in Whirlpool on

a 16-core system. In PaWS, each core works on a partition

of the input and preferentially steals tasks from nearby cores.

Colors indicate affinity between tasks and data.

We evaluate PaWS on six memory-intensive applications

from several benchmark suites: mergesort [57], delaunay [60],

fft [26], pagerank [58], connectedComponents [5], and

triangleCounting [5]. The first three use regular data struc-

tures that are trivial to evenly partition across cores. The

last three are irregular graph algorithms, for which different

partitionings can have a large impact on performance. We

use METIS [35] to evenly partition their input graphs while

minimizing the number of edges across partitions.

Fig. 13 shows that PaWS improves performance moder-

ately over Jigsaw when running on a 16-core system (up to

Network Cache bank Memory

SN
U
C
A

Ji
gs

aw

J 
+ 

PaW
S

W
 +

 P
aW

S
0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
x
e
c
u
ti
o
n
 T

im
e

SN
U
C
A

Ji
gs

aw

J 
+ 

PaW
S

W
 +

 P
aW

S
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
a
ta

 M
o
v
e
m

e
n
t 
E

n
e
rg

y

(a) mergesort.

SN
U
C
A

Ji
gs

aw

J 
+ 

PaW
S

W
 +

 P
aW

S
0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
x
e
c
u
ti
o
n
 T

im
e

SN
U
C
A

Ji
gs

aw

J 
+ 

PaW
S

W
 +

 P
aW

S
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
a
ta

 M
o
v
e
m

e
n
t 
E

n
e
rg

y

(b) fft.
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(c) delaunay.
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(d) pagerank.
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(e) connectedComponents.
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(f) triangleCounting.

Figure 13: Performance of S-NUCA, Jigsaw, Jigsaw with

PaWS, and Whirlpool with PaWS on parallel applications.

19% on pagerank). Jigsaw + PaWS improves performance

because locality improves in the private caches and more

data remains in the thread-private VC for longer. However,

over time, work-stealing still causes a large fraction of the

data to be accessed from multiple cores, leading to poor data

placement in Jigsaw (and other schemes, e.g. R-NUCA [28]).

Whirlpool with PaWS: Whirlpool makes it easy for PaWS

to benefit from improved spatial placement in shared caches.

We simply map data from each partition to a separate pool.

Although load imbalance causes data to be accessed by

multiple cores, each pool’s VC is still placed close to the

cores that use it. As shown in Fig. 13, this results in much

higher gains over Jigsaw: from 6.5% higher performance and

22% lower data movement energy on mergesort, to 67%

higher performance and 2.6× lower data movement energy

on connectedComponents.

In summary, Whirlpool with PaWS dramatically improves

the performance and efficiency of parallel programs. More-

over, it requires only small changes to existing schedulers,

and retains a familiar and productive programming model.

4. WhirlTool: Automated Data Classification

While specifying pools manually gives full control to the

programmer, modifying program code is not always practi-

cal. We now use the insights from Sec. 3 to design Whirl-
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Tool, a profile-guided tool that automatically classifies data

into pools. WhirlTool works on unmodified binaries, often

matches and sometimes outperforms our manual classifica-

tion, and introduces small overheads. WhirlTool is publicly

available at http://people.csail.mit.edu/sanchez.

WhirlTool

Analyzer

Whirlpool

Allocator

WhirlTool

Runtime
Callpoint-to-

pool map

Per-callpoint

miss curves

WhirlTool

Profiler

malloc()

pool_malloc()

Application

Figure 14: WhirlTool overview.

WhirlTool consists of three main components, shown in

Fig. 14. First, the WhirlTool profiler tracks a program’s mem-

ory allocations and profiles their access patterns. Specifically,

we sample their stack distance distributions at regular inter-

vals. Second, the WhirlTool analyzer clusters allocations into

pools using the profiled stack distributions. Third, the Whirl-

Tool runtime replaces the default memory allocator and trans-

parently maps each allocation to its assigned pool. Profiling

and analysis are performed once (e.g., during compilation).

