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Abstract. Type-preserving (or typed) compilation uses typing deriva-
tions to certify correctness properties of compilation. We have designed
and implemented a type-preserving compiler for a simply-typed logic
programming language we call T-Prolog. The crux of our approach is a
new certifying abstract machine which we call the Typed Warren Ab-
stract Machine (TWAM). The TWAM has a dependent type system
strong enough to specify the semantics of a logic program in the logical
framework LF. We present a soundness metatheorem which constitutes a
partial correctness guarantee: well-typed programs implement the logical
signature specified by their type. This metatheorem justifies our design
and implementation of a certifying compiler from T-Prolog to TWAM.

1 Introduction

Compiler verification is important because compilers are essential and because
compiler bugs are easy to make, yet often difficult to catch. Most work on com-
piler verification has been done in the setting of imperative or functional pro-
gramming; little has been done for logic programming.

Compiler verification is an equally interesting problem in the case of logic
programming. Logic programs are often easier to write correctly than programs
in other paradigms, because a logic program is very close to being its own spec-
ification. However, the correctness advantages of logic programming cannot be
fully realized without compiler verification. Assuring compiler correctness is of
interest for logic programming given the scale of realistic language implementa-
tions; for example, SWI-Prolog is estimated at over 600,000 lines of code [27].

Certifying compilation [18] is an approach to verification wherein a compiler
outputs a formal proof (in our case, type information) that the compiled pro-
gram satisfies some desired property. Certifying compilation, unlike conventional
verification, has the advantage that the certificates can be distributed with the
compiled code and checked independently by third parties, but the flip side is
that compiler bugs are not found until the compiler sees a program that elicits
the bug. In the worst case, bugs might be found by the compiler’s users, rather
than its developers.

In most certifying compilation [18] work, an additional disadvantage is that
dynamic correctness is not certified, only type and memory safety. In contrast,
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we certify that dynamic behavior is sound (but not necessarily complete) w.r.t.
to a source semantics given by a signature Σ in the logical framework LF [10]:

Theorem 1(Soundness): If query ?-G. succeeds, there is a proof of G in LF.
This theorem is most meaningful when the source language corresponds

closely to proof search in LF. We introduce such a language, called T-Prolog,
obtained by removing non-logical features (e.g. cut, negation-as-failure) from
Prolog and adding both simple types and an occurs check to rule out infinite
terms. Because the semantics of LF are in close harmony with the semantics of
T-Prolog, soundness w.r.t LF naturally encompasses (partial) dynamic correct-
ness for T-Prolog. This semantics abstracts away operational details of T-Prolog
semantics such as order of execution (and thus termination). While it would
certainly be desirable to ensure execution order and termination are compiled
correctly, consider common applications of logic programming such as proof/type
checking or proof search. Soundness w.r.t. to LF signatures often suffices to state
correctness properties for such programs, e.g.: “Every program accepted by the
typechecker follows from the typing rules.” Especially when we are interested
in verifying the source program itself, we are more often interested in verify-
ing soundness than completeness. Since we certify that compilation preserves
soundness, any soundness theorems for the source transfer to the compiled code.

The heart of this work is the development of our compilation target, the
Typed Warren Abstract Machine (TWAM), a dependently-typed certifying ab-
stract machine for logic programs inspired by the Warren Abstract Machine
(WAM) [26]. TWAM diverges from WAM in several ways to aid in formaliza-
tion: (1) we use continuation-passing style for success continuations instead of
a stack and (2) we sometimes replace compound instructions (such as those for
managing backtracking) with a smaller set of simpler, more orthogonal instruc-
tions. As formalized and proved in Section 3, soundness of the TWAM type
system says well-typed programs satisfy Theorem 1: well-typed programs are
sound proof search procedures for their LF signature. We have implemented a
compiler from T-Prolog to TWAM and an interpreter for the TWAM bytecode,
which we have tested on a small library. The result is a certifying compiler with
a special-purpose proof checker as its trusted core: the TWAM typechecker.

Prerequisites Due to space constraints, we assume familiarity with LF [10] and
the WAM. Unfamiliar readers may be interested in our much-extended paper [3],
which has a gentler introduction, proofs, full definitions (abridged here), and a
simply-typed WAM. Aı̈t-Kaci [1] provides a readable treatment of the WAM.

2 Certifying Compilation in Proof-Passing Style

We briefly demonstrate (Figure 1) the T-Prolog source syntax and the extraction
of an LF signature Σ from T-Prolog. We consider addition on the Peano naturals
as a running example, i.e., a predicate plus(X,Y,Z) that holds when X+Y = Z.
We write 0 and 1+ for the Peano natural constructors. A T-Prolog program
consists of standard Prolog syntax plus type annotations. Throughout the paper,
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we write vectors in bold, e.g.; a below. Throughout, a is a simple (inductive)
type in T-Prolog while A is an LF type family.

– A type a in T-Prolog translates to an LF constant a : type.
– A constructor c : a→ a translates to an LF constant of the same type.
– A predicate p : a→ prop translates to an LF constant p : a→ type.
– A clause C of form G :- SG1, . . . ,SGn. translates to an LF constant of de-

pendent function type C : Π∆.Π SG.G where ∆ consists of the free variables
of the clause and SG consists of one argument for each subgoal.

– Executing a query ?-G. translates to searching for a proof of G.

nat:type. nat:type.

0:nat. 0:nat.

