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Abstract
Traditional semi-supervised learning (SSL) techniques consider the missing la-

bels of unlabeled datapoints as latent/unobserved variables, and model these vari-
ables, and the parameters of the model, using techniques like Expectation Maximiza-
tion (EM). Such semi-supervised learning techniques are widely used for Automatic
Knowledge Base Construction (AKBC) tasks.

We consider two extensions to traditional SSL methods which make it more suit-
able for a variety of AKBC tasks. First, we consider jointly assigning multiple labels
to each instance, with a flexible scheme for encoding constraints between assigned
labels: this makes it possible, for instance, to assign labels at multiple levels from
a hierarchy. Second, we account for another type of latent variable, in the form of
unobserved classes. In open-domain web-scale information extraction problems, it
is an unrealistic assumption that the class ontology or topic hierarchy we are using
is complete. Our proposed framework combines structural search for the best class
hierarchy with SSL, reducing the semantic drift associated with erroneously group-
ing unanticipated classes with expected classes. Together, these extensions allow a
single framework to handle a large number of knowledge extraction tasks, including
macro-reading, noun-phrase classification, word sense disambiguation, alignment of
KBs to wikipedia or on-line glossaries, and ontology extension.

To summarize, this thesis argues that many AKBC tasks which have previously
been addressed separately can be viewed as instances of single abstract problem:
multiview semi-supervised learning with an incomplete class hierarchy. In this thesis
we present a generic EM framework for solving this abstract task.
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Chapter 1

Introduction

Extracting knowledge from the Web and integrating it into a coherent knowledge base (KB) is
a task that spans the areas of natural language processing, information extraction, information
integration, databases, search, and machine learning. Building large KBs automatically is impor-
tant because they can benefit many other natural language processing tasks like entity linking,
word sense disambiguation, question answering and web search. Recent years have seen signifi-
cant advances in the area of Automatic Knowledge Base Construction (AKBC), with techniques
ranging from unsupervised to supervised learning.

AKBC systems extract entities and relationships between them using clues like text context
patterns. They employ techniques like classification, named entity disambiguation, coreference
resolution to solve various subproblems in this area. NELL (Never Ending Language Learning)
is an example AKBC system that uses semi-supervised learning (SSL) techniques. These SSL
techniques take as input a hand curated ontology of around 275 classes, few seed examples of
each class, and a large unlabeled dataset to produce more facts that can be added to the knowledge
base.

With the availability of web scale corpora of semi-structured data in the form of HTML tables
and unstructured data in the form of text, there is a need for developing information extraction
techniques that will work with such datasets and help populate KBs. In Chapter 3 we propose
an unsupervised clustering technique named WebSets [126] that works on HTML tables on the
Web. WebSets runs a bottom-up clustering algorithm on entities extracted from these tables, and
produces named and coherent sets of entities in a completely unsupervised fashion. WebSets dis-
covers many coherent, high-quality concepts hidden in the unlabeled data which are not present
in a large ontology like NELL. We also explored a semi-supervised version of WebSets that does
constrained clustering using the facts from the NELL Knowledge Base (KB) as seeds.

The WebSets experiments revealed several less-studied problems associated with web-scale
information extraction, and semi-supervised learning in general. It suggested the following re-
search questions: 1) In practice, the information extraction system knows about some concepts,
and some of their example instances, but unlabeled datasets contain many more concepts that
are not known upfront. Can an algorithm do both semi-supervised learning for the classes with
training data and unsupervised clustering for classes without training data? 2) Another important
aspect of the knowledge extraction problem is that each noun phrase can have different sets of
features e.g., features based on occurrences of noun phrases in text, HTML tables etc. Can the
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existing semi-supervised learning methods be easily extended to combine scores of classifiers
learnt from different data views? 3) The categories in a KB ontology are related to each other
through subset and mutual exclusion constraints. Can a semi-supervised learning method lever-
age these class constraints to learn better classifiers? Here, we propose semi-supervised learning
techniques that can tackle all three issues in a unified learning framework.

1.1 Thesis Contributions

Let us now expand on the above mentioned research questions. More specifically, this thesis fo-
cuses on extending semi-supervised learning techniques to incorporate 1) unanticipated classes,
2) multi-view data, and 3) ontological constraints. Next, we present a brief summary of contri-
butions done in each of these three settings and some combinations of them.

1.1.1 Semi-supervised Learning in the Presence of Unanticipated Classes

Existing KBs contain very useful information about concepts present in the world along with
some known instances of these concepts. Existing semi-supervised learning algorithms can make
use of such information to acquire additional instances of the known concepts. However, we be-
lieve that there are many more concepts hidden in the unlabeled data. For example, if the infor-
mation extraction system knows about four classes: mammals, reptiles, fruits and vegetables; the
unlabeled data can contain instances of classes like birds, cities, beverages and so on. Similarly,
in our WebSets experiments we found that there are coherent clusters like “police designation”,
“social metric”, “government type” that are present in the unlabeled data but not present in the
NELL ontology.

This problem is especially challenging when we have very small amount of training data
for the known classes and there might be large number of unanticipated classes hidden in the
unlabeled data. Our experiments showed that when the number of seed classes are much smaller
than actual, more iterative semi-supervised learning methods like classification EM result in
semantic drift for the seed classes.

To tackle this scenario, we combined the semi-supervised learning of known concepts with
unsupervised discovery of new concepts, a method called “Exploratory Learning”. This method
is an “exploratory” extension of expectation-maximization (EM) that explores different numbers
of classes while learning. The intuition we use is that a new class should be introduced to hold x
when the probability of x belonging to existing classes is close to uniform. With this extension,
the method becomes more robust to the presence of unanticipated classes present in the unlabeled
data.

On various publicly available datasets we found that our proposed methods improved over
traditional semi-supervised learning methods with 28% to 190% relative improvements in terms
of seed class F1. We also show experimentally that our new class creation criterion is more
effective when compared to a baseline that uses Chinese Restaurant Process in terms of number
of classes produced, seed class F1 and runtime.
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1.1.2 Semi-supervised Learning with Multi-view Data

In multiclass semi-supervised learning, sometimes the information about datapoints is present in
multiple views. For example, a noun-phrase “Pittsburgh” can be represented by two data views:
its occurrences along with text contexts and its occurrences in HTML table columns. Similarly,
In the WebSets system, we can construct multi-view features by representing each noun-phrase
by 1) a set of co-occurring noun-phrases, 2) a set of table columns it appears in, 3) a set of
hypernyms it appears with in the context of Hearst patterns, and so on. All these clues can be
leveraged to classify a noun-phrase more effectively.

Trivial solution of concatenating the feature vectors from multiple views need not be the best
choice, and different models might suit well for different views. This multi-view learning task
gets even more challenging when the amount of training data is small. Hence an intelligent way
to combine scores of models built from multiple views is a promising direction. NELL uses an
ad hoc multi-strategy approach, instead we focus on systematic evaluation of multi-view SSL.

In Chapter 5, we propose optimization based methods to tackle semi-supervised learning in
the presence of multiple views. Our techniques make use of mixed integer linear programming
formulations along with the EM framework to find consistent class assignments given the scores
in each data view. We found that several existing and some novel score combination strategies
can be represented in a single optimization framework, and it results in improvements over a
simple baseline that concatenates feature vectors from different views.

We present extensive experiments on 8 different multi-view datasets, including document
classification, image classification, publication categorization and knowledge based information
extraction datasets. We showed that our techniques give state-of-the-art performance when com-
pared to existing multi-view learning methods including the co-training based algorithm pro-
posed by Bickel and Scheffer [10], on the problem of flat multi-view semi-supervised learning.

1.1.3 Semi-supervised Learning in the Presence of Ontological Constraints

Multiple views are only one issue arising in complex real-world learning tasks. For instance,
in the above mentioned KB population task, labels assigned to each noun-phrase need to be
consistent with the hierarchical class constraints posed by the KB ontology. Example class con-
straints include: “if an entity is classified as Mammal then it should also be classified as Animal”
(subclass-superclass constraint), “if an entity is classified as Mammal then it should not be clas-
sified as Reptile” (mutual exclusion constraint). Further, the class hierarchy need not be a tree or
some of the classes might be overlapping.

Here each datapoint is assigned a bit vector of labels, one bit per class in the ontology. The
ontological constraints tell us which bit vectors are consistent and which are invalid. Mixed inte-
ger linear programming formulations are used to estimate optimal label vectors in each iteration
of EM algorithm.

We used this constrained SSL method, named GLOFIN, for the task of automatically finding
glosses for entities in a gloss-free knowledge base like NELL (presented in Section 6.3.2). For
example, “Microsoft is a software company headquartered in Redmond . . . ” can be assigned
as a gloss for entity “Microsoft” of type “Company” in the NELL KB. GLOFIN classifies each
candidate gloss into a set of KB categories while following ontological constraints which in turn
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enables us to assign the gloss to the correct entity in the KB. In our gloss finding experiments
we observe that the GLOFIN method outperforms the widely used SVM and label propagation
baselines especially with small amount of noisy seed data.

1.1.4 Combinations of Scenarios

Thus we propose systematic solutions for incorporating unanticipated classes, multi-view data,
and ontological constraints in the semi-supervised learning setting. One can think of various
combinations of these scenarios. In this thesis we present results on two such combinations 1)
multiple data views, ontological constraints and 2) unanticipated classes, ontological constraints.

Hierarchical Multi-view Semi-supervised Learning

In Section 6.2 we present semi-supervised learning techniques that can incorporate ontological
class constraints as well as multiple data views. Here we used a mixed integer linear program-
ming formulation that contains consistency constraints w.r.t. both class ontology and multiple
data views.

On NELL’s entity classification dataset we observed that this combination was better than
the flat multi-view variant of our method. Further our method produced better results than co-
training based algorithm proposed by Bickel and Scheffer [10] and simpler score aggregation
methods like summation and multiplication of scores especially when the amount of labeled data
is very small.

Hierarchical Exploratory Learning

Finally, the problem becomes even more challenging when the given class ontology is not com-
plete to represent the unlabeled data. In Chapter 7 we present hierarchical exploratory learning,
that can do semi-supervised learning in the presence of an incomplete class ontology. Our pro-
posed method traverses the class hierarchy in top-down fashion to detect whether and where to
add a new class for the given datapoint. It also uses a systematic optimization strategy to find the
best set of labels for a datapoint given ontological constraints in the form of subset and mutual
exclusion constraints.

On NELL’s entity classification datasets this method outperforms both previously proposed
flat exploratory learning method and its naive extension using divide and conquer strategy in
terms of seed class F1 on average by 10% and 7% respectively.

1.2 Thesis Statement

In summary, our thesis statement is described as follows: Performance on a wide range of AKBC
tasks can be improved by enhancing SSL methods to support 1) unanticipated classes, 2) onto-
logical constraints between categories, and 3) multiple data views.
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1.3 Additional Potential Applications
Automatic knowledge base construction (AKBC) spans the areas of natural language processing,
information extraction, information integration, databases, search and machine learning. A vari-
ety of such AKBC tasks are being studied by the research community, including but not limited
to entity classification, relation extraction, entity linking, slot filling, ontology alignment, and so
on.

For most of these tasks the techniques involve a multiple step approach. An important step
is to classify or cluster instances into one of the KB categories or relations. This inference task
gets challenging when the amount of labeled data is very small. Semi-supervised or weakly
supervised learning methods have been proposed to make effective use of available supervision
(small amount of seed data or distant supervision) and combine it with large amount of unlabeled
data, to learn models that will work for web-scale information extraction tasks.

In this thesis, we develop semi-supervised learning techniques in the presence of unantici-
pated classes, multiple data views, ontological class constraints, and combinations of these three
scenarios. Below we present a list of actual and potential applications to indicate the potential
scope of the methods presented in this thesis.
• Macro-reading: This task refers to semi-supervised classification of noun-phrases into a

big taxonomy of classes, using distributional representation of noun-phrases. For example,
clasifying a noun-phrase “Pittsburgh” by considering all text contexts it appeared with is
a macro-reading task. NELL [25] is an example of macro-reading systems. We proposed
an exploratory learning method [128] for macro-reading that reduces the semantic drift of
seeded classes hence helping the traditional semi-supervised learning objectives.