4.1 WhirlTool profiler

To limit profiling information, Whirlpool identifies memory

allocations by their callpoint, and profiles all allocations

from the same callpoint as a single entity. This heuristic is

motivated by our experience in manually porting applications,

where we observed that semantically different data tend to

be allocated from different points. Specifically, we produce

each callpoint id by walking the stack and hashing the last

two return PCs.

WhirlTool profiles applications to gather the miss rate

curve of each callpoint [24, 61], then uses a distance metric

based on miss rate curves to cluster callpoints into a small

number of pools (discussed below). The profiler periodically

records miss rate curves for all callpoints, which is important

to distinguish allocations that are similar on average but

whose behavior varies over time (e.g., lbm in Sec. 2.2).

We implement the profiler as a Pintool [44], though we

note that profiling could be done in Jigsaw hardware directly.

We sample miss rate curves every 50 M instructions. This

produces 200 KB–1.25 MB of data on our benchmarks. We

train WhirlTool with short runs (e.g., using SPEC CPU2006

train input sets) by default. As we show in Sec. 4.4, WhirlTool

is quite robust to input set changes.

4.2 WhirlTool analyzer

The WhirlTool analyzer progressively clusters callpoints into

a small number of pools. Clustering uses a distance metric

between pools that reflects how many additional misses are

incurred by clustering them.

Distance metric: WhirlTool computes the distance between

two pools by using their miss rate curves. First, WhirlTool

estimates the combined miss rate curve, i.e., the curve that

would result if both pools were grouped. We have developed

a simple method to compute this curve, presented in Ap-

pendix B. Second, WhirlTool computes the partitioned miss

rate curve, i.e., the curve that results from partitioning capac-

ity between both pools. This results in fewer misses than the

combined curve, since partitioning favors the pool that uses

the cache best.

In principle, we could find the optimal partitioning be-

tween both pools at every size, but in practice doing so is

computationally expensive [9, 52]. Instead, we compute the

convex hulls of each input miss rate curve (a linear-time op-

eration [45]), and then partition the full capacity in a single

pass using convex optimization (i.e., hill climbing). This per-

formance could be practically realized by using partitioning

within each VC to achieve convex performance [10].

On a single interval, we define the distance between two

pools as the area between their combined and partitioned

curves. Fig. 15 shows an example. We combine a cache-

friendly pool (m1) with two other pools (m2 and m3) in the

left and right figures. In the left figure, both m1 and m2 cache

well, so there is little penalty from combining them. This is

reflected in the small difference between their combined and

partitioned miss rate curves. However, in the right figure,

m3 does not cache well, and it thus interferes more with

m1. Combining these pools is a bad idea, since doing so will

add many unnecessary misses to m1. This is reflected in the

larger difference between their combined and partitioned

miss rate curves.

Size

M
P

K
I

Size

M
P

K
I

m1 m2 m3 Combined Partitioned

Figure 15: WhirlTool measures the distance between two

pools as the additional misses incurred by combining the

pools vs. partitioning them separately.

Finally, the distance between two pools is the sum of dis-

tances of their per-interval curves. This way, pools accessed in

non-overlapping intervals have a small distance, even though

they may have very distinct access patterns when active. This

benefits programs that use different data over distinct phases,

as they can use a small number of pools without degradation.

Agglomerative clustering: WhirlTool uses a simple algo-

rithm to cluster callpoints into pools. It first places each call-

point in a separate pool, and computes the pairwise distances
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Figure 16: Speedup of WhirlTool over Jigsaw with 2, 3, and 4 pools. A red dot shows the performance achieved by manual

classification for the applications we ported by hand (Table 2).
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Figure 17: Hierarchical clustering with WhirlTool. Each

graph shows the distance (x-axis) among callpoints and

clusters (y-axis). Colors indicate how WhirlTool clusters

callpoints into 3 pools.

between all pools. Then it proceeds iteratively. Each itera-

tion merges the two closest pools, and computes the distance

of the resulting pool to all the remaining pools. The result

is a hierarchical clustering that gives the callpoint-to-pool

mapping for different numbers of desired pools, as shown in

Fig. 17. This procedure takes O(n2) time with n callpoints,

but we find the runtime acceptable (a few seconds) for the

applications we evaluate, which have 10s-100s of callpoints.