1:nat +→ nat. 1+:nat → nat.

plus:nat → nat → nat → prop. Plus:nat → nat → nat → type.

plus(0,X,X). Plus-Z:ΠX:nat. Plus 0 X X.

plus(1+(X),Y,1+(Z)) :- Plus-S:ΠX:nat. ΠY:nat. ΠZ:nat.

plus(X,Y,Z). ΠD:Plus X Y Z.

Plus (1+ X) Y (1+ Z).

Fig. 1. Example T-Prolog program and LF signature

The TWAM certification approach can be summed up in a slogan:

Proof-Carrying Code + Programming As Proof Search = Proof-Passing Style

Proof-carrying code is the technique of packaging compiled code with a formal
proof that the code satisfies some property. Previous work [18] has used proof-
carrying code to build certifying compilers which produce proofs that the output
programs do not segfault. Our insight is that by combining this technique with
the programming-as-proof-search paradigm that underlies logic programming,
our compiler can produce proofs of a much stronger property: partial dynamic
correctness (Theorem 1).

A TWAM program must contain enough information that the TWAM type-
checker can ensure all terminating runs of the program satisfy Theorem 1. We
achive this by statically ensuring that whenever each proof search procedure p
returns, the corresponding predicate P will have a proof in LF. This amounts
to (1) annotating each return point with the corresponding LF proof term and
(2) reasoning statically about constraints on T-Prolog terms with dependent
singleton types S(M : a) (S(M:a) in ASCII) containing exactly the values that
represent some LF term M of simple type a. Singleton typing information is
needed to typecheck almost any LF proof term. For example, an application of
Plus-Z only checks if we statically know the first argument is 0 and that the
second and third arguments are equal, all of which are learned during unification.

This proof-passing style of programming is a defining feature of the TWAM
type system. It is worth noting that these proofs never need to inspected at run-
time and thus can be (and in our implementation, are) erased before execution.
Thus certification adds no runtime overhead.
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Keywords type and prop are distinguished solely for aesthetic purposes: in
the theory, they are identical.

3 The Typed WAM (TWAM)

Our core theoretical contributions are the design and metatheory of a certifying
abstract machine, the TWAM. In this section we present the dependently-typed
TWAM and prove (Section 3.4) that it provides partial correctness guarantees.

3.1 Syntax

instructions ι ::= succeed[M : A] | mov rd, op | jmp op | put str c, r
| unify var r, x : a | unify val r | get val r1, r2
| put var r, x : a | close rd, re, (`C M)| push bt re, (`

C M)
| put tuple r, n | set val r | proj rd, rs, i

instruction sequences I ::= · | ι; I
trails,frames,trails T ::= 〈〉 | (tf :: T ) tf ::= (wcode, wenv, tr) tr ::= 〈〉 | (x:a@`H) :: tr
code sections,heaps C ::= {`C1 7→ vC1 , . . . , `

C
n 7→ vCn } H ::= {`H1 7→ vH1 , . . . , `

H
n 7→ vHn }

stores S ::= (C,H)
heap values vH ::= FREE[x : a] | BOUND `H | c〈`H1 , . . . , `Hn 〉

| close(wcode, wenv) | (w)
code values vC ::= code[Πx : A.Γ ](I)
word values w ::= `C | `H | w M | λx : A.w
register files R ::= {r0 7→ w0, . . . , rn 7→ wn}
machines m ::= (∆,T, S,R, I) | write(∆,T, S,R, I, c, `, `)

| read(∆,T, S,R, I, `) | twrite(∆,T, S,R, I, r, n,w)

value types τ ::= S(M : a) | Πx : A.¬Γ | x[τ ]
register file types Γ ::= {r0 : τ0, . . . , rn : τn}
heap, code sec. types Ψ ::= {`H1 : τ1, . . . , `

H
n : τn} Ξ ::= {`C1 : τ1, . . . , `

C
n : τn}

spine types J ::= Γ | Πx : a→ J Jt ::= a→ {rd : τ}
signatures Σ ::= · | Σ, c : a1 → · · · → an

Fig. 2. TWAM instructions, machine state dynamics, machine states, typing constructs

The text of a TWAM program is formalized as a code section C mapping
an identifier `C for each basic block to a code value vC . The code values are all
code literals code[Πx:A.Γ ](I) where I is a basic block (instruction sequence)
and Πx:A.Γ is a register file type (with x,A possibly empty) specifying LF
parameters and expected initial register types for I. As in LF, Π (Pi in ASCII)
is a dependent function type.

We present the code section for plus as an example, consisting of two code
values: plus-zero/3 and plus-succ/3. For completeness we include a code value
query/0 for the example query plus(X, 0, 1+(0)) and a code value for the
top-level success continuation init-cont. Like all TWAM code, it is written in
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continuation passing style: code values never return, but rather return control
to the caller by jumping to a success continuation passed in through a register.
Because functions never return, the type of a continuation is fully described by
the types its arguments: LF terms and registers, written Πx:A . . . and ¬Γ (or
!G in ASCII) respectively, where Γ is a register file type.

Example 31 (Implementing plus).

# Entry point to plus, implements

# case plus(0,X,X) and tries

# plus-succ/3 on failure

plus-zero/3: code[Pi X,Y,Z:nat.

{A1:S(X),A2:S(Y),A3:S(Z),

ret:(Pi _:(Plus X Y Z). !{})}](

put_tuple X1, 4;

set_val A1;

set_val A2;

set_val A3;

set_val ret;

push_bt X1, (plus-succ/3 X Y Z);

get_str A1, 0;

get_val A2, A3;

jmp (ret (Plus-Z Y));)

# plus(1+(X), Y, 1+(Z))

# :- plus(X,Y,Z).

plus-succ/3: code[Pi X,Y,Z:nat.