• Micro-reading: Micro-reading differs from macro-reading in the sense that instead of
using collective distributional features of a noun-phrase, we are trying to disambiguate an
occurrence of noun-phrase w.r.t. the local context within a sentence or paragraph.
We have applied our exploratory learning technique for clustering NIL entities (the entities
that do not correspond to any of the existing entities in the KB) in the KBP entity discovery
and linking (EDL) task [86]. We are working on using such hierarchical semi-supervised
learning techniques for the task of word sense disambiguation by considering occurrences
of all monosemous words as training data and polysemous word occurrences as unlabeled
data. In these experiments, we use the WordNet synset hierarchy to deduce ontological
constraints.

• Multi-view macro-reading and micro-reading: This task refers to what the “macro-
reading” does, plus collecting signals from multiple data views. For example, NELL [25]
proposed an information extraction system that classifies noun-phrases into a class hi-
erarchy using clues from several different sources: text patterns occurring in sentences,
morphological features, semi-structured data in the form of lists and tables etc. We pro-
posed a multi-view semi-supervised learning method [123] for this task. An example of
“multi-view micro reading” is a word sense disambiguation task where there are multiple
data views of word synsets. For example, resources like WordNet, Wiktionary contain for
each word sense a gloss and a set of example usages. One can use the glosses and example
usages as multiple views to train multi-view models.
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• Alignment of online glossaries to an existing Knowledge Base: This task can also be
viewed as a gloss finding task for an existing gloss-free knowledge base. This task is
important because a KB with glosses has been shown to be helpful for the task of entity
recognition and disambiguation from search queries [26, 129].

• Ontology extension: Most of the concept or topic hierarchies available are incomplete to
represent entities present on the Web. This task refers to the problem of discovering new
classes that can be added to existing concept hierarchies to make them representative of
the real world data. Many techniques have been proposed [92, 99, 116] with similar goals,
however they are applicable in limited settings. We proposed a unified hierarchical ex-
ploratory learning technique OptDAC-ExploreEM that can populate known seeded classes
in an ontology along with extending it with newly discovered concepts while taking care
of ontological constraints [124, 127].

1.4 Thesis Outline
The rest of the document is organized as follows. In Chapter 2, we go through the background
material for this thesis. Chapter 3 is a case study that presents our unsupervised information
extraction technique WebSets [126] and its semi-supervised version. Chapter 4 dives into the
novel problem of “Exploratory Learning” that makes the semi-supervised learning technique
robust to the presence of unanticipated classes.

We then present our contributions in constrained semi-supervised learning. Multi-view semi-
supervised learning is discussed in Chapter 5, followed by incorporation of ontological con-
straints in Chapter 6. Hierarchical exploratory learning is presented in Chapter 7 followed by
conclusions and future research directions in Chapter 8.
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Chapter 2

Background

This chapter gives us some background needed to understand the motivation behind this thesis
research. Each of the later chapters go into greater details about related work relevant to that
chapter. Here, we start with a broad summary of what is information extraction, followed by
an introduction to one of its sub-fields, automatic knowledge base population. We then describe
NELL, an example machine learning system that does KB population. Finally we present a list
of AKBC problems that this thesis revolves around.

2.1 Information Extraction

Our techniques are motivated by applications of semi-supervised learning to variety of AKBC
tasks. Knowledge base completion is a type of information extraction. Information extraction
[111] refers to the area of research that focuses on the task of extracting structured information
such as entities, relationships between entities, and attributes of entities from unstructured data
like web text. With the availability of large amount of structured and unstructured data on the
Web, there is a need for much richer forms of queries than mere keyword search. Information
extraction enables intelligent querying, and analyzing of unstructured data by annotating it with
the extracted information. However, extraction of useful structure from noisy sources of infor-
mation on the Web is a challenging task. Many natural language processing (NLP) and machine
learning (ML) techniques have been developed in the last two decades to solve this problem.

Let us start with an example of an information extraction task in the context of scholarly
articles. If we have a large corpus of research publications, the naive way of organizing this
information would be to build inverted indexes from each word in the corpus to all the papers
it occurred in. This enables simple keyword based information retrieval. Information extraction
techniques can enable us to extract structured information like author, title, conference name
and citations from these research papers. Such structured information can enable new kinds of
queries like “Find papers co-authored by two of the given authors”, “Find most influential ten
papers of a particular author” (a paper’s influence is measured by how many papers cited this
paper), and so on.

Information extraction has applications in various domains ranging from organization of do-
main specific information like scholarly articles, medical records etc., to building generic knowl-
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edge bases that can represent general knowledge about the world e.g., Freebase, NELL, and
YAGO. Output of information extraction systems is very useful for other real world applications
like question answering, sentiment analysis, product recommendation, and so on.

2.2 Building Knowledge Bases

Information extraction in its earlier years focused on acquiring facts from an individual doc-
ument in isolation. Such techniques learn a classifier for detecting a named entity of type Per-
son/Location/Organization in specific documents. For example, while making a decision whether
a noun-phrase “Pittsburgh” that occurred in document-8 at offset 32 is of type Location, we are
looking at the text that appears only in document-8 and around offset 32. This kind of learning is
also referred to as “micro-reading”, where the decisions are made considering only small amount
of context around an occurrence of a word or noun-phrase.

In the recent years, an orthogonal direction of research has emerged, which tries to gather
information about an entity or a potential entity scattered among a large document collection. For
example, while making a decision about whether a noun-phrase “Pittsburgh” is of type Location,
we are looking at text contexts that appeared around this noun-phrase not only in document-
8, but all documents in the corpus. This kind of learning is referred to as “macro-reading”.
It makes use of possibly redundant, complementary, or even conflicting pieces of information
about a noun-phrase, integrates this information to do corpus level inference. Note that for an
ambiguous noun-phrase like “Apple”, a macro-reading system like ConceptResolver [74] learns
that it can refer to either “Apple a Fruit” or “Apple a Company”.

Facts extracted by information extraction systems can be stored in a database called a Knowl-
edge Base (KB). Many popular KBs store the facts that the macro-reader extracted along with
the confidence score for that fact. For example, a KB might store triples of the form: (Pittsburgh,
Location, 0.99), indicating that the system is confident with a score of 0.99 that a noun-phrase
“Pittsburgh” is of type “Location”. Along with extracting type information, information extrac-
tion techniques are also capable of extracting relationships between entities. For example, it can
learn which text patterns indicate whether a company is headquartered in a particular city and
extract many such pairs from the corpus like (Microsoft, Redmond), (Google, Mountain View)
and so on.

Traditionally knowledge bases were created and maintained by human annotators e.g., Free-
base, WordNet etc. However, to build knowledge bases with high recall, such a manual process
is expensive in terms of both time and monetary requirements. Hence in recent years, a lot of
research efforts [64] are targeted to achieve Automatic Knowledge Base Construction (AKBC).
The AKBC community is developing automated computer systems to process large amounts of
unstructured and semi-structured information on the Web, to discover new facts about named
entities and to add them to a KB. The information extraction problems studied in this thesis are
more specifically subproblems of AKBC.
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2.3 NELL: Never Ending Language Learning
The NELL project at CMU is an attempt to create a machine learning based computer system
that can process information present on the Web and extract facts of the kind: ‘Pittsburgh is of
type City’, ‘CMU is of type University’, and ‘CMU is located in Pittsburgh’. Thus NELL is
a specific AKBC system, and many of the tasks studied in this thesis are inspired by NELL as
a usecase. This computer system is called Never-Ending Language Learner (NELL) because
it is been running continuously since January 2010, attempting to extract facts from text found
in hundreds of millions of web pages. Further it tries to improve its reading competence over
iterations, so that the next iteration of the system can extract more facts from the web, and even
more accurately. Currently, NELL has acquired around 2.4M high confidence facts from the
Web.

Carlson et al. [24] described the architecture for the Never Ending Language Learning (NELL)
system. The NELL system runs 24/7, reads textual and semi-structured data from the Web and
populates a structured knowledge base by populating an existing ontology of classes and rela-
tions. It has two important goals. The first is to extract more facts, using models learned in
previous iterations, and the second is to improve its reading competence so that the system gets
better and better in extracting such knowledge.

(a) Architecture of NELL system (taken from Carl-
son et al. [24]).

(b) Example ontology.

Figure 2.1: NELL illustrations.

Figure 2.1 (a) shows the general architecture of the NELL system. In each iteration multiple
information extraction (IE) systems like CPL, CSEAL [25] etc. propose candidate instances that
could be added to the existing KB. These components supply a probability for each proposed
candidate and a summary of the source evidence supporting it. The knowledge integrator pro-
motes those beliefs to the KB for which multiple IE components have high score and agreement.
Facts added in each iteration then contribute to making the extractors better in the next iteration.

Figure 2.1 (b) shows an example class ontology that could be used as input to NELL. There is
an inclusion relationship between a class and its parent: e.g., if an entity is labeled as “Country”
then it should also be labeled as “Location”. Furthermore there are mutual-exclusion constraints
between some class pairs: e.g., if an entity is labeled as “State”, then it should not be labeled

9



as “Country”. There are seed examples for each of the concepts in the ontology: e.g., Spinach,
Potato etc. are seed examples of the “Vegetable” class. Thus the NELL system takes as input an
ontology of concepts that includes inclusion and mutual exclusion class constraints, along with
seed examples, iteratively learns models for concepts, and populates them with new instances,
without violating the class constraints.
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Chapter 3

Case Study: Table Driven Information
Extraction

In this chapter, we describe an open-domain information extraction method for extracting concept-
instance pairs from an HTML corpus. This work is published in the proceedings of WSDM 2012
[126]. This chapter also illustrates the motivations behind the three semi-supervised learning
scenarios that are focus of this thesis.

The most effective earlier approaches to the problem of concept-instance pair extraction (e.g.,
Pantel et al. [100], Van Durme and Pasca [132]) rely on combining clusters of distributionally
similar terms and concept-instance pairs obtained with Hearst patterns1[61]. In contrast, our
method relies on a novel approach for clustering terms found in HTML tables, and then assigning
concept names to these clusters using Hearst patterns. Note here that the names of concepts are
not coming from a fixed ontology. The method can be efficiently applied to a large corpus,
and experimental results on several datasets showed that our method can accurately extract large
numbers of concept-instance pairs.

Our hypothesis is that HTML tables on the Web would contain lots of useful relational data.
Let us look at some example tables that contain coherent sets of entities in their columns. Con-
sider the example tables containing countries and their capitals shown in Figure 3.1. Notice that
co-occurrences of entities in these tables can give us a strong signal that there are two sets of
entities in these tables, one is ‘Amsterdam, Andorra la Vella, Athens, Belgrade . . . ’ (city names)
and the other is ‘Netherlands, Andorra, Greece, Serbia, . . . ’ (country names). In this chapter
we will describe a method that extracts such entity clusters and labels them in an unsupervised
fashion.

3.1 WebSets: Unsupervised Concept-Instance Pair Extraction
from HTML Tables

What can we do with a web scale corpus of HTML pages? Can we efficiently extract all possible
concept-instance pairs from such corpus without any human input? What if we don’t know how

1Hearst patterns are surface patterns (like “X such as Y”) indicating that (X,Y) is a concept-instance pair.
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Figure 3.1: Examples of relational HTML tables on the Web. Sources: 1) http://www.
nationsonline.org (left) , 2) http://en.wikipedia.org (right).

many concepts, or which concepts, are expected to be found in this data? While answering these
questions we developed an open-domain, unsupervised information extraction technique named
WebSets for extracting concept-instance pairs from a HTML table corpus.

3.1.1 Proposed Method

The techniques proposed in this section rely solely on HTML tables to detect coordinate terms2.
The hypothesis here is that entities appearing in a table column possibly belong to the same
concept, and if a set of entities co-occur together in many table columns coming from multiple
URL domains, there is a high probability that they represent a coherent entity set. Given this
hypothesis, each cell in a table becomes a potential entity and each table column becomes a
potential entity set.