In most applications, we observed that 2-4 pools suffice to

capture most of the benefits of Whirlpool (Sec. 4.4).

4.3 WhirlTool runtime

WhirlTool’s runtime replaces the system’s memory allocator.

On each allocation call, the tool finds the callpoint id and

calls the Whirlpool allocator with the corresponding pool.

Allocations from an unprofiled callpoint use the thread-

private pool. This instrumentation incurs small overheads,

at most 0.01% over all our benchmarks (some of which have

frequent allocations).

4.4 WhirlTool analysis

Sensitivity to the number of pools: Fig. 16 shows how

WhirlTool’s performance changes with the number of pools.

Each group of bars show the performance of a specific ap-

plication over Jigsaw. Each bar in the group shows perfor-

mance for a given number of pools, from 2 to 4. We include

SPEC CPU2006 and single-threaded PBBS applications run-

ning with their largest input sets. WhirlTool uses profiling

data from the train input sets for SPEC CPU2006 and the small

input sets for PBBS applications. For manually-ported appli-

cations (Sec. 3), a dot shows the number of pools used by

manual classification (x-axis) and the performance it achieves

(y-axis). As we can see, performance improves by 5-15% for

several applications, and mis is 38% faster.

In general, moving from 2 to 3 pools improves per-

formance somewhat on a few applications, while 4 pools

shows negligible improvements. Some applications (e.g., gcc,

soplex) show a slight decrease in performance with more

pools. This happens because these applications have signifi-

cant variability, and partitioning their data more finely makes

phase changes somewhat worse. Given these results, we con-

sider 3 pools to be the right tradeoff, and use 3 pools in

subsequent results.

WhirlTool vs. manual classification: Fig. 16 also shows

that WhirlTool matches the performance of manual classi-

fication for most applications, and outperforms it in some

cases (e.g., bzip2). Only cactus performs slightly worse

with automatic classification.

Sensitivity to training data: WhirlTool’s performance is

robust across input sets on most applications. To quantify

this, we compare WhirlTool’s performance when using the

default training input sets (train/small) for profiling vs. the full

input sets used in our experiments (ref/large). WhirlTool’s

performance is only significantly different in 4 out of the

31 applications, shown in Fig. 18. In these applications,

the training inputs result in lower performance than when

using the full inputs, e.g. by 5.5% for leslie and by 6.7%

for omnet. This happens because the training inputs exhibit

different access patterns than the full inputs. However, over all

benchmarks WhirlTool is robust to different inputs, yielding

just 0.4% lower performance on training inputs.
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Figure 18: WhirlTool’s sensitivity to training inputs.
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4.5 WhirlTool evaluation

Fig. 19 and Fig. 20 give two examples of how WhirlTool

achieves similar benefits to manual classification.
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Figure 19: Breakdown of cactus’s performance, energy, and

accesses for different caching schemes.

cactus has two memory regions, only one of which gets

good reuse. WhirlTool correctly identifies these pools, letting

Whirlpool cache the former near the core and bypass the latter

(Fig. 19). Meanwhile, Jigsaw cannot distinguish between

pools and must use more cache banks to retain the working set.

As a result, Whirlpool significantly reduces network traffic

over Jigsaw, and reduces overall data movement energy by

42%. Reducing network traffic also reduces network latency,

and Whirlpool improves performance over Jigsaw by 8.6%.
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Figure 20: Breakdown of SA’s performance, energy, and

accesses for different caching schemes.

SA offers an interesting contrast. Rather than using fewer

banks to reduce network latency over Jigsaw, Whirlpool uses

more banks to reduce cache misses (Fig. 20). WhirlTool

identifies the pools in SA that cache well, and Whirlpool can

thus retain more of the working set and reduce main memory

accesses. But in order to do so, it uses more banks—which

can be seen in the higher network energy. Overall, this is a

good tradeoff, and Whirlpool reduces data movement energy

by 15% over Jigsaw while improving performance by 7.3%.