{env: x[S(X),S(Y),S(Z),

(Pi_:(Plus X Y Z).!{})]}](

proj A1, env, 1;

proj A2, env, 2;

proj A3, env, 3;

proj ret, env, 4;

get_str A1, 1+;

#Set arg 1 of rec. call to X-1

unify_var A1, XX:nat;

get_str A3, 1+;

#Set arg 3 of rec. call to Z-1

unify_var A3, ZZ:nat;

#tail-call optimization: add

#Plus-S constructor when called

mov ret, (lam D:plus XX Y ZZ.

ret (Plus-S XX Y ZZ D));

jmp (plus-zero/3 XX Y ZZ))

Example 32 (Calling plus).

init-cont/0:code[Pi X:nat.

Pi D:(Plus X 0 (1+ 0))](

succeed[D:Plus X 0 (1+ 0)])

# plus(X, 0, 1+(0))

query/0:code[{}](

put_var A1, X:nat;

put_tuple X1, 0;

close ret, X1, (init-cont/0 X);

put_str A2, 0;

put_str A3, 1+;

unify_val A2;

jmp(plus-zero/3 X 0 (1+ 0)))

The query entry point is query/0. The plus entry point is plus-zero/3,
which is responsible for implementing the base case r1 = 0. Its type annotation
states that the arguments are natural numbers passed in arguments A1 through
A3. The success continuation (return address) is passed in through ret, but may
only be invoked once Plus X Y Z is proved.

The instructions themselves are similar to the standard WAM instructions.
plus-zero/3 is implemented by attempting to unify A1 with 0 and A2 with
A3. If the plus-zero/3 case succceeds, we return to the address stored in ret,
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proving Plus X Y Z in LF with the Plus-Z rule. If the case fails, we backtrack
to plus-succ/3 to try the Plus-S case. plus_succ/3 in turn makes a recursive
call to plus-zero/3 to prove the subgoal XX + Y = ZZ, where XX and ZZ

are the predecessors of X and Z. The mov instruction implements proof-passing
for tail-calls. Dynamically speaking, we should not need to define a new success
continuation because we are making a tail call. However, while Plus XX Y ZZ

implies Plus X Y Z, their proof terms are not the same: proving Plus X Y Z

requires an extra application of Plus-S. This mov instruction simply says to apply
Plus-S (statically) before invoking ret, and can be erased before execution.

Machines As shown in Figure 2, the state of a TWAM program is formalized as
a tuple m = (∆,T, S,R, I) (or a special machine states read orwrite: see, e.g.,
Section 3.2). Here T is the trail, the data structure that implements backtracking.
The trail consists of a list of trail frames (tf), each of which contains a failure
continuation (address and environment) and a trace (tr), which lists any bound
variables which would have to be made free to recover the state in which the
failure continuation should be run. In WAM terminology, each frame implements
one choice point. The store S = (H : Ψ,C : Ξ) contains the heap and code
section, R : Γ contains the registers and I represents the program counter as
a list of all remaining instructions in the current basic block. Typical register
names are Ai for arguments, Xi for temporaries, ret for success continuations,
and env for closures being unpacked. ∆ contains the free variables of H; it is
used primarily in Section 3.4. The heap H contains the T-Prolog terms. Heap
value FREE[x : a] is a free variable x of type a and c〈`1, . . . , `n〉 is a structure,
i.e. a functor (cf. constructor in LF) c applied to argument vector 〈`1, . . . , `n〉.
As in WAM, the heap is in disjoint-set style, i.e. all free variables are distinct and
pointers BOUND ` are introduced when unifying variables; BOUND ` and `
represent the same LF term. TWAM heaps are acyclic, as ensured by an occurs
check. The heap also contains success continuation closures close(wcode, wenv)
and n-ary tuples (w) (used for closure environments), which do not correspond
to T-Prolog terms.

3.2 Operational Semantics

We give the operational semantics by example . Due to space constraints, see
the extended paper [3] for formal small-step semantics (judgements m 7−→∗ m′
and m done). Those judgments which will appear in the metatheory are named
in this section. We give an evaluation trace of the query ?- plus(X,0,1+(0)).
For each line we describe any changes to the machine state, i.e. the heap, trail,
register file, and instruction pointer. As with the WAM, the TWAM uses special
execution modes read and write to destruct or construct sequences of arguments
to a functor (we dub this sequence a spine). When the program enters read mode,
we annotate that line with the list `s of arguments being read, and when the
program enters write mode we annotate it with the constructor c being applied,
the destination location ` and the argument locations `s. The final instruction of
a write-mode spine can be seen as two evaluation steps (separately by semicolons
below), one of which constructs the last argument of the constructor and one of
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which combines the arguments into a term. We write H{{`H 7→ vH}} for heap
H extended with new location `H containing vH , or H{`H 7→ vH} for updating
an existing location. R{r 7→ w} is analogous. Updates H{`H 7→ vH} are only
guaranteed acyclic when the occurs check passes. Below, all occurs checks pass,
and are omitted for brevity.

