Learning to Deceive with Attention-Based Explanations

Danish Pruthi1, Mansi Gupta2, Bhuwan Dhingra1, Graham Neubig1, Zachary C. Lipton1

1Carnegie Mellon University, 2Petuum Inc.
Pittsburgh, USA

ddanish@cs.cmu.edu, mgupta1410@gmail.com, {bdhingra, gneubig}@cs.cmu.edu, zlipton@cmu.edu

Abstract

Attention mechanisms are ubiquitous components in neural architectures applied to natural language processing. In addition to yielding gains in predictive accuracy, attention weights are often claimed to confer interpretability, purportedly useful both for providing insights to practitioners and for explaining why a model makes its decisions to stakeholders. We call the latter use of attention mechanisms into question by demonstrating a simple method for training models to produce deceptive attention masks. Our method diminishes the total weight assigned to designated impermissible tokens, even when the models can be shown to nevertheless rely on these features to drive predictions. Across multiple models and tasks, our approach manipulates attention weights while paying surprisingly little cost in accuracy. Through a human study, we show that our manipulated attention-based explanations deceive people into thinking that predictions from a model biased against gender minorities do not rely on the gender. Consequently, our results cast doubt on attention’s reliability as a tool for auditing algorithms in the context of fairness and accountability.

1 Introduction

Since their introduction as a method for aligning inputs and outputs in neural machine translation, attention mechanisms (Bahdanau et al., 2014) have emerged as effective components in various neural network architectures. Attention works by aggregating a set of tokens via a weighted sum, where the attention weights are calculated as a function of both the input encodings and the state of the decoder.

Because attention mechanisms allocate weight among the encoded tokens, these coefficients are sometimes thought of intuitively as indicating which tokens the model focuses on when making a particular prediction. Based on this loose intuition, attention weights are often claimed to explain a model’s predictions. For example, a recent survey on attention (Galassi et al., 2019) remarks:

“By inspecting the networks attention, ... one could attempt to investigate and understand the outcome of neural networks. Hence, weight visualization is now common practice.”

In another work, De-Arteaga et al. (2019) study gender bias in machine learning models for occupation classification. As machine learning is increasingly used in hiring processes for tasks including resume filtering, the potential for bias on the basis of gender raises the spectre that automating this process could lead to social harms. De-Arteaga et al. (2019) use attention over gender-revealing tokens (e.g., ‘she’, ‘he’, etc.) to verify the biases in occupation classification models—stating that “the attention weights indicate which tokens are most predictive”. Similar claims about attention’s utility for interpreting models’ predictions are common in the literature (Li et al., 2016; Xu et al., 2015; Choi et al., 2016; Xie et al., 2017; Martins and Astudillo, 2016; Lai and Tan, 2019).

In this paper, we question whether attention scores necessarily indicate features that influence a model’s predictions. Through a series of exper-

<table>
<thead>
<tr>
<th>Attention</th>
<th>Biography</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>Ms. X practices medicine in Memphis, TN and is affiliated ...</td>
<td>Physician</td>
</tr>
<tr>
<td>Ours</td>
<td>Ms. X speaks English and Spanish.</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Example of an occupation prediction task where attention-based explanation (highlighted) has been manipulated to whitewash problematic tokens.
imements on diverse classification and sequence-to-sequence tasks, we show that attention scores are surprisingly easy to manipulate. We design a simple training scheme whereby the resulting models appear to assign little attention to a specified set of impermissible tokens while continuing to rely upon those features for prediction. The ease with which attention can be manipulated without significantly affecting performance suggests that even if a vanilla model’s attention weights conferred some insight (still an open and ill-defined question), these insights would rely on knowing the objective on which models were trained.