Single-threaded applications: We now extend these case

studies across many benchmarks. Fig. 21 compares Whirlpool’s

overall performance and data movement energy with S-NUCA,

IdealSPD, Awasthi et al., and Jigsaw over the 31 memory-

intensive applications from SPEC CPU2006 and PBBS.
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Figure 21: Breakdown of overall performance, energy, and

accesses for different caching schemes across all single-

threaded benchmarks.

Individual applications see large improvements, e.g., up to

53% lower data movement energy and 38% speedup in mis.

However, average gains are more muted: Whirlpool reduces

data movement energy over Jigsaw by 8.0%, and improves

performance by 3.9%. As currently coded, many applications

do not expose their memory access heterogeneity across dif-

ferent address regions. With more careful coding, WhirlTool

may be able to extract more heterogeneity and improve per-

formance further. As shown in Fig. 21, Whirlpool achieves

this by (a) placing data closer, which reduces network energy

and latency, (b) caching data that is more likely to hit, and

(c) bypassing more selectively than Jigsaw. By contrast, S-

NUCA with LRU incurs 51% more data movement energy than

Whirlpool and 15% worse performance; S-NUCA with DR-

RIP incurs 50% more data movement energy and 14% worse

performance; IdealSPD incurs 54% more data movement en-

ergy and 18% worse performance; and Awasthi incurs 40%

more data movement energy and 15% worse performance.

However, while S-NUCA variants are generally slower, Ide-

alSPD has a more bimodal behavior: it performs close to

Jigsaw on benchmarks that fit within its private region (e.g.,

bzip2), but performs the worst of all schemes on benchmarks

that do not fit due to unnecessary multi-level lookups that

slow down misses and add data movement energy. Similarly,

Awasthi performs much better than S-NUCA on benchmarks

with small working sets, but performs poorly on benchmarks

that need more than four cache banks (Awasthi’s initial allo-

cation). As a result, Awasthi significantly reduces network

latency and energy but incurs more misses than S-NUCA.

Fig. 21 also shows that, while Whirlpool and Jigsaw both

benefit from bypassing, Whirlpool benefits more because

it can distinguish and bypass pools with no reuse. Without

bypassing, Jigsaw is 0.2% slower, while Whirlpool is 1.2%

slower.

Multi-programmed mixes: We run 20 mixes of randomly-

chosen, memory-intensive SPEC CPU2006 applications, at

both 4 and 16 cores. Fig. 22 shows the distribution of

weighted speedups in both cases. Each line shows the

weighted speedup of a single scheme over the Jigsaw baseline,
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sorted along workload mixes (x-axis) by improvement (in-

verse CDF). Whirlpool outperforms Jigsaw by up to 13% at 4

cores (5.1% gmean), by up to 6.4% at 16 cores (3.0% gmean),

and improves performance consistently. Improvements are

larger with fewer cores because, with more applications, Jig-

saw has many choices to improve cache performance even

with a single VC per application.
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Figure 22: Weighted speedup of Whirlpool over Jigsaw for 4-

and 16-core systems.

Other schemes perform considerably worse. On 4- and

16-core mixes, Whirlpool outperforms S-NUCA by 32%/62%

respectively, DRRIP by 25%/52%, IdealSPD by 30%/50%,

and Awasthi by 18%/25%. This is because Jigsaw gathers

detailed information about each VC over all possible alloca-

tions, allowing it to carefully optimize data placement at each

reconfiguration.

5. Additional Related Work

Awasthi et al. [4] propose a D-NUCA scheme that uses page

coloring to periodically migrate a few most heavily accessed

pages to nearby banks. The scheme uses simple hardware

extensions and an OS runtime, similar to Whirlpool. Because

Awasthi manages individual pages, it doesn’t require tagging

pools. But per-page monitoring also limits the information

Awasthi can gather, and it therefore places pages incremen-

tally using a simple heuristic that can get stuck in local optima

(see Fig. 9). In contrast, Whirlpool monitors pools in detail,

models end-to-end latency, and performs full reconfigura-

tions, achieving lower AMAT.