We proposed a representation based on co-occurrence of entity-triplets in table columns. It
turned out that this representation helped us disambiguate multiple senses of the same entity
string e.g., a triplet “Apple, Banana, Grapes” had different co-occurrence patterns when com-
pared to “Apple, Google, Microsoft”.

Next, we developed an efficient bottom-up clustering algorithm (Algorithm 1) which goes
through the entire dataset only once and produces extremely precise (cluster purity 83-99%)
coordinate-term clusters. The clusterer scans through each triplet record t which has occurred
in at least minUniqueDomain distinct domains. A triplet and a cluster are represented with the
same data-structure: (1) a set of entities, (2) a set of columnIds in which the entities co-occurred
and (3) a set of domains in which the entities occurred.

The clusterer compares the overlap of triplet t against each cluster Ci. The triplet t is added

2Entities belonging to the same type are called coordinate terms. For example, “Pittsburgh” and “Seattle” are
coordinate terms as both of them are of type “City”.
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to the first Ci so that either of the following two cases is true:
(1) at least 2 entities from t appear in cluster Ci i.e., minEntityOverlap = 2, and
(2) at least 2 columnIds from t appear in cluster Ci i.e., minColumnOverlap = 2.
In both these cases, intuitively there is a high probability that t belongs to the same category as
cluster Ci. If no such overlap is found with existing clusters, the algorithm creates a new cluster
and initializes it with the triplet t.

This clustering algorithm is order dependent, i.e., if the order in which records are processed
changes, it might return a different set of clusters. Finding the optimal ordering of triplets is a
hard problem, but a reasonably good ordering can be easily generated by ordering the triplets in
the descending order of number of distinct domains. We discard triplets that appear in less than
minUniqueDomain domains.

This clustering method outperforms K-means [126] in terms of Purity, and FM index (metrics
are defined in Section 3.1.2). Further, the time complexity of our clustering algorithm is only
O(N ∗ logN) (N being total number of HTML table cells in the corpus), making it more efficient
and scalable than K-means3 or agglomerative clustering4. We also presented a new method for
combining candidate concept-instance pairs and coordinate-term clusters, and used it to suggest
hypernyms for entity clusters (Algorithm 2).

Figure 3.2 summarizes the architecture of proposed WebSets system, which extracts concept-
instance pairs from HTML tables in a given corpus. WebSets is composed of four main com-
ponents: the Table Parser, the Triplet Store Builder, the Bottom-Up Clusterer, the Hypernym
Recommender. Given a set of HTML pages, the Table Parser extracts potentially useful tables
using a set of simple hand-coded heuristics. The Triplet Store Builder then goes over every col-
umn of every extracted table, and builds a dataset of entity triplets found in them. Each record
of triplet store contains entities in the triplet, all (TableID, ColumnId) in which they co-occurred,
and all domains in which they co-occurred. These triplets are then ranked by the number of
distinct domains in which they co-occurred. The Bottom-Up Clusterer then clusters these triplets
into consistent sets. This component considers only those triplets that have occurred in at least k
domains, where k is a small constant. The Hypernym Recommender then considers each cluster,
and recommends candidate hypernyms based on the overlap between the cluster and hypernym
pattern dataset. More details about these methods and experiments is presented in Appendix A.

3K-Means takes O(n ∗ k ∗ d ∗ i) time where n is the number of d dimensional datapoints, k is number of clusters
and i is the number of iterations to converge. Note that our proposed WebSets algorithm is single pass (not iterative).

4In the general case, the complexity of agglomerative clustering is O(n3). However, for some special cases,
optimal efficient agglomerative methods have complexity O(n2).
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Algorithm 1 Bottom-Up Clustering Algorithm.
1: function Bottom-Up-Clusterer (TripletStore) :Clusters {Triplet records are ordered in

descending order of number of distinct domains.}
2: Initialize Clusters = φ; max = 0
3: for (every t ∈ TripletStore : such that

|t.domains| >=minUniqueDomain) do
4: assigned = false
5: for every Ci ∈ Clusters do
6: if |t.entities ∩ Ci.entities| >= minEntityOverlap OR |t.col ∩ Ci.col| >=

minColumnOverlap then
7: Ci = Ci ∪ t
8: assigned = true
9: break;

10: end if
11: end for
12: if not assigned then
13: increment max
14: Create new cluster Cmax = t
15: Clusters = Clusters ∪ Cmax
16: end if
17: end for
18: end function

Algorithm 2 Hypernym Recommendation Algorithm.
1: function GenerateHypernyms
2: Given: c: An entity cluster generated by Algorithm 1,
I: Set of all entities ,
L: Set of all labels,
H ⊆ L× I: Hyponym-concept dataset,

3: Returns: RLc : Ranked list of hypernyms for c.
4: Algorithm:
5: RLc = φ
6: for every label l ∈ L do
7: Hl = Set of entities which co-occurred with l in H
8: Score(l) = |Hl ∩ c|
9: RLc = RLc ∪ < l, Score(l) >

10: end for
11: Sort RLc in descending order of Score(l)
12: Output RLc
13: end function
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Figure 3.2: Architecture of the WebSets system.
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3.1.2 Experimental Results

Here we describe the experimental results of applying WebSets techniques on various HTML
table datasets extracted from the Web.

Datasets

To test the performance of WebSets, we created several webpage datasets that are likely to have
coherent sets of entities. An evaluation can then be done to check whether the system extracts
the expected entity sets from those datasets.

The first two datasets are created by crawling webpages that are tagged with particular topics
in the delicious.com website [139]. The next four datasets are created using the SEAL [25, 137]
and ASIA [136] systems which extract information from semi-structured pages on the Web.
Each of these systems takes as input a name or seed examples of a category, and finds possible
instances of that category using set expansion techniques. The last dataset is sampled from the
ClueWeb09 corpus. We expect these datasets to be rich in semi-structured data.

1. Delicious Sports: This dataset is a subset of the DAI-Labor Delicious corpus [139] which
contains all public bookmarks of about 950,000 users retrieved from ‘delicious.com’ be-
tween December 2007 and April 2008. Delicious Sports is created by taking only those
URLs which are tagged as “sports”.

2. Delicious Music: This dataset is a subset of the DAI-Labor Delicious corpus [139], cre-
ated by taking only those URLs which are tagged as “music”.

3. CSEAL Useful: CSEAL is one of the methods which suggests new category and relation
instances to NELL. It mostly extracts entities out of semi-structured information on the
Web. CSEAL Useful dataset is a collection of those HTML pages from which CSEAL
gathered information about entities in the NELL KB.

4. Toy Apple: This is a small toy dataset created with the help of multiple SEAL queries such
that it contains instances of word “Apple” as a fruit and “Apple” as a company. Through
this dataset we tackle the challenge of separating multiple senses of a word. We also
studied how different clustering algorithms and different entity representations perform on
the clustering task.

5. ASIA NELL: ASIA [136] extracts instances of a given semantic class name (e.g., ‘car
makers’ to ‘Ford, Nissan, Toyota . . . ’) in an unsupervised fashion. It extracts set instances
by utilizing Hearst patterns [61] along with the state-of-the-art set expansion technique
implemented in SEAL. ASIA NELL dataset is collected using hypernyms associated with
entities in the NELL KB as queries for ASIA. Examples of such hypernyms are “City”,
“Bird”, “Sports team” etc.

6. ASIA INT: This dataset is also collected using the ASIA system but with another set of
category names as input. These category names come from the intelligence domain. Ex-
amples of categories in this domain are “government types”, “international organizations”,
“federal agencies”, “religions” etc.

7. Clueweb HPR: This dataset is collected by randomly sampling high quality pages in the
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Dataset #HTML #tables
pages

Toy Apple 574 2.6K
Delicious Sports 21K 146.3K
Delicious Music 183K 643.3K
CSEAL Useful 30K 322.8K
ASIA NELL 112K 676.9K
ASIA INT 121K 621.3K
Clueweb HPR 100K 586.9K

Table 3.1: Dataset Statistics.

ClueWeb09 dataset [23]. For this purpose we used the Fusion spam scores [68] provided
by Waterloo university and used pages with spam-rank score higher than 60% (higher score
corresponds to lesser spam). We sampled uniformly at random 100K webpages from this
set.

Table 3.1 shows the number of HTML pages and tables present in each of the above men-
tioned datasets. All these datasets are made publicly available for other researchers [126].

Relational Table Identification

Here we describe the data preprocessing step that involves table extraction from a HTML corpus,
constituting the first stage of our WebSets system (described in Chapter 3). From the datasets
described in Section 3.1.2, we parsed tables defined by HTML <table> tags5 This is only a
fraction of structured data available on the Web. Use of advanced table extraction techniques like
Gatterbauer et al. [51] can provide more input data for our information extraction algorithms.

Further only a small fraction of HTML tables actually contain useful relational data. The
remaining tables are used for formatting or rendering purposes rather than to present relational
data. To filter out useful tables, we used the following set of features: (1) the number of rows (2)
the number of non-link columns (3) the length of cells after removing formatting tags (4) whether
table contains other HTML tables. Statistics of table identification for each dataset along with
thresholds used for each of the above mentioned features are described in Appendix A.2.1.

Evaluation Metrics

Here we describe existing evaluation metrics used for clustering tasks. We compare the clustering
algorithms in terms of commonly used clustering metrics: cluster purity (Purity), normalized
mutual information (NMI), rand index (RI) [82] and Fowlkes-Mallows index (FM) which are
defined as follows:
• Cluster Purity (Accuracy): To compute cluster purity, for each cluster, the class which

is most frequent in it gets assigned. The accuracy of this assignment is then measured by
counting the number of correctly assigned documents and dividing by the total number of
documents. To compute cluster purity, the dataset must be fully labeled. Purity is defined

5We found that large number of HTML pages have broken syntax. We use the HTML syntax cleaning software
Tidy [1] to fix the syntax in these pages.
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as
purity(Ω, C) =

1

N

∑
k

max
j
|ωk
⋂

cj|

where N is total number of documents, Ω = ω1, ω2, ..., ωK is the set of clusters and C =
c1, c2, ..., cJ is the set of true classes. We interpret ωk as the set of documents in cluster ωk
and cj as the set of documents in cluster cj .

• Normalized Mutual Information: High purity is easy to achieve when the number of
clusters is large, hence using purity it is difficult to evaluate the trade offs in the quality
of the clustering against the number of clusters. NMI [117] is a measure that allows us to
evaluate such trade-off. Normalized mutual information can be computed on a partially
labeled dataset as follows:

NMI(Ω, C) =
I(Ω;C)

[H(Ω) +H(C)]/2

where maximum likelihood estimates for mutual information and entropy are computed as
follows:

I(Ω;C) =
∑
k

∑
j

|ωk
⋂
cj|

N
∗ logN ∗ |ωk

⋂
cj|

|ωk| ∗ |cj|

H(Ω) = −
∑
k

|ωk|
N
∗ log |ωk|

N

• Rand Index: This metric [107] is based on an information-theoretic interpretation of clus-
tering. Clustering is a series of decisions, one for each of the N(N − 1)/2 pairs of doc-
uments in the collection. To compute this measure, a ground truth clustering for all data-
points is needed. True label denotes the pair belongs to same class or not. Predicted label
denotes whether the pair belongs to same cluster or not. This way we can count True Pos-
itive (TP ), False positive (FP ), True Negative (TN ) and False Negative (FN ) score for
the clustering. Rand Index is then defined as follows:

RI =
TP + TN

TP + FP + FN + TN

Thus RI is the accuracy of the decision to put each pair of data points in the same or
different clusters.

• Fowlkes-Mallows index (FM): While the previous three metrics are applicable only for
hard clusterings, the FM metric is defined for scenarios where a clustering approach pro-
duces overlapping clusters but the true classes are non-overlapping. Note that we are par-
titioning entity triplets, hence the clusters can be overlapping in terms of entities present
in them. Let nij be the size of intersection of cluster ωi and class cj , ni∗ =

∑
j nij and

n∗j =
∑

i nij . Then the Fowlkes-Mallows index is defined as:

FM =

∑
ij

(
nij
2

)
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i

(
ni∗
2

)∑
j

(
n∗j
2

)
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The derivation of this formula can be found in Ramirez et al. [106].