Code: Outcome:

query/0 |-> code [{}](

1 put_var A1, X:nat; H<-H{{l1->FREE[X:nat]}}, R<-R{A1->l1};

2 put_tuple X1, 0; H<-H{{l2-> ()}}, R<-R{X1->l2};

3 close ret, X1, (init-cont/0 X);

H<-H{{l3->close(init-cont/0 X, l2)}}, R<-R{ret->l3};

4 put_str A2, 0; H<-H{{l4->0}}, R<-R{A2->l4}

5 put_str A3, 1+; H<-H{{l5->FREE[_:nat]}}, R<-R{A3->l5} c=1+; l=l5,ls=<>

6 unify_val A2; ls <- <l4>; H<-H{l5 -> 1+ <l4>}

7 jmp plus-zero/3 .. I <- (C(plus-zero/3) X 0 (1+ 0))

plus-zero/3: code[Pi X,Y,Z:nat.

{A1:S(X),A2:S(Y),A3:S(Z),ret:(Pi _:(Plus X Y Z). !{})}](

8 put_tuple X1, 4; ls=<>, n=4

9 set_val A1; ls=<l1>

10 set_val A2; ls=<l1,l4>

11 set_val A3; ls=<l1,l4,l5>

12 set_val ret; ls=<l1,l4,l5,l3>;

H<-H{{l6->(l1,l4,l5,l3)}}, R<-R{X1->l6}

13 push_bt X1, (plus-succ/3 X Y Z); T<-(plus-succ/3 X Y Z, l6, <>)::<>

14 get_str A1, 0; WRITE: H<-H{l1->0},

T<-(plus-succ/3 X Y Z, l6, <l1>)::<>

15 get_val A2, A3; BACKTRACK: T<-<>, I<-plus-succ/3 .., H<-H{l1->FREE[X:nat]}

plus-succ/3 |-> code[Pi X,Y,Z:nat.

{env: x[S(X),S(Y),S(Z),(Pi_:(Plus X Y Z).!{})]}](

16 proj A1, env, 1; R<-R{A1->l1}

17 proj A2, env, 2; R<-R{A2->l4}

18 proj A3, env, 3; R<-R{A3->l5}

19 proj ret, env, 4; R<-R{ret->l3}

20 get_str A1, 1+; WRITE: c=1+, l=l1, ls=<>

21 unify_var A1, XX:nat; H<-H{{l7->FREE[XX:nat]}},R<-R{A1->l7},ls=<l7>

H<-H{l1-> 1+ <l7>}

22 get_str A3, 1+; READ: ls=<l4>

23 unify_var A3, ZZ:nat; R<-R{A3->l4}

24 mov ret, (lam D:plus XX Y ZZ. ret (Plus-S XX Y ZZ D));

R<-R{ret->(lam D:plus XX Y ZZ. l3 (Plus-S XX Y ZZ D))} (NO-OP)

25 jmp (plus-zero/3 XX Y ZZ)); I<- C(plus-zero/3) XX Y ZZ

plus-zero/3 |-> code[Pi X,Y,Z:nat.

{A1:S(X),A2:S(Y),A3:S(Z),ret:(Pi _:(Plus X Y Z). !{})}](

26 put_tuple X1, 4; ls=<>, n=4

27 set_val A1; ls=<l7>

28 set_val A2; ls=<l7,l4>
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29 set_val A3; ls=<l7,l4,l4>

30 set_val ret; ls=<l7,l4,l4,lam .. l3>;

H<-H{{l8->(l7,l4,l4,lam .. l3)}}, R<-R{X1->l8}

31 push_bt X1, (plus-succ/3 X Y Z); T<-(plus-succ/3 X Y Z, l8, <>)::<>

32 get_str A1, 0; READ ls=<>, l=l7; H<-H{l7->0}

33 get_val A2, A3; no change, R(A2) = R(A3)

34 jmp (ret (Plus-Z Y)); I <- C(R(r4)) (Plus-Z Y)

= C(success) 0 Y Z

(Plus-S 0 Y Z (Plus-Z Y)))

35 init-cont/0:code[Pi X,Y,Z:nat.Pi D:(Plus X Y Z)](succeed[D:(Plus X Y Z)];)

All top-level queries follow the same pattern of constructing arguments, set-
ting a success continuation, then invoking a search procedure. Line 1 constructs
a free variable. Line 2 creates an empty environment tuple which is used to cre-
ate a success continuation on Line 3. This means if proof search succeeds we will
return to init-cont/0, which immediately ends the program in success. Line 4
is a 1-instruction write-mode spine. First we allocate a free variable at `4 to store
the term, then because we have finished the spine, we bind the variable to 0.
Lines 5-6 are a write spine constructing 1+(0). Because A2 already contains 0,
we can eliminate a common subexpression, reusing it for 1+(0). Line 7 invokes
the main Plus proof search.

Lines 8-12 pack the environment in a tuple. Line 13 creates a trail frame
which executes plus-succ/3 if plus-zero/3 fails. Its trace is initially empty:
from this point, the trace will be updated any time we bind a free variable. Line
14 dynamically checks A1, observes it is free and thus enters write mode. On
line 14 we also bind A1 to 0 and add it to the trace. Note that this is the first
time we add a variable to the trace because we only do so when trail contains at
least one frame. The trace logic is formalized in a judgement update trail. When
the trail is empty, backtracking would fail anyway, so there is no need to track
variable binding.

Line 15 tries and fails to unify (judgement unify) the contents of A2 and A3,
so it backtracks to plus-succ/3 (judgement backtrack).

