
1 

Clustering: K-Means 

Machine Learning 10-601, Fall 2014 

Bhavana Dalvi Mishra 

PhD student LTI, CMU 

Slides are based on materials from Prof. Eric Xing, Prof.  William Cohen and Prof. Andrew Ng 



Outline  
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 What is clustering?                                 

 How are similarity measures defined?     

 Different clustering algorithms   

K-Means                                                    

Gaussian Mixture Models                        

 Expectation Maximization                     

 Advanced topics                                     

 How to seed clustering? 

 How to choose #clusters     

  Application: Gloss finding for a Knowledge Base                   



Clustering 
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Classification   vs.   Clustering  

Supervision available Unsupervised 
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Unsupervised learning: learning 

from raw (unlabeled) data 

Learning from supervised data:  

example classifications are given 



Clustering 
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 The process of grouping a set of objects into clusters 

 high intra-cluster similarity 

 low inter-cluster similarity 

 

 

 

 

How many clusters? 

How to identify them? 



Applications of Clustering 
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Google news: Clusters news stories from different sources 

about same event  

…. 

 Computational biology: Group genes that perform the 

same functions 

 Social media analysis: Group individuals that have similar 

political views 

 Computer graphics: Identify similar objects from pictures 



Examples 
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 People 

 

 

 

 Images 

 
 

 Species 



What is a natural grouping among 

these objects? 
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Similarity Measures 
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What is Similarity? 
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 The real meaning of similarity is a philosophical question.  

 Depends on representation and algorithm. For many rep./alg., easier to think in terms 
of a distance (rather than similarity) between vectors. 

Hard to define! 

But we know it 

when we see it 



Intuitions behind desirable distance 

measure properties 
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 D(A,B) = D(B,A)               Symmetry 

Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex" 

 

 D(A,A) = 0                Constancy of Self-Similarity 

Otherwise you could claim "Alex looks more like Bob, than Bob does" 

 

 D(A,B) = 0 IIf A= B               Identity of indiscerniblesects in your 
world that are different, but you cannot tell apart. 

 

 D(A,B)  D(A,C) + D(B,C)              Triangular Inequality 
Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but Bob is 
very unlike Carl" 

 



Intuitions behind desirable distance 

measure properties 
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 D(A,B) = D(B,A)    Symmetry 

 Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex" 

 

 D(A,A) = 0     Constancy of Self-Similarity 

 Otherwise you could claim "Alex looks more like Bob, than Bob does" 

 

 D(A,B) = 0 IIf A= B                Identity of indiscernibles 

 Otherwise there are objects in your world that are different, but you cannot tell apart. 

 

 D(A,B)  D(A,C) + D(B,C)   Triangular Inequality 
 Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but Bob is 

very unlike Carl" 

 



Distance Measures: Minkowski Metric 
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 Suppose two object x and y both have p features 

 

 

 The Minkowski metric is defined by 

 

 Most Common Minkowski Metrics 
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An Example 
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 Manhattan distance is called Hamming distance when all features are 

binary. 
 

 Gene Expression Levels Under 17 Conditions (1-High,0-Low) 
 

 

 

 

 

 

 



Similarity Measures: Correlation 

Coefficient 
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Time 
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Similarity Measures: Correlation 

Coefficient 
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 Pearson correlation coefficient 

 

 

 

 

 

 

 

 Special case: cosine distance 
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Clustering  Algorithm 

K-Means 
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K-means Clustering: Step 1 
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K-means Clustering: Step 2 
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K-means Clustering: Step 3 
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K-means Clustering: Step 4 
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K-means Clustering: Step 5 
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K-Means: Algorithm 
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1. Decide on a value for k. 

2. Initialize the k cluster centers randomly if necessary. 

3. Repeat till any object changes its cluster assignment 

 Decide the cluster memberships of the N objects by assigning 

them to the nearest cluster centroid 

 

 

 Re-estimate the k cluster centers, by assuming the 

memberships found above are correct. 
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K-Means is widely used in practice 
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 Extremely fast and scalable: used in variety of applications 

 

 Can be easily parallelized  

 Easy Map-Reduce implementation 

 Mapper: assigns each datapoint to nearest cluster 

 Reducer: takes all points assigned to a cluster, and re-computes the 
centroids 

 

 Sensitive to starting points or random seed initialization 
(Similar to Neural networks) 

 There are extensions like K-Means++ that try to solve this problem 
 



Outliers 
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Clustering  Algorithm 

Gaussian Mixture Model 
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Density estimation 
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An aircraft testing facility measures Heat and Vibration  

parameters for every newly built aircraft. 

Estimate density function 

P(x) given unlabeled 

datapoints X1 to Xn 



Mixture of Gaussians 
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Mixture Models 
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 A density model p(x) may be multi-modal. 

 We may be able to model it as a mixture of  uni-modal 

distributions (e.g., Gaussians). 

 Each mode may correspond to a different sub-population 

(e.g., male and female). 