Experimental Methodology

Note that evaluating unsupervised techniques is challenging, since it is very expensive to label
each table-column of every dataset. Here we present a sampling based evaluation method which
we used to evaluate WebSets on four datasets: CSEAL Useful, ASIA NELL, ASIA INT and
Clueweb HPR. We chose these four datasets to cover the different types, i.e., domain-specific,
open-domain and completely heterogeneous datasets. There are two parts of the evaluation:
evaluating the labels of each cluster and checking whether each entity of that cluster is coherent
with the assigned label.

The more subjective evaluation is of the form “deciding whether a cluster is meaningful or
noisy”, “assigning label to an unlabeled cluster”. This was done by us (referred to as evaluators).
The objective evaluation of the kind “whether X belongs to category Y” was done using Amazon
Mechanical Turk. We created yes/no questions of the form “Is X of type Y?”.

To evaluate the precision of clusters created by WebSets, we uniformly sampled a maximum
of 100 clusters per dataset, with a maximum of 100 samples per cluster, and gave them to the
Mechanical Turk in the form of yes/no questions. Each question was answered by three different
individuals. The majority vote for each question was considered as a decision for that question.
To evaluate the quality of Mechanical Turk labels, we sampled 100 questions at random, and
manually answered the questions. Then we checked whether majority vote by the Mechanical
Turk matched our answers. We specifically checked majority votes for some confusing questions
which were likely to get labeled wrong. We found that the majority vote of three individuals was
correct more than 90% of the time and in case of ambiguous questions precision estimates are
biased low.

Results

We evaluate WebSets using three criteria: (1) Are the clusters generated by WebSets meaning-
ful? (2) How good are the recommended hypernyms? (3) What is precision of the meaningful
clusters? Subsequent sections discuss these experiments in detail.

Meaningfulness of Clusters: In this experiment, we did manual evaluation of meaningfulness
of clusters. We uniformly sampled maximum 100 clusters from each dataset. We showed the
following details of each cluster to the evaluator: (1) the top 5 hypernyms per cluster (2) a
maximum of 100 entities sampled uniformly from the cluster.

We looked at the entities and checked whether any of the hypernyms suggested by the system
is correct. If any one of them is correct then we labeled the cluster with that hypernym. If none
of the hypernyms is correct, we labeled the cluster with any other hypernym of our choice that
represents the cluster. If the entities in a cluster do not form any meaningful set, then the cluster
is marked as “noisy”. During the evaluation if any of the candidate hypernyms is picked as label
or if a completely different label is chosen, then the cluster is considered as meaningful, else it is
considered as noisy.
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#Triplets #Clusters #clusters with Hypernyms % meaningful
CSEAL Useful 165.2K 1090 312 69.0%
ASIA NELL 11.4K 448 266 73.0%
ASIA INT 15.1K 395 218 63.0%
Clueweb HPR 561.0 47 34 70.5%

Table 3.2: Meaningfulness of generated clusters.

#Clusters Evaluated #Meaningful Clusters #Hypernyms correct MRR (meaningful)
CSEAL Useful 100 69 57 0.56
ASIA NELL 100 73 66 0.59
ASIA INT 100 63 50 0.58
Clueweb HPR 34 24 20 0.56

Table 3.3: Evaluation of Hypernym Recommender.

Table 3.2 shows that 63-73% of the clusters were labeled as meaningful. Note that number of
triplets used by the clustering algorithm (Table 3.2) is different from total number of triplets in
the triplet store (Table A.6), because only those triplets that occur in at least minUniqueDomain
(set to 2 for all experiments) distinct domains are clustered.

Performance of Hypernym Recommendation: In this experiment, we evaluate the performance
of the hypernym recommendation using the following criterion:
(1) What fraction of the total clusters were assigned some hypernym?: This can be directly com-
puted by looking at the outputs generated by hypernym recommendation.
(2) For what fraction of clusters did the evaluator chose the label from the recommended hyper-
nyms?: This can be computed by checking whether each of the manually assigned labels was
one of the recommended labels.
(3) What is Mean Reciprocal Rank (MRR) of the hypernym ranking?: The evaluator gets to see
ranked list of top 5 labels suggested by the hypernym recommender. We compute MRR based on
rank of the label selected by the evaluator. While calculating MRR, we consider all meaningful
clusters (including the ones for which label does not come from the recommended hypernyms).

Table 3.3 shows the results of this evaluation. Out of the random sample of clusters evaluated,
hypernym recommendation could label 50-60% of them correctly. The MRR of labels is 0.56-
0.59 for all the datasets.

Next we compare our hypernym recommendation technique with Van Durme and Pasca tech-
nique [132]. Our method is different from Van Durme and Pasca Method (DPM) in the sense that,
they output a concept-instance pair only when it appears in a set of candidate concept-instance
pairs, i.e., it exists in Hyponym-concept dataset. In our method, based on overlap of coordinate
term cluster with the Hyponym Concept dataset, we extend the labels to the whole cluster. An-
other difference is the coordinate term clusters we are dealing with. DPM assumes term clusters
are semantic partitions of terms present in the text corpus. The clusters generated by WebSets
are clusters of table columns. There is higher possibility of having multiple small size clusters
which all belong to same semantic class, but were not merged due to our single pass bottom-up
clusterer. Hence the same method may not work equally well on these clusters.
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Method K J %Accuracy yield (#pairs #correct pairs
produced) (predicted)

DPM inf 0.0 34.6 88.6K 30.7K
DPM 5 0.2 50.0 0.8K 0.4K
DPMExt inf 0 21.9 100,828.0K 22,081.3K
DPMExt 5 0.2 44.0 2.8K 1.2K
WebSets - - 67.7 73.7K 45.8K
WebSets-Ext - - 78.8 64.8K 51.1K

Table 3.4: Comparison of various methods in terms of accuracy and yield on CSEAL Useful
dataset.

Dataset #Meaningful clusters evaluated % Precision
CSEAL Useful 69 98.6%
ASIA NELL 73 98.5%
ASIA INT 63 97.4%
Clueweb HPR 24 99.0%

Table 3.5: Average precision of meaningful clusters.

We sample 100 concept-instance pairs randomly from output of each method to measure
accuracy. The results of different methods are presented in Table A.9. As we can see, DPM
generates concept-instance pairs with 50% accuracy even when run with conservative thresholds
like K = 5 and J = 0.2. We also tried an extension of DPM called DPMExt which outputs a
label for each entity in the cluster, when the label satisfies thresholds defined by J and K. This
extension increases coverage of concept-instance pairs from 0.4K to 1.2K at the cost of a slight
decrease in accuracy (50% to 44%).

The hypernym recommendation of WebSets, described in Algorithm 2, and only the topmost
hypernym in the ranked list is produced for each cluster. Table A.9 shows that WebSets has a
reasonable accuracy (62.2%) and yield compared to DPM and DPMExt. The Hyponym-concept
dataset might contain noisy pairs. We also tried an extension of WebSets called WebSets-Ext
which overcomes this problem by considering only those class-instance pairs which have oc-
curred at least 5 times in the corpus. Adding this simple constraint improves accuracy from 67%
to 78% and correct pairs yield from 45K to 51K.

Precision of Meaningful Clusters: In this experiment we want to evaluate the coherence of the
clusters; i.e., whether all entities in a cluster are coherent with the label assigned to the cluster.
To verify this, we evaluated the meaningful clusters found in the previous experiment, using the
Mechanical Turk. This evaluation procedure is already discussed in Section 3.1. Table 3.5 shows
that meaningful clusters6 have precision in the range 97-99%. This indicates that WebSets gen-
erates coherent entity clusters and hypernym assignment is reasonable.

Entity Record vs. Triplet Record Representation: Next we compare the performance of both the

6First three values in column 2 of Table 3.5 are same as percentage values in column 5 of Table 3.2. This is
because we sample maximum 100 clusters per dataset for the evaluation, hence percentage of meaningful clusters
equals the actual number. For the Clueweb HPR dataset, there are only 47 clusters in total, so all are evaluated.
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Method K FM w/ Entity records FM w/ Triplet records
WebSets 0.11 (K=25) 0.85 (K=34)
K-Means 30 0.09 0.35

25 0.08 0.38

Table 3.6: Comparison of performance on Entity vs. Triplet record representation (Toy Apple
dataset).

WebSets and K-Means clustering algorithms on entity record vs. triplet record representation. In
this experiment we use the Toy Apple dataset (since this dataset has ambiguous noun-phrases
like Apple). The entity representation contains a table-occurrence feature vector for each entity,
while the triplet representation has a table-co-occurrence feature vector for a set of 3 entities.
Both algorithms do hard clustering of entities/triplets (depending on the representation used),
and also yield a soft-clustering of the corresponding table columns. To make all four algorithms
comparable, we measure their performance in terms of clustering of table columns. Each table-
column can be present in multiple clusters, but belongs to only one gold standard class (manual
labels). Purity, NMI and RI metrics are not applicable for soft clustering, however the FM metric
is valid. We ran K-Means algorithm for different values of K. Table A.8 shows the best per-
forming results of K-Means. WebSets produced 25 clusters on entity record representation and
34 clusters using triplet representation. In terms of FM index, each method gives better perfor-
mance on triplet record representation when compared to entity record representation. Hence the
triplet record representation does improve these clustering methods.

3.1.3 Application: Summary of the Corpus

The sets of entities produced by WebSets can be considered as a summary of the document
corpus in terms of what concepts and entities are discussed in the corpus. Tables 3.7 and 3.8
show such summaries for the datasets ASIA INT and Delicious Music respectively. We choose
these datasets because they are domain-specific and hence we have some idea of what entity sets
are expected to be found. Looking at the summary we can verify if those expectations are met.
Due to space constraints only few clusters with ten entities from each of them are presented here.
The clusters are hand picked, however the cluster labels are taken as the top label predicted by
our hypernym recommendation component (Algorithm 2).

3.2 Related Work: IE from Tables, Semi-supervised Learning

HTML tables on the Web have received lot of attention in past few years. Gatterbauer et al.
[51] focus on extracting tabular data from various kinds of HTML pages and table-like visual
representations. The WebTables [19] system extracted schema information from a huge corpus
of 14.1 billion HTML tables from Google’s general-purpose web crawl. They built an attribute
correlation statistics database (AcsDB), which can be used to create an attribute name thesaurus
and a schema auto-completion system. Gupta et al. [56] focus on the task of extending a table
given a few seed rows. Their technique consolidates HTML lists relevant to the example rows
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Religions: Buddhism, Christianity, Islam, Sikhism, Taoism, Zoroastrianism, Jainism, Bahai,
Judaism, Hinduism, Confucianism
Government: Monarchy, Limited Democracy, Islamic Republic, Parliamentary Self Governing
Territory, Parliamentary Republic, Constitutional Republic, Republic Presidential
Multi-party System, Constitutional Democracy, Democratic Republic, Parliamentary Democracy
International Organizations: United Nations Children Fund UNICEF, Southeast European Cooperative
Initiative SECI, World Trade Organization WTO, Indian Ocean Commission INOC,
Economic and Social Council ECOSOC, Caribbean Community and Common Market CARICOM,
Western European Union WEU, Black Sea Economic Cooperation Zone BSEC,
Nuclear Energy Agency NEA, World Confederation of Labor WCL
Languages: Hebrew, Portuguese, Danish, Anzanian, Croatian, Phoenician, Brazilian, Surinamese,
Burkinabe, Barbadian, Cuban

Table 3.7: Example Clusters from ASIA INT.