Our results present troublesome implications for proposed uses of attention in the context of fairness, accountability, and transparency. For example, malicious practitioners asked to justify how their models work by pointing to attention weights could mislead regulators with this scheme. For instance, looking at manipulated attention-based explanation in Table 1, one might (incorrectly) assume that the model does not rely on the gender prefix. To quantitatively study the extent of such deception, we conduct studies where we ask human subjects if the biased occupation classification models (like the ones audited by Arteaga et al. (2019)) rely on gender related information. We find that our manipulation scheme is able to deceive human annotators into believing that manipulated models do not take gender into account, whereas the models are heavily biased against gender minorities (see §5.2).

Lastly, practitioners often overlook the fact that attention is typically not applied over words but over final layer representations, which themselves capture information from neighboring words. We investigate the mechanisms through which the manipulated models attain low attention values. We note that (i) recurrent connections allow information to flow easily to neighboring representations; (ii) for cases where the flow is restricted, models tend to increase the magnitude of representations corresponding to impermissible tokens to offset the low attention scores; and (iii) models additionally rely on several alternative mechanisms that vary across random seeds (see §5.3).

2 Related Work

Many recent papers examine whether attention is a valid explanation or not. Jain et al. (2019) identify alternate adversarial attention weights after the model is trained that nevertheless produce the same predictions, and hence claim that attention is not explanation. However, these attention weights are chosen from a large (infinite up to numerical precision) set of possible values and thus it is not surprising that multiple weights produce the same prediction. Moreover since the model does not actually produce these weights, they would never be relied on as explanations in the first place. Similarly, Serrano and Smith (2019) modify attention values of a trained model post-hoc by hard-setting the highest attention values to zero. They find that the number of attention values that must be zeroed out to alter the model’s prediction is often too large, and thus conclude that attention is not a suitable tool to for determining which elements should be attributed as responsible for an output. In contrast to these two papers, we manipulate the attention via the learning procedure, producing models whose actual weights might deceive an auditor.

In parallel work to ours, Wiegreffe and Pinter (2019) examine the conditions under which attention can be considered a plausible explanation. They design a similar experiment to ours where they train an adversarial model, whose attention distribution is maximally different from the one produced by the base model. Here we look at a related but different question of how attention can be manipulated away from a set of impermissible tokens. We show that in this setting, our training scheme leads to attention maps which are more deceptive, since people find them to be more believable explanations of the output (see §5.2). We also extend our analysis to sequence-to-sequence tasks, and a broader set of models, including BERT, as well as identify mechanisms by which the manipulated models continue to rely on the impermissible tokens despite assigning low attention to them.

Lastly, several papers deliberately train attention weights by introducing an additional source of supervision to improve predictive performance. In some of these papers, the supervision comes from known word alignments for machine translation (Liu et al., 2016; Chen et al., 2016), or by aligning human eye-gaze with model’s attention for sequence classification (Barrett et al., 2018).

3 Manipulating Attention

Let $S = w_1, w_2, \ldots, w_n$ denote an input sequence of n words. We assume that for each task, we are given a pre-specified set of impermissible words
Table 2: Example sentences from each classification task, with highlighted impermissible tokens and their support.

<table>
<thead>
<tr>
<th>Dataset (Task)</th>
<th>Input Example</th>
<th>Impermissible Tokens (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommonCrawl Biographies</td>
<td>Ms. practices medicine in Memphis, TN and is affiliated with ... Ms. speaks English and Spanish.</td>
<td>Gender Indicators (6.5%)</td>
</tr>
<tr>
<td>Physician vs Surgeon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wikipedia Biographies</td>
<td>After that, Austen was educated at home until she went to boarding school with Cassandra early in 1785</td>
<td>Gender Indicators (7.6%)</td>
</tr>
<tr>
<td>Gender Identification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST + Wikipedia (Sentiment Analysis)</td>
<td>Good fun, good action, good acting, good dialogue, good pace, good cinematography. Helen Maxine Lamond Reddy (born 25 October 1941) is an Australian singer, actress, and activist.</td>
<td>SST sentence (45.5%)</td>
</tr>
<tr>
<td>Reference Letters (Acceptance Prediction)</td>
<td>It is with pleasure that I am writing this letter in support of ... I highly recommend her for a place in your institution. Percentile-99.0 Rank: Extraordinary.</td>
<td>Percentile, Rank (1.6%)</td>
</tr>
</tbody>
</table>