Backtracking consists of updating the instruction pointer, setting all trail
locations to free variables, and loading an enviroment. The plus-succ/3 case
proceeds without trouble: the first get_str enters write mode because A1 is free,
but the second enters read mode because A3 is not free. On Line 26 we enter
the 0 case of plus with arguments A1 = A2 = A3 = 0. All instructions succeed,
so we reach Line 34 which jumps to line 35 and reports success.

3.3 Statics

This sections presents the TWAM type system. The main judgement ∆;Γ ` I ok
says instruction sequent I is well-typed. A code section is well-typed if every
block is well-typed. The system contains a number of auxilliary judgments, which
will be introduced as needed. Most of type-checking is independent of which
query we make, thus the query is not mentioned explictly in the judgement
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∆;Γ ` I ok. The certifying compiler can check that the output TWAM program
makes the same query as the source program by comparing the query with the
type annotation on the unique succeed instruction in the inital continuation.
Below, the notation Ψ{` : τ} denotes the heap type Ψ with the type of ` replaced
by τ whereas Ψ{{` : v}} denotes Ψ extended with a fresh location ` of type τ .

Success. We wish to prove that a program only succeeds if a proof M the desired
query A exists in LF. We require exactly that in the typing rule:

∆ `M : A
∆;Γ ` succeed[M : A]; I ok

Succeed

The succeed rule is simple, but deceptively so: the challenge of certifying com-
pilation for TWAM is how to satisify the premiss of this rule. The proof-passing
approach says we satisfy this premiss by threading LF terms through every pred-
icate: by the time we reach the succeed instruction, the proof will have already
been constructed.

Proof-passing. The jmp instruction is used to invoke and return from basic
blocks. When returning from a basic block, it passes an LF proof term to the
success continuation, showing that the corresponding LF predicate has a proof.
These LF proof terms are part of the jmp instruction’s operand op:

∆;Γ ` op : ¬Γ ′ ∆ ` Γ ′ ≤ Γ
∆;Γ `Σ;Ξ jmp op, I ok

Jmp

Here ∆ ` Γ ′ ≤ G means every register of Γ ′ appears in Γ with the same type.
The operands consist of registers, locations and LF terms:
operands op ::= ` | r | op M | λx : A.op
Operand typechecking is written ∆;Γ ` op : τ and employs standard rules for

checking LF terms. The mov instruction is nearly standard. It supports arbitrary
operands, which are used in our implementation to support tail-call optimization,
as seen in Line 24 of the execution trace.

∆;Γ ` op : τ ∆;Γ{rd : τ} ` I ok

∆;Γ ` mov rd, op; I ok
Mov

Continuation-passing. Closures are created explicitly with the close instruction:
close rd, re, `

CM constructs a closure in rd which, when invoked, executes the
instructions at `C using LF arguments M and environment re. The environment
is an arbitrary value which is passed to `C M in the register env. The argu-
ment (`C M) is an operand, syntactically restricted to be a location applied to
arguments.

Γ (rs) = τ ∆;Γ{rd : Πx : A.¬Γ ′} ` I ok

∆;Γ ` (`C M) : Πx : (A.¬Γ ′{env : τ})
∆;Γ ` close rd, rs, (`C M); I ok

Close
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Trail frames are similar, except they are stored in the trail instead of a register:

∆;Γ ` I ok Γ (re) = τ ∆;Γ ` (`C M) : ¬{env : τ}
∆;Γ ` push bt re, (`

C M); I ok
BT

Singleton Types. The Putvar rule introduces an LF variable x of simple type
a, corresponding to a TWAM unification variable. Statically, the LF variable is
added to ∆. Dynamically, the TWAM variable is stored in r, so statically we
have r : S(x : a), i.e., r contains a representation of variable x.

∆,x : a;Γ{r : S(x : a)} ` I ok

∆;Γ ` put var r, x : a; I ok
Putvar

Singleton typing knowledge is then exploited in type-checking LF proof terms.

Unification. However, put_var alone does not provide nearly enough constraints
to check most terms. Almost every LF term needs to exploit equality con-
straints learned through unification. To this end, we introduce a static notion
of unification M1 uM2, allowing us to integrate unification reasoning into our
type system and thus into LF proofs. We separate unification into a judgement
∆ `M1 uM2 = σ which computes the most general unifier of M1 and M2 (or ⊥
if no unifier exists) and capture-avoiding substitution [σ]∆. We also introduce
notation [[σ]]∆ standing for [σ]∆ with the bound variables of σ removed, since
unification often removes free variables which might located arbitrarily within
∆. All unification in T-Prolog is first-order, for which algorithms are well-known
[23]. One such algorithm is given by the inference rules in the extended paper [3].

The get val instruction unifies its arguments. If no unifier exists, get val

vacuously typechecks: we know statically that unification will fail at runtime
and, e.g., backtrack instead of executing I. Indeed, this is one of the greatest
subtleties of the TWAM type system: all unification performed in the type sys-
tem is hypothetical. At type-checking time we cannot know what arguments a
function will ultimately receive, so we treat all arguments as free variables. The
great trick (and key to the soundness proofs) is that this does not disturb the
typical preservation of typing under substitution. For example, after substituting
concrete arguments at runtime, the result will still typecheck even if unification
fails, because failing unifications typecheck vacuously.