SLIP [22] is an insertion policy for single-core NUCAs

that seeks to minimize data movement energy. SLIP samples

per-page reuse distance distributions, stores them in main

memory, and uses an energy optimization unit to decide

where to insert lines from different pages. Unlike Jigsaw

and Whirlpool, SLIP does not extend to chips with multiple,

distributed cores. SLIP also incurs significant storage and

logic overheads to decide how far away to insert cache

lines at runtime, as it performs very fine-grained (per-page)

classification. Instead, Whirlpool relies on distinguishing

among the few main classes of data in the program, which

makes online adaptation inexpensive.

Cores 4/16 cores, x86-64 ISA, Nehalem-like OOO, 2 GHz [56]

L1 caches 32 KB, 8-way set-associative, split D/I, 4-cycle latency

L2 caches
128 KB private per-core, 8-way set-associative, inclusive,

6-cycle latency

L3 cache
512 KB per bank, 4-way 52-candidate zcache [54],

9 cycle bank latency

Coherence

protocol

MESI, 64 B lines, in-cache directory, no silent drops;

sequential consistency

NUCA NoC
5×5/9×9 mesh, 128-bit flits and links, X-Y routing,

3-cycle pipelined routers, 2-cycle links

Memory
1/4 MCUs, 1 channel/MCU, 120 cycles zero-load latency,

12.8 GB/s per channel

Table 3: Configuration of the simulated 16-core CMP.

Recent work has studied page placement for systems with

heterogeneous and non-uniform main memory (NUMA) [1,

23, 69]. NUMA techniques also have different goals and

constraints than NUCA: main memory is larger and has

significantly lower bandwidth, so these designs primarily seek

to balance bandwidth over network distance and capacity, and

reconfigurations are much more infrequent. Agarwal et al. [2]

propose an API that lets programmers give hints on whether

allocated memory should be placed in bandwidth- or capacity-

optimized memory. Unlike this work, Whirlpool includes a

fully-automatic variant and places data dynamically.

6. Conclusions

We have presented Whirlpool, a classification-based approach

to manage distributed caches. Whirlpool statically classifies

data into different pools, which allows dynamic policies to

tune the cache to each pool. Unlike prior work, Whirlpool con-

veys semantic, application-level information about memory

usage without fixing the caching policy. We have presented a

simple API that allows programmers to classify data, and a

profiling tool that works in unmodified binaries and achieves

similar performance to manual classification. By leveraging

this rich information, Whirlpool significantly outperforms

prior work.

A. Experimental Methodology

We perform microarchitectural, execution-driven simulation

using zsim [56]. We simulate systems with 4 and 16 OOO

cores with parameters in Table 3. The 4-core system has a

NUCA cache with 5×5 with 512 KB banks (3.1 MB/core),

as shown in Fig. 1. The 16-core system has 9×9 banks

(2.5 MB/core), as shown in Fig. 12. We compute data move-

ment (uncore) energy using McPAT 1.1 [42] at 22 nm for

caches and NoC, and Micron DDR3L datasheets [46] for

main memory. Additionally, we evaluated systems with

stream prefetchers: Whirlpool’s performance relative to other

schemes is unchanged. We do not include prefetchers because

they add undesirable data movement energy, especially in

mixes.
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We compare Whirlpool with D-NUCA and S-NUCA con-