When dealing with models that employ multi-headed attention, which use multiple different attention vectors at each layer of the model (Vaswani et al., 2017) we can optimize the mean value of our penalty as assessed over the set of attention heads \mathcal{H} as follows:

$$
\mathcal{R} = -\frac{1}{|\mathcal{H}|} \sum_{h \in \mathcal{H}} \log(1 - \alpha_h^T \mathbf{m}).
$$

When a model has many attention heads, an auditor might not look at the mean attention assigned to certain words but instead look head by head to see if any among them assigns a large amount of attention to impermissible words. Anticipating this, we also explore a variant of our approach for manipulating multi-headed attention where we penalize the maximum amount of attention paid to impermissible words (among all heads) as follows:

$$
\mathcal{R} = -\lambda \cdot \min_{h \in \mathcal{H}} \log(1 - \alpha_h^T \mathbf{m}).
$$

For cases where the impermissible set of tokens is unknown apriori, one can plausibly use the top few highly attended tokens as a proxy.

4 Experimental Setup

We study the manipulability of attention on four binary classification problems, and four sequence-to-sequence tasks. In each dataset, (in some, by design) a subset of input tokens are known apriori to be indispensable for achieving high accuracy.

4.1 Classification Tasks

Occupation classification We use the biographies collected by De-Arteaga et al. (2019) to study bias against gender-minorities in occupation classification models. We carve out a binary classification task of distinguishing between surgeons and (non-surgeon) physicians from the multi-class
occupation prediction setup. We chose this sub-
task because the biographies of the two profes-
sions use similar words, and a majority of sur-
geons (> 80%) in the dataset are male. We further
downsampling minority classes—female surgeons,
and male physicians—by a factor of ten, to en-
courage models to use gender related tokens. Our
models (described in detail later in § 4.2) attain
96.4% accuracy on the task, and are reduced to
93.8% when the gender pronouns in the bio-
graphics are anonymized. Thus, the models (trained
on unanonymized data) make use of gender indica-
tors to obtain a higher task performance. Con-
sequently, we consider gender indicators as imper-
missible tokens for this task.

Pronoun-based Gender Identification We
construct a toy dataset from Wikipedia comprised
of biographies, in which we automatically label
biographies with a gender (female or male) based
solely on the presence of gender pronouns. To do
so, we use a pre-specified list of gender pronouns.
Biographies containing no gender pronouns, or
pronouns spanning both classes are discarded.
The rationale behind creating this dataset is that
due to the manner in which the dataset was
created, attaining 100% classification accuracy
is trivial if the model uses information from the
pronouns. However, without the pronouns, it may
not be possible to achieve perfect accuracy. Our
models trained on the same data with pronouns
anonymized, achieve at best 72.6% accuracy.

Sentiment Analysis with Distractor Sentences
We use the binary version of Stanford Sentimen-
t Treebank (SST) (Socher et al., 2013), com-
prised of 10,564 movie reviews. We append
one randomly-selected “distractor” sentence to
each review, from a set of opening sentences of
Wikipedia pages. Here, without relying upon the
tokens in the SST sentences, a model should not
be able to outperform random guessing.

Graduate School Reference Letters We obtain
a dataset of recommendation letters written for the
purpose of admission to graduate programs. The
task is to predict whether the student, for whom
the letter was written, was accepted. The letters
include students’ ranks and percentile scores as
marked by their mentors, which admissions com-
mittee members rely on. Indeed, we notice accu-

1Opening sentences tend to be declarative statements of
fact and typically are sentiment-neutral.
For the task of bigram flipping, the input lengths output vocabulary is fixed to a we programmatically generate for each output token). For each of the three tasks, the gold alignments act as imperfectly know the input tokens responsible. Thus, for these tasks, the gold alignments act as impermissible tokens in our setup (which are different for these tasks, the gold target to source word-level alignment is unavailable, we rely on the Fast Align toolkit (Dyer et al., 2013) to align target words to their source counterparts. We use these aligned words as impermissible tokens.