∆ `M1 uM2 = ⊥
Γ (r1) = S(M1 : a) Γ (r2) = S(M2 : a)

∆;Γ ` get val r1, r2; I ok
Getval-⊥

Γ (r1) = S(M1 : a) Γ (r2) = S(M2 : a)
∆ `M1 uM2 = σ [[σ]]∆; [σ]Γ ` [σ]I ok

∆;Γ ` get val r1, r2; I ok
Getval
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Tuples and Simple Spines Tuples are similar to structures, except they cannot be
unified, may contain closures, and do not have read spines. The proj instruction
accesses arbitrary tuple elements i:

Γ (rs) = x[τ ] Γ{rd : τi} ` I ok (where i ≤ |τ |)
∆;Γ ` proj rd, rs, i; I ok

Proj

New tuple creation is started by put_tuple. Elements are populated by a tuple
spine containing set_val instructions. We check the spine using an auxilliary
typing judgement ∆;Γ ` I:Jt where Jt is a tuple spine type of form τ2 →
{rd:x[τ1τ2]}. A tuple spine type encodes both the expected types of all remaining
arguments (τ2) and a postcondition: when the spine completes, register rd will
have type x[τ1τ2]. The typing rules check each set_val in sequence, then return
to the standard typing mode ∆;Γ ` I ok when the spine completes.

∆;Γ ` I :t (τ → {rd : x[τ ]}) (where n = |τ |)
∆;Γ ` put tuple rd, n; I ok

PutTuple

Γ (r) = τ Γ ` I :t J

∆;Γ ` set val r; I :t (τ → J)
TSpine-SetVal

∆;Γ{rd : τ} ` I ok

∆;Γ ` I :t {rd : τ} TSpine-End

Dependent Spines. While the get_val instruction demonstrates the essence of
unification, much unification in TWAM (as in WAM) happens in special-purpose
spines that create or destruct sequences of functor arguments. Because spinal
instructions are already subtle, the resulting typing rules are as well.

We introduce an auxiliary judgement Γ ` I : J and dependent functor spine
types J . As above, they encode arguments and a postcondition, but here the
postcondition is the unification of two terms, and the arguments are dependent.

The base case is J ≡ (M1 uM2), meaning that LF terms M1 and M2 will
be unified if the spine succeeds. When J has form Πx:a.J ′, the first instruction
of I must be a spinal instruction that handles a functor argument of type a
(recall that the same instructions are used for both read and write mode, as we
often do not know statically which mode will be used). The type J ′ describes
the type of the remaining instructions in the spine, and may mention x. The
spinal instruction unify_var unifies the argument with a fresh variable, while
unify_val unifies the argument with an existing variable.

Γ (r) = S(M : a) ∆;Γ ` [M/x]I : [M/x]J

∆;Γ ` unify val r, x : a; I : Πx : a.J
Unifyval

∆,x : a;Γ{r : S(x : a)} ` I : J

∆;Γ ` unify var r, x : a; I : Πx : a.J
Unifyvar

The instruction get_str unifies its argument with a term c〈X1, . . . , Xn〉 by
executing a spine as described above. The put_str instruction starts a spine
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that constructs a new structure.

Σ(c) = a→ a Γ (r) = S(M : a)
∆;Γ ` I : (Πx : a.(M u c x))

∆;Γ ` get str c, r; I ok
Getstr

Σ(c) = a→ a
∆, x : a;Γ{r : S(x : a)} ` I : (Πx : a.(x u c x))

∆;Γ ` put str c, r; I ok
Putstr

This completes the typechecking of TWAM instructions.

Machine Invariants. Having completed instruction checking, we prepare for the
metatheory by considering the invariants on validity of machine states, which
are quite non-trivial. Consider first the invariant for non-spinal machines:

∆ ` C:Ξ ∆;Γ ` I ok ∆ ` H:Ψ ∆;Ψ ` R : Γ ∆;C;H ` T ok

· ` (∆,T,C,H,R, I) ok
Mach

Recall machines include a context ∆ containing the free T-Prolog variables of the
heap H. We can1 identify variables of ∆ with heap locations, trivially ensuring
free variables are represented uniquely. Premisses ∆ ` C:Ξ and ∆;Γ ` I ok and
Γ ;Ψ ` R : Γ simply say the code section, current basic block, and register file
typecheck.

Premiss ∆ ` H:Ψ says all heap values obey their types and that the heap is
acyclic. The encoding of acyclic heaps is subtle: while both the heap H and its
type Ψ are unordered, the typing derivation is ordered. The rule for non-empty
heaps H{{`H 7→ vH}} says that the new value v may refer only to values that
appear earlier in the ordering:

∆ ` H : Ψ ∆;Ψ ` vH : τ `H /∈ Dom(H)

∆ ` H{{`H 7→ vH}} : Ψ{{`H : τ}}

Thus, the derivation exhibits a topological ordering of the heap, proving that
it is acyclic. Section 3.4 shows this invariant is maintained because we only
bind variables when the occurs check passes. The code section has no ordering
constraint: even simple functions like Plus have mutually recursive basic blocks.

Heap values for T-Prolog terms have singleton types:

∆(x) = a

∆;Ψ ` FREE[x : a] : S(x : a)

∆;Ψ ` `H : S(M : a)

∆;Ψ ` BOUND `H : S(M : a)

Σ(c) = a→ a ∆;Ψ ` `Hi : S(Mi : ai)

∆;Ψ `Σ;Ξ c〈`H1 , . . . , `Hn 〉 : S(cM : a)

1 While this approach is preferable for the proofs, it is quite unreadable, so we used
readable names in our presentation of the example instead.