Instruments: Flute, Tuba , String Orchestra, Chimes, Harmonium, Bassoon, Woodwinds,
Glockenspiel, French horn, Timpani, Piano
Intervals: Whole tone, Major sixth, Fifth, Perfect fifth, Seventh, Third,
Diminished fifth, Whole step, Fourth, Minor seventh, Major third, Minor third
Genres: Smooth jazz, Gothic, Metal rock, Rock, Pop, Hip hop, Rock n roll,
Country, Folk, Punk rock
Audio Equipments: Audio editor , General midi synthesizer , Audio recorder ,
Multichannel digital audio workstation , Drum sequencer , Mixers , Music engraving system ,
Audio server , Mastering software , Soundfont sample player

Table 3.8: Example Clusters from Delicious Music.

to build a result table. Gupta and Sarawagi [57] consider jointly training structured extraction
models from overlapping web source (primarily in tables), thus avoiding the need for labeled
data. Our approach, WebSets does not require seed examples, but instead extracts concept-
instance pairs in an unsupervised manner from a corpus. Limaye et al. [79] proposed a system
to use an existing catalog and type hierarchy for annotating table columns and cells. WebSets
differs in that the Hearst-pattern data it uses is noisier than a catalog or type hierarchy.

Many systems perform semi-supervised information extraction from free text on the web,
using only a few seed examples or seed rules. These systems include KnowItAll [41, 42], ASIA
[136], and Coupled Pattern Learning (CPL) [25]. Along similar lines, Parameswaran et al. [101]
propose a concept extraction algorithm which can identify a canonical form of a concept, filter-
ing out sub-concepts or super-concepts; and Ritter et al. [110] describe a scheme for filtering
concept-instance pairs, using a SVM classifier which uses as features frequency statistics for
several Hearst patterns on a large corpus. Given a training set of text containing known concept-
instance pairs, Snow et al. [115] learns “dependency path” features, which can further expand
the set of concept-instance pairs. WebSets is different from most of these approaches in that it
builds all sets of entities from a given corpus, and does not require seed sets, a starting ontology,
or a set of target concept names.

TextRunner [145] is an open-domain IE system which makes a single pass over the corpus of
unstructured text and extracts a large set of relational tuples, without requiring any human input.
Unlike WebSets, however, it does not build coherent sets of category or relation instances. Pantel
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and Ravichandran [100] proposes a method to automatically label distributional term clusters
using Hearst-like patterns, and Van Durme and Pasca [132] proposed an alternative approach
method to extract labeled classes of instances from unstructured text. These approaches use
only unstructured text to find coordinate terms and assigning hypernyms, whereas WebSets uses
HTML tables. As we show in the experimental results, WebSets uses a novel method for combin-
ing coordinate-term clusters and hypernyms data that quantitatively improves over Van Durme
and Pasca’s method for combining coordinate-term clusters and hypernym data.

There also exist some systems that use both free-text and tabular information. Talukdar et al.
[121] proposed a graph random walk based semi-supervised label propagation technique for open
domain class instance extractions, which extends the system of Van Durme and Pasca by using
table data (from WebTables) as well as free-text distributional clusters. However, unlike Taluk-
dar et al.’s system, WebSets does not require distributional clusters. Coupled SEAL (CSEAL)
[25] use of mutual exclusion, containment and type checking relationships to extend SEAL, and
CPL [25] and CSEAL are the two components of NELL [91], a multi-strategy semi-supervised
learning system. However, unlike NELL, WebSets does not require seed instances or an ontol-
ogy as input. Shinzato and Torisawa [113] showed that coordinate terms can be extracted from
itemizations in structured web documents. Their method finds concept-instance pairs pertaining
to a single query list, and finds candidate hypernyms by querying the web on-the-fly to collect
documents. In contrast, WebSets processes all lists in a corpora simultaneously, and makes no
web queries.

In the recent years there has been more work in the area of information extraction from semi-
structured data. Balasubramanyan et al. [6] used the HTML tables data extracted by WebSets
as a multi-view dataset to learn a semi-supervised mixed membership model that can make use
of feature and document labels. Adelfio and Samet [3] developed a method to extract schema
information from tables found on the webpages and in spreadsheets. They used conditional
random fields to determine schema including row groupings. Instead of HTML table structure,
some recent techniques use DOM trees to extract information from structured webpages. Insa et
al. [63] used DOM trees to analyze the hierarchical relationship between the webpage element
along with the distribution of textual information to do content extraction. Castillo et al. [27]
worked on a novel online technique that can extract information from a set of interconnected
webpages based on DOM distances.
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3.3 Semi-supervised Bottom-Up Clustering to Extend the
NELL Knowledge Base

The bottom-up clustering algorithm proposed in Section 3.1 assumes no human input. However,
there is valuable information present in the existing knowledge bases about the concepts and
example instances of those concepts that are expected to be present in the Web data. In this
section we will discuss, how to use this seed data to guide a bottom-up clustering algorithm.

3.3.1 Semi-supervised WebSets

We changed the Bottom-Up Clusterer (Algorithm 1) slightly for the task of populating an existing
knowledge base. The Clusterer initializes Clusters with existing categories and their instances
in the knowledge base. With this simple modification Bottom-Up Clusterer starts from NELL
KB categories and ends up with clusters which contain additions made to already existing KB
clusters and suggestions of some new clusters. For experiments in this section, we use around a
dozen seed examples in each category of NELL for initialization. New entities added to existing
NELL KB clusters are called “promotions”. This version of the algorithm uses facts already
learnt by a knowledge base, hence categorized as a semi-supervised approach.

3.3.2 Experimental Evaluation using NELL

The set of experiments explained in this section, will enable us to answer the following questions:
(1) How precise are the recommendations made for existing categories of a knowledge base? (2)
What is the coverage of WebSets system? Does it find the expected sets of entities? (3) How
meaningful and precise are the new categories suggested for a knowledge base?

To answer these questions, we ran the WebSets system in semi-supervised mode. Coverage is
measured by looking at promotions made by WebSets and CSEAL for the same set of NELL cat-
egories. The manual evaluation process for measuring precision and meaningfulness of clusters
is the same as discussed in Section 3.1.

Both CSEAL [25] and WebSets use structured information to come up with entity sets, but
the processes they follow have some fundamental differences. CSEAL starts with seeds for each
category and queries the Web for pages containing co-occurrence of seed instances. It then ex-
tracts more instances of same category from those pages by building wrappers, and the process
continues. On the other hand, WebSets starts with a set of available HTML pages and comes
up with sets that the system strongly believes are meaningful. These differences in approaches
and nature of inputs indicate that direct comparison between WebSets and CSEAL is not pos-
sible, hence we compare them in terms of their usefulness in enhancing existing knowledge base.

Evaluation of existing NELL categories:
In this experiment, we compare the coverage of sets produced by WebSets and CSEAL. We

did this evaluation for only those NELL categories for which results of CSEAL are available in
Carlson et. al. [25] and WebSets found some promotions using the CSEAL Useful dataset. The
number of promotions made by both methods are shown in Table 3.9. To compute the precision
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Category #Promotions %Precision
WebSets CSEAL WebSets CSEAL

athlete 2 276 100 100
city 3117 368 84.5 97
coach 11 619 100 100
company 336 245 97 100
country 1569 130 60.2 97
hobby 7 77 71.4 77
scientist 423 928 88 100
sports team 88 864 97.7 87
state / province 106 114 53.9 83
Aggregate 5659 3621 83.6 93.4

Table 3.9: Number and precision of promotions by WebSets (using CSEAL Useful dataset) and
CSEAL (using the Web) to existing NELL categories.

of WebSets, we labeled 100 random samples from each cluster with the help of Mechanical Turk.
Table 3.9 also shows the precision evaluation for both methods. From these results we can say
that WebSets produces results with 83% precision on average lesser when compared to CSEAL
which produces 93% precision.

In Table 3.10 we present the precision of promotions made across all four WebSets datasets
to the NELL categories. As can be seen, for most of the clusters, precision is very high. Web-
Sets gives noisy results for two clusters including “color” and “female names” when run on
ASIA INT. We did some error analysis to understand why the words like “they”, “said”, “no”,
“people”, “are”, get added to category “color”. We found that several educational websites for
children contain tables with a vocabulary of common words arranged alphabetically in HTML
tables, which violates our assumption that entities occurring in a table column belong to a coher-
ent concept.

Evaluation of new category suggestions:
In this section, we evaluate both meaningfulness and precision of the additional clusters proposed
by WebSets. These are the clusters which could not get merged with NELL clusters due to lack
of entity overlap or absence of the category in NELL KB. To judge meaningfulness of these
clusters we manually labeled each cluster by looking at the entities in it. If the cluster does not
represent any consistent set, it is marked as “noisy”.

Table 3.11 shows these evaluation results for datasets CSEAL Useful and ASIA INT. We can
see that 81 out of 107 clusters from CSEAL Useful are meaningful with average precision within
those clusters being 94.44%. However for ASIA INT, a relatively smaller fraction of clusters (50
out of 126) are meaningful, but within meaningful clusters precision is quite high, i.e., 92.41%.
Table 3.12 shows a sample of meaningful clusters from CSEAL Useful and ASIA INT. We can
see that most of the clusters have very high accuracy (above 95%). These extra clusters can be
added to the knowledge base to improve its category coverage.

The set of experiments explained in this section, will enable us to answer following questions:
(1) How precise are the recommendations made for existing categories of a knowledge base? (2)

26



Category Precision (%)
CSEAL Useful ASIA NELL ASIA INT Clueweb HPR

automobile maker - 100.00 83.33 -
automobile model - - 100.00 -
bird 80.00 100.00 - -
blog 98.80 - - -
building material - 91.30 84.62 -
cardgame - 100.00 - -
chemical 88.65 94.87 - -
color - 71.43 29.35 -
consumer electronic item - 73.68 - -
continent 82.35 100.00 76.92 -
day of week - - - 100.00
ethnic group 97.78 - - -
female names - - 20.00 -
fish 94.85 94.44 - -
insect 100.00 - - -
language 88.29 100.00 92.93 100.00
magazine - - 100.00 -
mountain 100.00 - - -
music genre 100.00 - - -
music instrument - 100.00 - -
newspaper 93.41 - - -
park 98.90 - - -
planet 100.00 - - -
politics blog 88.00 - - -
programming language - - 81.32 -
record label 55.56 50.00 - -
religion - - 100.00 -
stadium / event venue 96.70 - - -
television network 97.80 - - -
television station 87.78 - - -
vegetable - 100.00 - -
video game 72.73 - - -
Average precision 90.61 90.44 76.85 100.00

Table 3.10: Performance of WebSets on NELL categories.

#Clusters #Meaningful #Noisy Avg.
Precision

(meaningful)
CSEAL Useful 107 81 26 94.44
ASIA INT 126 50 76 92.41

Table 3.11: Evaluation of meaningfulness of extra clusters suggested to NELL.
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SEAL Useful ASIA INT
Manual label Precision Manual label Precision
tv channels 100 airline 100
tourist place 100 apparel 100
shoes/footwear 100 car make 100
researcher 100 network protocol 100
months 100 government type 100
laptop 100 iraq event 100
language 100 occupation type 100
pond 100 police designation 100
celebrity 100 region 100
bird 100 religion 100
baseball players 100 contact information 100
athletics 100 university 100
actress/models 100 international organization 96.67
pond/lake 97.78 service 96.15
chemicals 97.78 department 93.33
product 96 linux jargon 92.86
mountain 91.67 province 88.24
genes 91.11 chemical element 87.38
book type 87.5 action 63.04
shoes 85.71 social metric 55.56
film studio 78.57 USA state 48.42
hobby 55.56 computer hardware 16.67

Table 3.12: Precision (%) of manually labeled extra clusters from CSEAL Useful, ASIA INT.
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What is the coverage of WebSets system? Does it find the expected sets of entities? (3) How
meaningful and precise are the new categories suggested for a knowledge base?

To answer these questions, we ran the WebSets system in semi-supervised mode. Coverage
is measured by looking at promotions made by WebSets and other IE techniques (CPL and
CSEAL) for same set of NELL categories. This method can enrich an existing knowledge base.
Experiments show that our method improves the coverage of existing categories with 80-90%
accuracy. It also suggests new categories that can be added to the knowledge base.