figurations. Jigsaw and Whirlpool both use latency-aware ca-

pacity allocation and trading data placement [11]. For private-

baseline D-NUCAs, we model an idealized shared-private

D-NUCA scheme, IdealSPD, which we grant additional ca-

pacity. In IdealSPD, each core has a private 1.5 MB L3 that

replicates the 3 closest NUCA banks, followed by a fully-

provisioned directory and an exclusive, S-NUCA L4. L4 banks

act as a victim cache and are accessed in parallel with the di-

rectory to minimize latency. IdealSPD upper-bounds D-NUCA

schemes that partition the LLC between private and shared re-

gions, as private (L3) regions do not reduce the capacity of the

shared (L4) region. Herrero et al. [30] show that this idealized

scheme always outperforms several state-of-the-art private-

baseline D-NUCA schemes that include shared-private parti-

tioning, selective replication, and adaptive spilling (DCC [29],

ASR [6], and ECC [30]), often significantly (up to 30%). For

shared-baseline D-NUCAs, we compare against Awasthi et

al. [4], discussed in Sec. 5. We have implemented Awasthi

as proposed, sweeping implementation parameters αA, αB

to find the values that perform best. Other shared-baseline

D-NUCAs use placement heuristics that compare unfavor-

ably to Awasthi and Whirlpool; e.g., R-NUCA [28] achieves

6.8%/7.2% lower performance than Awasthi on 4-/16-core

mixes of SPEC CPU2006.

We use SPEC CPU2006 and PBBS [60] apps. In single-

program experiments, SPEC apps are executed for 10 B in-

structions after fast-forwarding 20 B instructions, and PBBS

apps are fast-forwarded to the start of their region of inter-

est, and run for the full region. We consider the applica-

tions with >5 L2 MPKI: 15 from SPEC CPU2006 (bzip2,

gcc, mcf, milc, zeusmp, cactusADM, leslie3d, soplex,

GemsFDTD, libquantum, lbm, astar, omnetpp, sphinx3, and

xalancbmk) and 16 from PBBS (all but nbody).

We also simulate mixes of single-threaded SPEC CPU2006

apps, using a fixed-work methodology similar to prior

work [9, 31, 33]: we run random mixes with 1 B instruc-

tions per app after fast-forwarding for 20 B instructions. All

apps are kept running until all finish 1 B instructions, and we

only consider the first 1 B instructions of each app.

B. Modeling Combined Miss Rate Curves

As discussed in Sec. 4, WhirlTool’s distance metric needs to

estimate the combined miss rate curve of several callpoints.

Several prior models predict shared cache interference [15, 17,

25, 66], but these are somewhat complex and computationally

expensive. We instead develop a simpler model that lets

WhirlTool rapidly estimate the effect of combining pools.

We model the combined miss rate curve using the flow

of lines through the cache. For simplicity, consider LRU

replacement. The idea behind flow is that lines enter the

cache at MRU, and are pushed towards LRU by other lines

entering the cache, until they are eventually evicted. Flow is

the rate that lines are being pushed towards LRU. However,

flow is not constant—hits promote lines rather than evicting

them, so flow decreases as lines hit (see Fig. 23). Hence, the

flow at a given point in the miss rate curve is equal to the

miss rate at that size.

Flow is useful because it gives a simple way to combine

miss rate curves: when two pools are merged, accesses from

either pool push lines from both pools towards LRU. In other

words, flow is additive. But the rate at which lines are pushed

depends on both their fraction of flow—infrequently-accessed

pools have little effect on the combined miss rate curve—

and how far they have already been pushed. Listing 1 gives

pseudocode for the model.

def combineMissCurves(m1, m2):

s1, s2 = 0, 0

for s = 0 to N:

m[s] = m1[s1] + m2[s2]

s1 += m1[s1] / m[s]

s2 += m2[s2] / m[s]

return m

Listing 1: Simple model for combining miss rate curves.

One way to think about this model is that it has a single

“write head” at s and two “read heads” at s1 and s2. At each

step, it writes m by reading the input miss rate curves at m1

and m2, then moves the read heads through their input curves

according to their relative flows. Fig. 23a shows an example.

Size

M
is

s
 R

a
te

(a) Combining m1 and m2.

Size

M
is

s
 R

a
te

(b) Combining similar pools.

m1 m2 Combined

Figure 23: WhirlTool’s simple model to combine miss rate

curves.

This model has several desirable properties. It is commuta-

tive and associative, so the order in which pools are combined

does not matter. It will correctly recombine similar access

patterns into a similar result, so the model is insensitive to

arbitrary divisions of single pool into subpools (see Fig. 23b).

It also produces small changes when adding a pool that is

accessed infrequently.
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