TWAM: A Certifying Abstract Machine for Logic Programs 13

Premiss ∆;C;H ` T ok says the trail is well-typed. The empty trail 〈〉
checks trivially. A non-empty trail is well-typed if after unwinding the trace tr
(i.e. making the traced variables free again) we will be in a well-typed state.

unwind(∆,H, t) = (∆′, H ′) ∆; (C,H ′) ` T ok

∆ ` H ′ : Ψ ′ Ψ ′ ` wenv : τ ∆;Ψ ′ ` `C M : ¬{env : τ}
∆;C;H `Σ;Ξ (`C M , wenv, tr) :: T ok

Trail-Cons

This completes the invariants for non-spinal machines.
The typing invariants for spinal machines have additional premisses ∆;Ψ `

` reads Πx : A.(cMM ′ucM x) (for read spines) or∆;Ψ ` (`H , `H , c) writes

Πx : a2.x
′ u c M x (for write spines). Syntactically, these are among the most

complex rules in the entire system. Nonetheless, their high-level goals are natu-
ral. For a read spine, the types a expected by the spine type must agree with the
types of remaining arguments `. For a write spine, the types of all values written
so far must agree with the functor arguments and the destination must agree
with functor result. Naturally, the yet-unwritten arguments must also agree with
the functor type, but that is already ensured by ∆;Γ ` I:J .

∆;Ψ ` ` : S(M ′ : a)

∆;Ψ ` ` reads Πx : a.(cM M ′ u cM x)
∆ ` C : Ξ ∆ ` H : Ψ ∆;Γ ` I : J ∆;Ψ ` ` reads J ∆ ` T ok ∆;Ψ ` R : Γ

· ` read(∆,T,C,H,R, I, `) ok

Ψ(`H) = S(x′ : a) Σ(c) = a1 → a2 → a ∆;Ψ ` `H : S(M : a1)

∆;Ψ ` (`H , `H , c) writes Πx : a2.x
′ u cM x

∆ ` C : Ξ ∆ ` H : Ψ ∆;Γ ` I : J ∆;Ψ ` (`H , `, c) writes J ∆ ` T ok ∆;Ψ ` R : Γ

· ` write(∆,T,C,H,R, I, c, `H , `) ok

The case for tuple spines is similar to the write case.

3.4 Metatheory

Proofs of metatheorems are in the extended paper [3]. Here, we state the major
theorems and lemmas. As expected, TWAM satisifies progress and preservation:

Theorem (Progress). If ∆ ` m ok then either m done or m fails or m 7−→ m′.

Theorem (Preservation). If ∆ ` m ok and m 7−→ m′ then · ` m′ ok.

Here m fails means that a query failed in the sense that all proof rules have
been exhausted—it does not mean the program has become stuck. m done means
a program has terminated successfully. Soundness (Theorem 1) is a corollary:

Theorem 1 (Soundness). If · ` m ok and m 7−→∗ m′ and m′ done then
m′ = (∆,T,C,H,R, succeed[M : A]; I) and ∆ `M : A.
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Soundness follows from progress and preservation, because on m′ done only
holds for succeed, and by the typing rule for succeed.

We overview major lemmas, including all those discussed so far:

– Static unification computes most-general unifiers.
– Language constructs obey their appropriate substitution lemmas, even in

the presence of unification.
– Dynamic unification is sound with respect to static unification.
– When the occurs check passes, binding a variable does not introduce cycles.
– Updating the trail maintains trail invariants and backtracking maintains

machine state invariants.

Our notion of correctness for static unification follows the standard correct-
ness property for first-order unification: we compute the most general unifier,
i.e., a substitution which unifies M1 with M2 and which is a prefix of all unifiers.

Lemma (Unify Correctness). If ∆ `M : A and ∆ `M ′ : A and ∆ `M uM ′ =
σ, then:

– [σ]M = [σ]M ′

– For all substitutions σ′, if [σ′]M = [σ′]M ′ then there exists some σ∗ such
that σ′ = σ∗, σ up to alpha-equivalence.

While this lemma is standard, it is essential to substitution. While we have
numerous substitution lemmas (e.g. for heaps), we mention the lemma for in-
struction sequences here because it is the most surprising.

Lemma (I-Substitution). If ∆1, x:A,∆2;Γ ` I ok and ∆1 `M :A then we have
∆1, [M/x]∆2; [M/x]Γ ` [M/x]I ok

The most challenging cases are those involving unification. Unification is not
always preserved under substitution; in this case, [M/x]I is vacuously well-typed
as discussed in Section 3.3. In the case where unification is preserved, we exploit
the fact that the derivation for I computed the most general unifier, which is
thus a prefix of the unifier from [M/x]I. At a high level, this suffices to show all
necessary constraints were preserved by substitution.

The progress and preservation cases for unification instructions need to know
that dynamic unification unify is in harmony with static unification.

Lemma (Soundness of unify). If ∆ `M1 : a and ∆ `M2 : a and ∆ ` H : Ψ and
∆;C;H ` T ok and ∆;Ψ ` `1 : S(M1 : a) and
∆;Ψ ` `2 : S(M2 : a) then

– If ∆ `M1 uM2 = ⊥ then unify(∆,H, T, `1, `2) = ⊥
– If ∆ ` M1 uM2 = σ then unify(∆,H, T, `1, `2) = (∆′, H ′, T ′) where ∆′ =

[σ]∆ and [σ]∆ ` H ′ : [σ]Ψ and ∆′, (C,H ′) ` T ′ ok.