3.4 Lessons Learned from WebSets

Through the experiments on WebSets we learned multiple lessons. First, the triplet representation
of entities is very useful. From the experimental results in Table A.8, we can see that the triplet
representation helped both WebSets and K-Means clustering algorithms in terms of FMI metric.
Further, the triplet representation could disambiguate “Apple” as fruit vs. “Apple” as company
in the Toy Apple dataset. This indicates that representing and clustering sets of three entities
rather than an individual entity is beneficial, both in terms of disambiguating multiple senses and
better soft clustering of table columns. However, it is easier to construct such data representation
from table columns, or possibly lists, but it is not trivial to do so in a general text dataset. (Note
that an entity triplet is not comparable to trigrams of words, as the implicit assumption in triplet
representations is that all three entities potentially belong to a single class/concept, which is not
necessarily true in case of word trigrams.)

However, this case study suggested three other potential research directions, described below.

Presence of Unanticipated Classes

Experiments with the WebSets system showed that the ability to dynamically add new clusters in
a semi-supervised task is a powerful technique. During the manual labeling of clusters generated
by semi-supervised WebSets (seeded with NELL categories), we observed that it created many
extra clusters. From Table 3.12, there are newly discovered clusters like “police designation”,
“social metric”, “government type” that are coherent concepts but not present in the NELL on-
tology. Thus WebSets can not only populate known concepts, but it can also discover coherent
entity clusters belonging to potentially interesting concepts that can further be added to existing
ontologies. It is evident that this technique is not restricted to any dataset/domain and hence we
will explore it further in the general context of semi-supervised learning.

We did an experiment to check how robust semi-supervised clustering is w.r.t unknown clus-
ters hidden in the data. For this purpose we worked on two datasets coming from different
domains. The first dataset is Delicious Sports which we extracted from HTML tables on the
Web, and the second dataset is 20-Newsgroups which is a standard dataset for text categorization
tasks. Both datasets are completely labeled, we then tried a semi-supervised K-Means algorithm
on this dataset, by initializing the process with seeds of only a fraction of classes.

For example in Figure 3.3, for Delicious Sports, we started the algorithm by providing seeds
for only 5 out of 26 classes, and for 20-Newsgroups we provided seeds for 6 out of 20 classes.
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Thus the algorithm knows many fewer classes than the actual number. We can see that semi-
supervised K-Means is affected by number of unseen classes. As the number of EM iterations
increases, it confuses more and more non-seed classes with the seeded classes. This phenomenon
is more evident in the 20-Newsgroups dataset as the Delicious Sports dataset is much smaller and
cleaner. These confusion matrices illustrate potential semantic drift in such scenarios.
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Figure 3.3: Confusion matrices varying number of EM iterations of the K-Means algorithm for
Delicious Sports and 20-Newsgroups datasets.
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Figure 3.4: Macro Averaged F1 plots for semi-supervised K-Means on CSEAL Useful dataset.

We did similar experiments with the CSEAL Useful dataset, which contains datapoints be-
longing to 67 NELL categories. Figure 3.4 shows the performance of semi-supervised K-Means
in terms of macro-averaged seed class F1 for varying number of seed classes. Figure 3.5 de-
scribes how the confusion matrices change with the number of EM iterations. We can see that
when the number of seed classes are much smaller than actual, more EM iterations result in se-
mantic drift for the seed classes. This problem and our proposed solution is described in depth
in Chapter 4.
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Figure 3.5: Confusion matrices varying the number of EM iterations of the K-Means algorithm
for the CSEAL Useful dataset.
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Multiple Data Views
For many information extraction tasks, including the knowledge base population for NELL, a
noun phrase can be represented by features extracted from different kinds of data, e.g., occur-
rences of a noun phrases with text contexts, in HTML table columns, and morphological features
can be considered as three different data views. In the WebSets system, we can construct multi-
view features by representing each noun-phrase by 1) a set of co-occurring noun-phrases, 2) a
set of table columns it appears in, 3) a set of hypernyms it appears with in the context of Hearst
patterns, and 4) a set of domains it is extracted from. All these clues are useful and give us the
information that can be leveraged to classify the noun-phrase more effectively.

In Chapter 5, we describe semi-supervised methods that can leverage multiple data views and
solve a constrained optimization problem for each datapoint, to output labels that are consistent
in terms of evidence from multiple views.

Leveraging Ontological Constraints
In the semi-supervised WebSets experiment, we only use the facts present in NELL KB as initial
seeds. However, one can also use the ontology of classes and constraints between the classes to
improve this kind of learning, e.g., the ontology can give us information of the kind: “each noun-
phrase that is classified as Mammal should also be classified as Animal” (subset constraint) and
“any noun-phrase that is classified as Mammal should not be classified as Reptile” (mutual ex-
clusion constraint). In Chapter 6 we will explore techniques that can learn multi-class classifiers
leveraging ontological constraints.
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Chapter 4

Exploratory Learning: Semi-supervised
Learning in the Presence of Unanticipated
Classes

The semi-supervised bottom-up clustering algorithm discussed in the previous chapter can popu-
late concepts from NELL as well as discover new clusters of entities that do not belong to any of
the NELL classes. This revealed a novel problem relevant for such knowledge base population
tasks, i.e., we know about some classes, and some instances of these classes, but the unlabeled
datasets contain examples of many more classes that are not known upfront. Can an algorithm
do both semi-supervised learning for the classes with training data and unsupervised clustering
for classes without training data? To the best of our knowledge there is no existing technique
that is targeted to solve this problem.

In this chapter, we propose an Exploratory Learning framework that can make use of limited
supervision for some of the concepts to populate these known concepts as well as discover new
ones. This work is published in the proceedings of ECML/PKDD 2013 [128].

4.1 Exploratory EM Algorithm
In multiclass semi-supervised learning (SSL), it is sometimes the case that the number of

classes present in the data is not known, and hence no labeled examples are provided for some
classes. In this section we present variants of well-known semi-supervised multiclass learning
methods that are robust when the data contains an unknown number of classes. In particular, we
propose an “exploratory” extension of expectation-maximization (EM) that explores different
numbers of classes while learning.

Algorithm 3 presents a generic Exploratory EM algorithm (without specifying the model
being used). There are two main differences between the algorithm and standard classification-
EM approaches to SSL. First, in the E step, each of the unlabeled datapoints x is either assigned
to one of the existing classes, or to a newly-created class. The intuition we use is that a new class
should be introduced to hold x when the probability of x belonging to existing classes is close
to uniform. This suggests that x is not a good fit to any of the existing classes, and that adding
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x to any existing class will lower the total data likelihood substantially. Second, in the M-step
of iteration t, we choose either the model proposed by Exploratory EM method which might
have more classes than the previous iteration t− 1, or the baseline version with same number of
classes as iteration t − 1. This choice is based on whether exploratory model satisfies a model
selection criterion in terms of increased data likelihood and model complexity.

4.1.1 Discussion
Let us discuss the applicability of this algorithm for clustering as well as classification tasks.
Notice that Algorithm 3 reverts to an unsupervised clustering method if X l is empty, and reverts
to a supervised generative learner if Xu is empty. Likewise, if no new classes are generated,
then it behaves as a multiclass SSL method; for instance, if the classes are well-separated and
X l contains enough labels for every class to approximate these classes, then it is unlikely that
the criterion of nearly-uniform class probabilities will be met, and the algorithm reverts to SSL.
Henceforth we will use the terms “class” and “cluster” interchangeably.

Friedman [47] proposed the Structural EM algorithm that combines the standard EM algo-
rithm, which optimizes parameters, with structure search for model selection. This algorithm
learns networks based on penalized likelihood scores, in the presence of missing data. In each
iteration it evaluates multiple models based on the expected scores of models with missing data,
and selects the model with best expected score. This algorithm converges at local maxima for
penalized log likelihood (the score includes penalty for increased model complexity). Similar
to Structural EM, in each iteration of Algorithm 3, we evaluate two models, one with and one
without adding extra classes. These two models are scored using a model selection criterion like
AIC or BIC, and the model with best penalized data likelihood score is selected in each iteration.
Hence we can say that, similar to Structural EM, the Exploratory EM algorithm will converge at
local maxima for penalized log data likelihood.
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Algorithm 3 EM algorithm for exploratory learning with model selection.
1: function Exploratory EM (X l, Y l, Xu, {C1 . . . Ck}): {Ck+1 . . . Ck+m}, θk+m, Y u

2: Input: X l labeled data points; Y l labels of X l; Xu unlabeled data points; {C1 . . . Ck} set of known
classes to which x’s belong.

3: Output: {Ck+1 . . . Cm} newly-discovered classes; {θ1, . . . , θk+m} parameters for k seed and m
newly added classes; Y u labels for Xu

{Initialize classifiers θj for class Cj using seeds provided for Cj}
4: θ0

1 . . . θ
0
k = argmaxθL(X

l, Y l)
5: while class assignments AND #classes not converged do
6: kold is the #classes before E step.
7: kcur is the current #classes.
8: Log-likelihood BaseLL = logP (X|θ(t)

kold
)

{E step: (Iteration t) Classify each datapoint at each level}
9: for i = 1 to |Xu| do

10: Find P (Cj |Xi, θ
(t)
1 , . . . , θ

(t)
kcur

) for all labels 1 ≤ j ≤ kcur
11: if nearlyUniform(P (C1|Xi), . . . , P (Ckcur |Xi)) then
12: Increment kcur; Let Ckcur be the new class.
13: Label Xi with Ckcur in Y u, and compute parameters θ(t)

kcur
for the new class.

14: else
15: Assign Xi to (argmaxCjP (Cj |Xi)) in Y u where 1 ≤ j ≤ kcur
16: end if
17: end for
18: knew = kcur is the #classes after E step.
19: Log-likelihood ExploreLL = logP (X|θ(t)

knew
)

{M step: Recompute model parameters based on Y (t) }
20: if Model selection criterion (kold, BaseLL, knew, ExploreLL) selects exploratory model then

{Adopt the new model with knew classes}
21: θ

(t+1)
knew

= argmaxθL(X
l, Y l, Xu, Y u(t)|θ(t)

knew
)

22: else
{Keep the old model with kold classes}

23: θ
(t+1)
kold

= argmaxθL(X
l, Y l, Xu, Y u(t)|θ(t)

kold
)

24: end if
25: end while
26: end function
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4.1.2 Model Selection
Any training error based model selection can be used in this framework e.g., BIC, AIC and AICc.
Burnham and Anderson [18] have experimented with the AIC criteria and proposed AICc for
datasets where the number of datapoints is less than 40 times number of features. The formulae
for scoring a model using each of the three criteria that we tried are:

BIC(g) = −2 ∗ L(g) + v ∗ ln(n) (4.1)
AIC(g) = −2 ∗ L(g) + 2 ∗ v (4.2)
AICc(g) = AIC(g) + 2 ∗ v ∗ (v + 1)/(n− v − 1) (4.3)

where g is the model being evaluated, L(g) is the log-likelihood of the data given g, v is the
number of free parameters of the model and n is the number of data-points, so when comparing
two models, a lower value is preferred. The extended Akaike information criterion (AICc) suited
best for our experiments since our datasets have large number of features and a smaller number
of data points. With the AICc criterion, the objective function being optimized is:

max
m,{θ1...θm},m≥k

{Log Data Likelihood−Model penalty}

i.e., max
m,{θ1...θm},m≥k

{logP (X|θ1, . . . , θm)} − {v + (v ∗ (v + 1)/(n− v − 1))}
(4.4)

Here, k is the number of seed classes given as input to the algorithm and m is the number of
classes in the resultant model (m ≥ k).

4.1.3 Exploratory EM using Different Language Models
In this section we will consider variants of Exploratory EM algorithm with different language
models. The choice of language model decides the method used in Algorithm 3 Line 10, 21 and
23.

Semi-Supervised Naive Bayes: Nigam et al. [98] proposed an EM-based semi-supervised ver-
sion of multinomial Naive Bayes. In this model P (Cj|x) ∝ P (x|Cj)∗P (Cj), for each unlabeled
point x. The probability P (x|Cj) is estimated by treating each feature in x as an independent
draw from a class-specific multinomial. In document classification, the features are word occur-
rences, and the number of outcomes of the multinomial is the vocabulary size. This method can
be naturally used as an instance of Exploratory EM, using the multinomial model to compute
P (Cj|x) in Algorithm 3 Line 10. The M step is also trivial, requiring only estimates of P (w|Cj)
for each word/feature w.