 

 



Gaussian Mixture Models (GMMs) 

31 

 Consider a mixture of K Gaussian components: 

 

 

 

 

 

 

 

 

 This model can be used for unsupervised clustering. 

 This model (fit by AutoClass) has been used to discover new kinds of stars 
in astronomical data, etc. 
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Learning mixture models 
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 In fully observed iid settings, the log likelihood decomposes 

into a sum of local terms. 

 

 
 

 With latent variables, all the parameters become coupled 

together via marginalization 
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 If we are doing MLE for completely observed data 

 Data log-likelihood 

 

 

 

 

 

 

 

 MLE 
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MLE for GMM 
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Learning GMM (z’s are unknown) 

34 



Expectation Maximization (EM) 
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Expectation-Maximization (EM)  
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 Start: "Guess" the mean and covariance of each of the K gaussians 

 Loop  
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Expectation-Maximization (EM)  
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 Start: "Guess" the centroid and covariance of each of the K clusters  

 Loop  



The Expectation-Maximization (EM) 

Algorithm 
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 E Step: Guess values of Z’s   
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The Expectation-Maximization (EM) 

Algorithm 
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•  M Step: Update parameter estimates 



EM Algorithm for GMM 
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 E Step: Guess values of Z’s   
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K-means is a hard version of EM 
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 In the K-means “E-step” we do hard assignment: 
 

 

 

 In the K-means “M-step” we update the means as the 

weighted sum of the data, but now the weights are 0 or 1: 
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Soft vs. Hard EM assignments 
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 GMM  K-Means 



Theory underlying EM 
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 What are we doing? 

 

 Recall that according to MLE, we intend to learn the model 
parameters that would maximize the likelihood of the data.  

 

 But we do not observe z, so computing  

 

 

 is difficult! 

 

 What shall we do? 
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Intuition behind the EM algorithm 
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Jensen’s Inequality 
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 For a convex function f(x) 

 

 

 

 Similarly, for a concave function f(x) 

 

[f(x)]xf(Ε ])[

[f(x)]xf(Ε ])[



Jensen’s Inequality: concave f(x) 
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[f(x)]xf(Ε ])[



EM and Jensen’s Inequality 
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[f(x)]xf(Ε ])[



Advanced Topics 
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How Many Clusters? 
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 Number of clusters K is given  

 Partition „n‟ documents into predetermined  #topics 

 

 Solve an optimization problem: penalize #clusters 

 Information theoretic approaches: AIC, BIC criteria for model 

selection 

 Tradeoff between having clearly separable clusters and having too 

many clusters 



Seed Choice: K-Means++ 
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 K-Means results can vary based on random seed selection. 

 K-Means++  

 Choose one center uniformly at random among given datapoints. 

 For each data point x, compute D(x) 

D(x) = distance(x,  nearest center) 

 Choose one new data point at random as a new center 

P(x) ∝ D(x)2. 

 Repeat Steps 2 and 3 until k centers have been chosen. 

 Run standard K-Means with this centroid initialization. 



Semi-supervised K-Means 
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Supervised Learning 

Unsupervised Learning 
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Semi-supervised Learning 



Automatic Gloss Finding  

for a Knowledge Base 
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 Glosses: Natural language definitions of named entities. 
E.g. “Microsoft”  is an American multinational corporation headquartered in Redmond that develops, 
manufactures, licenses, supports and sells computer software, consumer electronics and personal computers 
and services ... 

 

 Input: Knowledge Base i.e. a set of concepts (e.g. company) and entities 
belonging to those concepts (e.g. Microsoft), and a set of potential glosses. 

 Output: Candidate glosses matched to relevant entities in the KB. 
“Microsoft  is an American multinational corporation headquartered in Redmond …”     
is mapped to entity “Microsoft” of type “Company”. 

 

 

[Automatic Gloss Finding for a Knowledge Base using Ontological 
Constraints, Bhavana Dalvi Mishra, Einat Minkov, Partha Pratim Talukdar, and William W. 
Cohen, 2014, Under submission] 



Example: Gloss finding 
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Example: Gloss finding 
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Example: Gloss finding 
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Example: Gloss finding 
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Training a clustering model 

Train: Unambiguous glosses 

Test: Ambiguous  glosses 
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Fruit Company  



GLOFIN: Clustering glosses 
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GLOFIN: Clustering glosses 
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GLOFIN: Clustering glosses 

62 



GLOFIN: Clustering glosses 
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GLOFIN: Clustering glosses 
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GLOFIN: Clustering glosses 
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GLOFIN on NELL Dataset 
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GLOFIN on Freebase Dataset 
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Summary  
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 What is clustering? 

  What are similarity measures? 

 K-Means clustering algorithm 

 Mixture of Gaussians (GMM) 

 Expectation Maximization 

 Advanced Topics 

 How to seed clustering 

 How to decide #clusters 

 Application: Gloss finding for a Knowledge Bases 



Thank You 

Questions? 
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