For all sequence-to-sequence tasks, we use an encoder-decoder architecture. Our encoder is a bidirectional GRU, and our decoder is a unidirectional GRU, with dot-product attention over source tokens, computed at each decoding timestep. We also run ablation studies with (i) no attention, i.e. just using the last (or the first) hidden state of the encoder; and (ii) uniform attention, i.e. all the source tokens are uniformly weighted.

4.3 Sequence-to-sequence Tasks

Previous studies analysing the interpretability of attention are all restricted to classification tasks (Jain et al., 2019; Serrano and Smith, 2019; Wiegreffe and Pinter, 2019). Whereas, attention mechanism was first introduced for, and reportedly leads to significant gains in, sequence-to-sequence tasks. Here, we analyse whether for such tasks attention can be manipulated away from its usual interpretation as an alignment between output and input tokens. We begin with three synthetic sequence-to-sequence tasks that involve learning simple input-to-output mappings.

Bigram Flipping The task is to reverse the bigrams in the input \(\{w_1, w_2 \ldots w_{2n-1}, w_{2n}\} \rightarrow \{w_{2n}, w_{2n-1}, \ldots w_1\} \).

Sequence Copying The task requires copying the input sequence \(\{w_1, w_2 \ldots w_{n-1}, w_n\} \rightarrow \{w_1, w_2 \ldots w_{n-1}, w_n\} \).

Sequence Reversal The goal here is to reverse the input sequence \(\{w_1, w_2 \ldots w_{n-1}, w_n\} \rightarrow \{w_n, w_{n-1} \ldots w_2, w_1\} \).

The motivation for evaluating on the synthetic tasks is that for any given target token, we precisely know the input tokens responsible. Thus, for these tasks, the gold alignments act as impermissible tokens in our setup (which are different for each output token). For each of the three tasks, we programatically generate 100K random input training sequences (with their corresponding target sequences) of length up to 32. The input and output vocabulary is fixed to a 1000 unique tokens. For the task of bigram flipping, the input lengths are restricted to be even. We use two sets of 100K unseen random sequences from the same distribution as the validation and test set.

5 Results and Discussion

In this section we examine how lowering attention affects task performance (§ 5.1). We then present experiments with human participants to quantify the deception with manipulated attention (§ 5.2). Lastly, we identify alternate workarounds through which models preserve task performance (§ 5.3).

5.1 Attention mass and task performance

For the classification tasks, we experiment with the loss coefficient \(\lambda \in \{0, 0.1, 1\} \). In each experiment, we measure the (i) attention mass: the sum of attention values over the set of impermissible tokens averaged over all the examples, and (ii) test accuracy. During the course of training (i.e. after each epoch), we arrive at different models from which we choose the one whose performance is within 2% of the original accuracy and provides the greatest reduction in attention mass on impermissible tokens. This is done using the development set, and the results on the test set from the chosen model are presented in Table 3. Across most tasks, and models, we find that our manipulation scheme severely reduces the attention mass on unseen random sequences from the same distribution as the validation and test set.

Machine Translation (English to German)

Besides synthetic tasks, we also evaluate on English to German translation. We use the Multi30K dataset, comprising of image descriptions (Elliott et al., 2016). Since the gold target to source word-level alignment is unavailable, we rely on the Fast Align toolkit (Dyer et al., 2013) to align target words to their source counterparts. We use these aligned words as impermissible tokens.