Seeded K-Means: It has often been observed that K-Means and EM are algorithmically similar.
Basu and Mooney [9] proposed a seeded version of K-Means, which is very analogous to Nigam
et al’s semi-supervised Naive Bayes, as another technique for semi-supervised learning. Seeded
K-Means takes as input a number of clusters, and seed examples for each cluster. The seeds
are used to define an initial set of cluster centroids, and then the algorithm iterates between an
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Algorithm 4 JS criterion for new class creation.
1: function JSCriterion([P (C1|x) . . . P (Ck|x)]):
2: Input: [P (C1|x) . . . P (Ck|x)] probability distribution of existing classes for a data point x
3: Output: decision : true iff new class needs to be created
4: u = [1/k . . . 1/k] {i.e., the uniform distribution with current number of classes = k}
5: decision = false
6: if Jensen-Shannon-Divergence(u, P (Cj |x)) < 1

k then
7: decision = true
8: end if
9: end function

“E step” (assigning unlabeled points to the closest centroid) and an “M step” (recomputing the
centroids).

In the seeded K-Means instance of Exploratory EM, we again define P (Cj|x) ∝ P (x|Cj) ∗
P (Cj), but define P (x|Cj) = x · Cj , i.e., the inner product of a vector representing x and a
vector representing the centroid of cluster j. Specifically, x and Cj both are represented as L1

normalized7 TFIDF feature vectors. The centroid of a new cluster is initialized with smoothed
counts from x. In the “M step”, we recompute the centroids of clusters in the usual way.

Seeded Von-Mises Fisher: The connection between K-Means and EM is explicated by Banerjee
et al. [7], who described an EM algorithm that is directly inspired by K-Means and TFIDF-based
representations. In particular, they describe generative cluster models based on the von Mises-
Fisher (vMF) distribution, which describes data distributed on the unit hypersphere. Here we
consider the “hard-EM” algorithm proposed by Banerjee et al, and use it in the seeded (semi-
supervised) setting proposed by Basu et al. [9]. This natural extension of Banerjee et al[7]’s work
can be extended to our exploratory setting.

As in seeded K-Means, the parameters of the vMF distribution are initialized using the seed
examples for each known cluster. In each iteration, we compute the probability of Cj given data
point x, using the vMF distribution, and then assign x to the cluster for which this probability is
maximized. The parameters of the vMF distribution for each cluster are then recomputed in the
M step. For this method, we use a TFIDF-based L2 normalized vectors8, which lie on the unit
hypersphere.

Seeded vMF and seeded K-Means are closely related—in particular, seeded vMF can be
viewed as a more probabilistically principled version of seeded K-Means. Both methods al-
low use of TFIDF-based weighted unigram representations, which are often preferable to TF
weighted unigram representations for text [76].

4.1.4 Strategies for Inducing New Clusters/Classes

In this section we will formally describe some possible strategies for introducing new classes
in the E step of the algorithm. They are presented in detail in Algorithms 4 and 5, and each of

7A vector x is said to be L1 normalized if
∑

iXi = 1.
8A vector x is said to be L2 normalized if

∑
iX

2
i = 1.
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Algorithm 5 MinMax criterion for new class creation.
1: function MinMaxCriterion([P (C1|x) . . . P (Ck|x)]):
2: Input: [P (C1|x) . . . P (Ck|x)] probability distribution of existing classes for a data point x
3: Output: decision : true iff new class needs to be created
4: k is the current number of classes
5: maxProb = max(P (Cj |x)); minProb = min(P (Cj |x))
6: if maxProbminProb < 2 then
7: decision = true
8: end if
9: end function

these is a possible implementation of the “nearUniform” subroutine of Algorithm 3. As noted
above, the intuition is that new classes should be introduced to hold for x when the probabilities
of x belonging to existing classes are close to uniform. In the JS criterion, we require that Jensen-
Shanon divergence9 between the posterior class distribution for x to the uniform distribution be
less than 1

k
. The MinMax criterion is a somewhat simpler approximation to this intuition: a new

cluster is introduced if the maximum probability is no more than twice the minimum probability.

4.2 Experimental Results: Entity Clustering and Document
Classification

We now seek to experimentally answer the questions raised in the introduction. How robust are
existing SSL methods, if they are given incorrect information about the number of classes present
in the data? How well they perform if we have seed data for only some of the classes? Do the
exploratory versions of the SSL methods perform better? How does Exploratory EM compare
with the existing methods like Gibbs sampling with Chinese Restaurant Process (CRP)?

We used three publicly available datasets for our experiments. The statistics are summarized
in Table 4.1. The first dataset is the Delicious Sports dataset [126]. This is an entity classification
dataset, which contains items extracted from 57K HTML tables in the sports domain (from pages
that had been tagged by the social bookmarking system del.icio.us). The features of an entity are
ids for the HTML table columns in which it appears. We used only the Delicious Sports dataset
from the WebSets corpora, because we wanted a fully labeled dataset and one that does not vi-
olate our assumption that each entity belongs to only class. This dataset contains 282 labeled
entities described by 721 features and 26 non-overlapping classes (e.g., “NFL teams”, “Cricket
teams”). The second is the widely-used 20-Newsgroups dataset [109]. We used the “bydate”
dataset, which contains total of 18,774 text documents, with vocabulary size of 61,188. There
are 20 non-overlapping classes and the entire dataset is labeled. The third dataset is the Reuters-
21578 dataset published by Cai et al. [20]. This corpus originally contained 21,578 documents
from 135 overlapping categories. Cai et al. discarded documents with multiple category labels,
resulting in 8,293 documents (vocabulary size=18,933) in 65 non-overlapping categories.

9The Jensen-Shannon divergence between p and q is the average Kullback-Leiber divergence of p and q to a, the
average of p and q, i.e., 1

2 (KL(p||a+KL(q||a)).
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Table 4.1: Datasets used in this chapter.
Dataset # Datapoints # Features # Classes
Delicious Sports 282 721 26
Reuters 8,293 18,933 65
20-Newsgroups 18,774 61,188 20

Table 4.2: Comparison of Exploratory EM w.r.t. EM for different datasets and class creation
criteria. For each exploratory method we report the macro avg. F1 over seed classes followed
by avg number of clusters generated. e.g., For 20-Newsgroups dataset, Exploratory EM with
K-Means and MinMax results in 57.4 F1 and generates 22 clusters on avg. N (and M) indicates
that improvements are statistically significant w.r.t EM with 0.05 (and 0.1) significance level.

Dataset Language EM Exploratory EM EM with
(#seed / #total classes) Model (non-exploratory) Best m

Random MinMax JS extra classes
Delicious Sports KM 60.9 84.8 (55) N 89.5 (30) N 90.6 (46) N 69.4 (10) N
(5/26) NB 46.3 67.8 (38) N 45.4 (06) 88.4 (51) N 65.8 (10) N

VMF 64.3 66.7 (06) 72.8 (06) M 63.0 (06) 78.2 (09) N
20-Newsgroups KM 44.9 53.0 (22) N 57.4 (22) N 39.4 (99) H 49.8 (11) N
(6/20) NB 34.0 34.0 (06) 34.6 (07) 34.0 (06) 35.0 (07)

VMF 18.2 18.2 (06) 09.5 (09) H 19.8 (06) 20.3 (10) N
Reuters KM 8.9 13.7 (19) N 12.0 (16) M 27.4 (100) N 16.3 (14) N
(10/65) NB 6.4 10.6 (10) 10.4 (10) 18.5 (077) N 16.1 (15)

VMF 10.5 10.5 (10) 20.7 (11) N 30.4 (062) N 20.6 (16) M

Table 4.2 shows the performance of seeded K-Means, seeded Naive Bayes, and seeded vMF
using 5 different algorithms. For each dataset only a few of the classes present in the data (5
for Delicious Sports, and 6 for 20-Newsgroups and 10 for Reuters), are given as seed classes to
all the algorithms. Five percent of the datapoints were given as training data for each “seeded”
class. The first method, shown in the column labeled EM, uses these methods as conventional
SSL learners. The second method is Exploratory EM with the Random criterion i.e., introducing
new classes for unlabeled datapoints uniformly at random with a predefined value of new class
creation probability. The third method is Exploratory EM with the simple MinMax new-class
introduction criterion, and the forth is Exploratory EM with the JS criterion. The last one is an
upper bound on the performance of EM with m extra classes, computed by varying the value of
m and picking the best one for each row in Table 4.2.

Exploratory EM performs hard clustering of the dataset, i.e., each datapoint belongs to only
one cluster. For all methods, for each cluster we assign a label that maximizes accuracy (i.e.,
majority label for the cluster). Thus using a complete set of labels we can generate a single
label per datapoint. Further even if Exploratory EM produces more number of clusters than the
actual number of classes present in the datasets, they get mapped to the actual classes, hence
the confusion matrices have both number of dimensions equal to the actual number of classes.
The reported F1 value is computed by macro averaging the F1 values of seed classes only. Note
that, for a given dataset, number of seed classes, and training percentage per seed class, there
are many ways to generate a train-test partition. We report results using 10 random train-test
partitions of each dataset. The same partitions are used to run all the algorithms being compared
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and to compute the statistical significance of the results.
We first consider the value of exploratory learning. With the JS criterion, the exploratory

extension gives comparable or improved performance on 8 out of 9 cases. In 5 out of 8 cases the
gains are statistically significant. With the simpler MinMax criterion, the exploratory extension
results in performance improvements in 7 out of 9 cases, and significantly reduces performance
only in one case. The number of classes finally introduced by the MinMax criterion is generally
smaller than those introduced by JS criterion.

For both SSL and exploratory systems, the seeded K-Means method gives good results on all
3 datasets. In our MATLAB implementation, the running time of Exploratory EM is longer, but
not unreasonably so: on average for the 20-Newsgroups dataset Semisup-KMeans took 95 sec.
while Explore-KMeans took 195 sec. and for the Reuters dataset, Semisup-KMeans took 7 sec.
while Explore-KMeans took 28 sec. These results are summarized in Table 4.3.

Dataset Avg. runtime of Average run-time of Exploratory EM
EM in sec. in multiple of EM

Delicious Sports 0.2 2.5
20-Newsgroups 95.0 2.0
Reuters 7.0 4.0

Table 4.3: Comparison of average runtimes of Exploratory EM w.r.t EM.

We can also see that Random criterion shows significant improvements over the baseline
EM method in 4 out of 9 cases. Note that this method is kind of supervised because the new
class creation probability is learnt for each dataset by using our JS criterion first. After running
the Exploratory EM method with JS criterion, the new class creation probability is computed as
follows: Pnew = (#newly created classes)/(#unlabeled datapoints). For each unlabeled data-
point the Random criterion induces a new class with probability Pnew. Exploratory EM method
with MinMax and JS criterion shows significant improvements in 5 out of 9 cases. In terms of
magnitude of improvements, JS is superior to Random.

Next we compare Exploratory EM with another baseline named “EM with m extra classes”.
The last column of Table 4.2 shows the best performance of this baseline by varying m = {0, 1,
2, 5, 10, 20, 40}, and choosing that value of m for which seed class F1 is maximum. Since the
“best m extra classes” baseline is making use of the test labels to pick right number of classes,
it cannot be used in practice; however Exploratory EM methods produce comparable or better
performance with this strong baseline.

To better understand the qualitative behavior of our methods, we conducted some further ex-
periments with Semisup-KMeans with the MinMax criterion. We constructed confusion matrices
for the classification task, to check how different methods perform on each dataset.10 Figure 4.1
(a) shows the confusion matrices for EM (top row) and Exploratory EM (bottom row) with five
and fifteen seeded classes. We can see that EM with only five seed classes clearly confuses
the unexpected classes with the seed classes, while Exploratory EM gives better quality results.
Having seeds for more classes helps both EM and Exploratory EM, but EM still tends to con-
fuse the unexpected classes with the seed classes. Figure 4.1 (b) shows similar results on the

10For purposes of visualization, introduced classes were aligned optimally with the true classes.
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20-Newsgroups dataset, but shows the confusion matrix after 1 iteration and after 15 iterations
of EM. It shows that EM after 15 iterations has made limited progress in improving its classifier
when compared to Exploratory EM.