The heap update lemma says that when the occurs check passes, the result
of binding a free variable is well-typed (with the new binding reflected by a
substitution into the heap type Ψ). Because the typing invariant implies acyclic
heaps, this lemma means cycles are not introduced.
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Lemma (Heap Update). If ∆ ` H : Ψ and Ψ(`1) = S(x : a) then

(a) If Ψ(`2) = S(M : a) and `1 /∈H `2, (the occurs check passes)

then ∆ ` H{`1 7→ BOUND `2} : [M/x]Ψ.

(b) If for all i, Ψ(`′i) = S(Mi : ai) and `1 /∈H `′i and Σ(c) = a→ a,

then ∆ ` H{`1 7→ c〈`′1, . . . , `′n〉} : [c M ]Ψ.

This lemma is more subtle than its statement suggests, and demonstrates
the subtle relationship between heaps, heap types, and heap typing derivations.
Recall that heaps and heap types are unordered: the typing derivation itself
exhibits a topological ordering as a witness that there are no cycles. The proof
of Heap Update is constructive and proceeds by induction on the derivation:
an algorithm can be given which computes a new topological ordering for the
resulting heap.

Introducing free variables and binding free variables both preserve the valid-
ity of the trail:

Lemma (Trail Update). If ∆;C;H ` T ok then

(a)If H(`H) = FREE[x : a] then

∆;H{`H 7→ w} ` update trail(x : a@`H , T ) ok.

(b)If `H fresh and x fresh then ∆;H{{`H 7→ FREE[x : a]}} ` T ok.

Claim (a) says that if we bind a free variable x to a term and add x to the
trail (notated x : a@`H to indicate a variable x of type a was located at `H),
the resulting trail is well-typed. The trail update trail(x : a@`H , T ) is well-typed
under the heap H{`H 7→ w} iff unwinding the trail update trail(x : a@`H , T )
results in some well-typed store S′. Thus the proof of claim (a) amounts to
showing that unwinding update trail(x : a@`H , T ) gives us the original store S,
which we already know to be well-typed.

Claim (b) is a weakening principle for trails, which comes directly from the
weakening principle for heaps (a heap H : Ψ is allowed to contain extra unreach-
able locations ` which do not appear in Ψ). This claim shows that the trail does
not need to be modified when a fresh variable is allocated, only when it is bound
to a term. It relies on the following subclaim, which holds by induction on tf.

Claim. unwind(∆,x : a,H{{`H 7→ FREE[x : a]}}, tf) = (∆,H ′{{`H 7→ FREE[x :
a]}}) for some H ′.

Recall that the typing rule for trails simply says whatever state results from
unwinding must be valid. This simplifies the proofs significantly: showing that
an update preserves validity consists simply of showing that it does not change
the result of backtracking (modulo perhaps introducing unused values).

Soundness of the backtracking operation simply says the resulting machine
is well-typed. The proof is direct from the premisses of the trail typing invariant.
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Lemma (Backtracking Totality). For all trails T, if ∆ ` C : Ξ, ∆ ` H : Ψ,
and ∆;C;H `Σ;Ξ T ok then either backtrack(∆,C,H, T ) = m′ and · ` m′ ok or
backtrack(∆,C,H, T ) = ⊥

While the full proof contains several dozen other lemmas, those discussed
above constitute the major insights why the TWAM type system is sound and
constitutes certification for TWAM programs.

4 Conclusion

To address the problem of constructing verified compilers for logic programs, we
have designed and implemented a certifying abstract machine called the Typed
Warren Abstract Machine, or TWAM. Our metatheory proves that type-checking
for the TWAM constitutes certification of partial correctness with respect to an
LF signature. We have demonstrated the viability of this approach by imple-
menting a compiler from T-Prolog to the TWAM, which we have made available
at http://www.cs.cmu.edu/~bbohrer/pub/twam.zip. Our implementation is
approximately 5,000 lines of Standard ML, of which approximately 400 are the
TWAM typechecker, which constitutes the trusted core. We have tested our im-
plementation on a small arithmetic library (a few hundred lines). Even this small
test exercises all the features of T-Prolog and helped us fix compiler bugs during
development, e.g. indexing errors in our register allocator which might not have
been detected by weaker type systems.

Our work differs from previous work on logic program compilation because
we are the first to take a certifying compilation approach. We have also produced
a working compiler with a formal guarantee, whereas previous efforts stopped
before implementing a compiler [24, 4, 2, 22]. Several optimizing compilers have
been verified in proof assistants [12, 11] and some of them use proof-producing
compilation [17], but these do not address logic programming languages. Our
work can also be seen as falling into the paradigm of type-preserving compi-
lation [25], an instance of certifying compilation [18] where the certificates are
typing information. Type-preserving compilers have similar strengths and weak-
nesses to other certifying compilers.

Our type system relies on the logical framework LF [10], and is inspired by
other dependently- typed languages [28], though the languages differ greatly.
Our formalisms are inspired by typed assembly languages, but we make major
changes to provide stronger guarantees and support logic programming [16].

This work has several avenues for future improvement. While the strength
of this work is a novel and powerful certification approach supported by sound
theoretical foundations, we have ignored some aspects relevant in practice, such
as performance of generated code. The WAM supports a well-known set of opti-
mizations that have a significant impact in practice [1]. Adding support for these
optimizations to the TWAM would open the path to acheiving the ultimate goal:
a production-quality optimizing compiler certified by the TWAM. To broaden
its applicability we also wish to extend TWAM to support logic programming
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languages such as Elf [19] with advanced type system features. Going even fur-
ther, one could explore whether the certifying abstract machine approach can
benefit compilers for languages outside the logic programming paradigm.
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