For all sequence-to-sequence tasks, we use an encoder-decoder architecture. Our encoder is a bidirectional GRU, and our decoder is a unidirectional GRU, with dot-product attention over source tokens, computed at each decoding timestep. We also run ablation studies with (i) no attention, i.e. just using the last (or the first) hidden state of the encoder; and (ii) uniform attention, i.e. all the source tokens are uniformly weighted.

All data and code will be released on publication.

2 These tasks have been previously used in the literature to assess the ability of RNNs to learn long-range reorderings and substitutions (Grefenstette et al., 2015).

3 Implementation details: the encoder and decoder token embedding size is 256, the encoder and decoder hidden dimension size is 512, and the teacher forcing ratio is 0.5. We use top-1 greedy strategy to decode the output sequence.

4 All data and code will be released on publication.
Table 3: Accuracy of various classification models along with their attention mass (A.M.) on impermissible tokens I, with varying values of the loss coefficient λ. The first row for each model class represents the case when impermissible tokens I for the task are deleted/anonymized. For most models, and tasks, we can severely reduce attention mass on impermissible tokens while preserving original performance ($\lambda = 0$ implies no manipulation).

Table 4: Performance of sequence-to-sequence models and their attention mass (A.M.) on impermissible tokens I, with varying values of the loss coefficient λ. Similar to classification tasks, we can severely reduce attention mass on impermissible tokens while retaining original performance. All values are averaged over five runs.

impermissible tokens compared to models without any manipulation (i.e. when $\lambda = 0$). This reduction comes at a minor, or no, decrease in task accuracy. Note that the models can not achieve performance similar to the original model (as they do), unless they rely on the set of impermissible tokens. This can be seen from the gap between models that do not use impermissible tokens ($I\times$) from ones that do ($I\checkmark$).

The only outlier to our findings is the SST+Wiki sentiment analysis task, where we observe that the manipulated Embedding and BiLSTM models reduce the attention mass but also lose accuracy. We speculate that these models are under parameterized and thus jointly reducing attention mass and retaining original accuracy is harder. The more expressive BERT obtains an accuracy of over 90% while reducing the maximum attention mass over the movie review from 96.2% to 10^{-3}%.

5.2 Human Study

We present three human subjects a series of inputs and outputs from the BiLSTM models, trained to predict occupation (physician or surgeon) given
a short biography.\(^5\) We highlight the input tokens as per the attention scores from three different schemes: (i) original dot-product attention, (ii) adversarial attention from Wiegreffe and Pinter (2019), and, (iii) our proposed attention manipulation strategy. We ask human annotators (Q1): Do you think that this prediction was influenced by the gender of the individual? Each participant answers either “yes” or “no” for a set of 50 examples from each of the three attention schemes.\(^6\)

After looking at 50 examples from a given attention scheme, we inquire about trustworthiness of the attention scores (Q2): Do you believe the highlighted tokens capture the factors that drive the models’ prediction? They answer the question on a scale of 1 to 4, where 1 denotes that the highlighted tokens do not determine the models’ prediction, whereas 4 implies they significantly determine the models’ prediction. We deliberately ask participants once (towards the end) about the trustworthiness of attention-based explanations, in contrast to polling after each example, as it requires multiple examples to assess whether the explanations capture factors that are predictive.

Results We find that for the original dot-product attention, annotators labeled 66% of predictions to be influenced by gender. Whereas for the other two attention schemes, none of the predictions were marked to be influenced by gender (see Table 5). This is despite all three models achieving roughly the same high accuracy (96%) which relies on gender information. This demonstrates the efficacy of our manipulation scheme—predictions from models biased against gender minorities are perceived (by human participants) as not being influenced by gender. Further, our manipulated explanations receive a trustworthiness score of 2.67 (out of 4), only slightly lower than the score for the original explanations, and significantly better than the adversarial attention. We found that the KL divergence term in training adversarial attention (Eq. 1) encourages all the attention mass to concentrate on a single uninformative token for most examples, and hence was deemed as less trustworthy by the annotators (see Table 5, more examples in appendix). By contrast, our manipulation scheme only reduces attention mass over

<table>
<thead>
<tr>
<th>Attention</th>
<th>Example</th>
<th>Q1</th>
<th>Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>Ms. X practices medicine and specializes in urological surgery</td>
<td>66% (yes)</td>
<td>3.00</td>
</tr>
<tr>
<td>Adversarial (Wiegreffe and Pinter, 2019)</td>
<td>Ms. X practices medicine and specializes in urological surgery</td>
<td>0% (yes)</td>
<td>1.00</td>
</tr>
<tr>
<td>Ours</td>
<td>Ms. X practices medicine and specializes in urological surgery</td>
<td>0% (yes)</td>
<td>2.67</td>
</tr>
</tbody>
</table>

Table 5: Results to questions posed to human participants. Q1: Do you think that this prediction was influenced by the gender of the individual? Q2: Do you believe the highlighted tokens capture the factors that drive the models prediction? See § 5.2 for discussion.

We identify two mechanisms by which the models cheat, obtaining low attention values while remaining accurate.

Models with recurrent encoders can simply pass information across tokens through recurrent connections, prior to the application of attention. To measure this effect, we hard-set the attention values corresponding to impermissible words to zero after the manipulated model is trained, thus clipping their direct contributions for inference. For gender classification using the BiLSTM model, we are still able to predict over 99\% of instances correctly, thus confirming a large degree of information flow to neighboring representations.\(^7\) In contrast, the Embedding model (which has no means to pass the information pre-attention) attains only about 50\% test accuracy after zeroing the attention values for gender pronouns. We see similar evidence of passing around information in sequence-to-sequence models, where certain manipulated attention maps are off by one or two positions from the gold alignments (see Figure 2).

Models restricted from passing information prior to the attention mechanism tend to increase the magnitude of the representations corresponding to impermissible words to compensate for the

\(^5\) The participating subjects are graduate students, proficient in English, and unaware of our work.

\(^6\) We shuffled the order of sets among the three participants to prevent any ordering bias. Full details of the instructions presented to the annotators are in the appendix.

\(^7\) A recent study (Brunner et al., 2019) similarly observes a high degree of “mixing” of information across layers in Transformer models.
Figure 2: For three sequence-to-sequence tasks, we plot the original attention map on the left, followed by the attention plots of two manipulated models. The only difference between the manipulated models for each task is the (random) initialization seed. Different manipulated models resort to different alternative mechanisms.

Figure 3: For gender identification task, the norms of embedding vectors corresponding to impermissible tokens increase considerably in Embedding+Attention model to offset the low attention values. This is not the case for BiLSTM+Attention model as it can pass information due to recurrent connections.

We also notice that differently initialized models attain different alternative mechanisms. In low attention values. This effect is illustrated in Figure 3, where the L2 norm of embeddings for impermissible tokens increase considerably for the Embedding model during training. We do not see increased embedding norms for the BiLSTM model, as this is unnecessary due to the model’s capability to move around relevant information.

We also notice that differently initialized models attain different alternative mechanisms. In Figure 2, we present attention maps from the original model, alongside two manipulated models initialized with different seeds. In some cases, the attention map is off by one or two positions from the gold alignments. In other cases, all the attention is confined to the first hidden state. In such cases, manipulated models are similar to a no-attention model, yet they offer better performance. In preliminary experiments, we found a few such models that outperform the no-attention baseline, even when the attention is turned off during inference. This suggests that attention offers benefits during training, even if it is not used during inference.

6 Conclusion

Amidst practices that perceive attention scores to be an indication of what the model focuses on, we show that attention scores are easily manipulable. Our simple training scheme produces models with significantly reduced attention mass over tokens known a priori to be useful for prediction, while continuing to use them. Our results raise concerns about the potential use of attention as a tool to audit algorithms, as malicious actors could employ similar techniques to mislead regulators.
References