Finally, we compare the two class creation criteria, and show a somewhat larger range of
seeded classes, ranging from 5 to 15 (out of 20 actual classes). In Figure 4.2 each of the
confusion-matrices is annotated with the strategy, the number of seed classes and the number of
classes produced. (For example, plot “MinMax-C5(23)” describes Explore-KMeans with Min-
Max criterion and 5 seed classes which produces 23 clusters.) We can see that MinMax criterion
usually produces a more reasonable number of clusters, closer to the ideal value of 20; however,
the performance of the JS method in terms of seed class accuracy is comparable to the MinMax
method.

These trends are also shown quantitatively in Figure 4.3, which shows the result of varying the
number of seeded classes (with five seeds per class) for Explore-KMeans and Semisup-KMeans;
the top shows the effect on F1, and the bottom shows the effect on the number of classes produced
(for Explore-KMeans only). Figure 4.4 shows a similar effect on the Delicious Sports dataset:
here we systematically vary the number of seeded classes (using 5 seeds per seeded class, on
the top), and also vary the number of seeds per class (using 10 seeded classes, on the bottom.)
The left-hand side compares the F1 for Semisup-KMeans and Explore-KMeans, and the right-
hand side shows the number of classes produced by Explore-KMeans. For all parameter settings,
Explore-KMeans is better than or comparable to Semisup-KMeans in terms of F1 on seed classes.

4.3 Evaluation on Non-seed Classes
Table 4.4 presents the results for macro-averaged F1 scores on seeded and unanticipated classes.
Best scores in each row are bold-faced. We can see that on a relatively easier dataset like Deli-
cious Sports which has clearly separable classes, our methods could easily discover good quality
extra clusters corresponding to unanticipated classes. However, as the complexity of classifica-
tion task increases, our methods prove to be less effective. E.g., Reuters dataset has less clearly
separable classes, and only small fraction of them are given as input to the algorithm. For this
task Exploratory EM could induce many new clusters but they do not directly correspond to the
ideal class definitions in the test data resulting in low F1 scores on unanticipated classes.

Further the Exploratory EM method resulted in better F1 score on unanticipated classes when
compared to EM with best m-extra classes. Thus we observe from Tables 4.2 and 4.4 that dy-
namically adding new clusters of datapoints that do not belong to any of the known classes does
reduce semantic drift of existing classes even if the newly added clusters are not meaningful (the
newly added clusters might not have 1 to 1 correspondence with the unanticipated classes).

4.4 Additional Results
We later created four entity classification datasets using subsets of NELL ontology (see Figure
7.1) and generated feature vectors using occurrences with text patterns and HTML table columns
in the ClueWeb09 corpus. Description of these four datasets can be found in Section 7.4. We
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Dataset Model Exploratory EM EM with best
(#seed / MinMax JS m-extra classes
#total classes) Seed Unanticipated Seed Unanticipated Seed Unanticipated
Delicious Sports KM 90.8 86.0 (25) 90.6 92.3 (41) 65.7 5.8 (10)
(5/26) NB 46.9 7.1 (01) 88.4 93.1 (46) 58.4 7.7 (10)

VMF 68.4 8.1 (01) 63.0 7.7 (01) 66.6 7.4 (10)
20-Newsgroups KM 57.4 25.1 (16) 39.4 24.2 (93) 48.5 5.0 (10)
(6/20) NB 34.6 3.1 (02) 30.0 2.5 (00) 29.0 4.2 (10)

VMF 9.5 11.4 (03) 19.8 15.6 (00) 18.5 4.1 (10)
Reuters KM 12.0 4.8 (06) 27.4 10 (90) 11.4 3.1 (20)
(10/65) NB 10.4 2.5 (00) 15.6 2.4 (67) 15.5 2.6 (20)

VMF 20.7 4.8 (01) 30.4 5.8 (52) 18.9 5.1 (20)

Table 4.4: Evaluation of Exploratory EM in terms of macro-averaged F1 on non-seed classes.
For each method we present the F1 score on unanticipated classes followed by number of ex-
tra clusters added by the algorithm. E.g., KM model with MinMax criterion when applied on
Delicious Sports dataset added 25 extra clusters, with 86% F1 score on unanticipated classes.

present the results of EM and Exploratory EM methods on these more recent datasets to check
whether we observe trends similar to Section 4.2.

Dataset #Seed/#Ideal Level Macro-avg. seed class F1
classes EM Exploratory EM

Text-Small 2/3 2 46.6 64.4 N
4/7 3 23.5 32.7 N

Text-Medium 3.9/4 2 53.2 50.2 H
9.4/24 3 27.9 27.0
2.4/10 4 17.4 25.8 N

Table-Small 2/3 2 69.5 75.8 N
4/7 3 36.8 43.9 N

Table-Medium 3.9/4 2 62.7 61.3
9.4/24 3 43.7 49.1 N
2.4/10 4 47.3 52.2 M

Table 4.5: Comparison of semi-supervised vs. exploratory learning using KM representation on
NELL’s entity classification datasets (described in Section 7.4).

In Table 4.5, we present the performance of traditional semi-supervised EM and compare
it against Exploratory EM at different levels of class hierarchy. Best performance in each row
is bold faced. We can see that in 7 out of 10 cases, Explore-KMeans outperforms Semisup-
KMeans in terms of macro-averaged seed class F1. Also note that for 3 out of 4 datasets, the
improvements are more for the refined levels of hierarchy (the fraction of unanticipated classes
increases with the level of refinement). Runtimes of these methods are compared in Table 4.6.
We can see that average runtime of Exploratory EM method is higher than that of EM, however
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not unreasonably so.

Dataset Avg. runtime of Average run-time of Exploratory EM
EM in sec. in multiple of FLAT-EM

Text-Small 53 8
Text-Medium 524 5
Table-Small 50 3
Table-Medium 5932 4

Table 4.6: Comparison of average runtimes of Exploratory EM w.r.t EM.

4.5 Experiments with Chinese Restaurant Process
The Exploratory EM method is broadly similar to non-parametric Bayesian methods, such as
the Chinese Restaurant Process (CRP) [11]. CRP is often used in non-parametric models (e.g.,
topic models) that are based on Gibbs sampling, and indeed, since it is straightforward to replace
EM with Gibbs-sampling, one can use this approach to estimate the parameters of any of the
models considered here (i.e., multinomial Naive Bayes, K-Means, and the von Mises-Fisher
distribution). Algorithm 6 presents a seeded version of a Gibbs sampler based on this idea. In
brief, Algorithm 6 starts with a classifier trained on the labeled data. Collapsed Gibbs sampling
is then performed over the latent labels of unlabeled data, incorporating the CRP into the Gibbs
sampling to introduce new classes. (In fact, we use block sampling for these variables, to make
the method more similar to the EM variants.)

The subroutine CRPPick is explained in Algorithm 7. This function concatenates the pos-
terior distribution of classes given a datapoint with the new class creation probability or con-
centration parameter of CRP, renormalizes this vector and then samples a label from this new
distribution. If the new class is selected then the number of classes is incremented by one.

Note that this algorithm is naturally “exploratory”, in our sense, as it can produce a number
of classes larger than the number of classes for which seed labels exist. However, unlike our
exploratory EM variants, the introduction of new classes is not driven by examples that are “hard
to classify”—i.e., have nearly-uniform posterior probability of membership in existing classes.
In the CRP method, the probability of creating a new class depends on the data point, but it does
not explicitly favor cases where the posterior over existing classes is nearly uniform.

To address this issue, we also implemented a variant of the seeded Gibbs sampler with CRP,
in which the examples with nearly-uniform distributions are more likely to be assigned to new
classes. This variant is shown in Algorithm 8, which replaces the routine CRPPick in the Gibbs
sampler—in brief, we simply scale down the probability of creating a new class by the Jensen-
Shannon divergence of the posterior class distribution for x to the uniform distribution. Hence
the probability of creating a new class explicitly depends on how well the given data point fits in
one of the existing classes.

Next we compare the performance of CRPGibbs with Explore-KMeans and Semisup-KMeans.
We consider two versions of CRP-Gibbs, one using the standard CRP and one using our proposed
modified CRP criterion for new class creation that is sensitive to the near-uniformity of instance’s
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Algorithm 6 Exploratory Gibbs Sampling with Chinese Restaurant Process.
1: function GibbsCRP (X l, Y l, Xu, {C1 . . . Ck}) : Ck+1 . . . Cm, Y u

2: Input: X l labeled data points; Y l labels of X l; Xu unlabeled data points;
{C1 . . . Ck} set of known classes x’s belong to; Pnew probability of creating a new class.

3: Output: Ck+1 . . . Cm newly-discovered classes; Y u labels for Xu

4: for x in Xu do
5: Save a random class from {C1 . . . Ck} for x in Y u

6: end for
7: Set m = k
8: for t : 1 to numEpochs do
9: for Xi in Xu do

10: Let yi’s be Xi’s label in epoch t− 1
11: predict P (Cj |Xi, Y

l ∪ Y u − {yi}) for all labels 1 ≤ j ≤ m
12: y′i,m

′ = CRPPick(Pnew, P (C1|Xi), . . . , P (Cm+1|Xi))
13: Save y′i as Xi’s label in epoch t
14: m = m′

15: end for
16: end for
17: end function

posterior class distribution. CRP-Gibbs uses the same instance representation as our K-Means
variants, i.e., L1 normalized TFIDF features.

It is well-known that CRP is sensitive to the concentration parameter Pnew . Figure 4.5 (a)
and (b) shows the performance of all the exploratory methods, as well as Semisup-KMeans, as
the concentration parameter is varied from 10−8 to 10−2. (For Explore-KMeans and Semisup-
KMeans methods, this parameter is irrelevant). We show F1, the number of classes produced,
and run-time (which is closely related to the number of classes produced). The results show that
a well-tuned seeded CRP-Gibbs can obtain good F1-performance, but at the cost of introducing
many unnecessary clusters. The modified Explore-CRP-Gibbs performs consistently better, but
not better than Explore-KMeans, and Semisup-KMeans performs the worst.

Algorithm 7 CRP criterion for new class creation.
1: function CRPPick (Pnew, P (C1|x), . . . , P (Ck|x)) : y, k′

2: Input: Pnew probability of creating a new class;
P (C1|x), . . . , P (Ck|x) probability of existing classes given x

3: Output: y class for x; k′ new number of classes
4: Pall = [P (C1|x) . . . P (Ck|x)Pnew]
5: Normalize Pall such that its L1 norm equals 1.
{Sample a class using Pall}

6: y = sample from distribution Pall
7: if y == k + 1 then
8: k′ = k + 1
9: end if

10: end function
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Algorithm 8 Modified CRP criterion for new class creation.
1: function ModCRPPick (Pnew, P (C1|x), . . . , P (Ck|x)) : y, k′

2: Input: Pnew probability of creating a new class;
P (C1|x), . . . , P (Ck|x) probability of existing classes given x

3: Output: y class for x; k′ new number of classes
4: u = [1/k . . . 1/k] {uniform distribution with k classes}
5: d = Jensen-Shannon-Divergence(u, P (Cj |x))
6: q = Pnew

((k)∗d)
7: if a coin with bias q is heads then

{create a new class and assign to that}
8: y = k + 1 and k′ = k + 1
9: else

{assign to an existing class}
10: k′ = k and y = sample from distribution [P (C1|x) . . . P (Ck|x)]
11: end if
12: end function
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(a) Confusion matrices, varying # seed classes, for the Delicious Sports dataset
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Figure 4.1: Comparison of EM (SemisupEM) vs. Exploratory EM (ExploreEM) using the Min-
Max criterion and K-Means model.
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Figure 4.2: 20-Newsgroups dataset : Comparison of MinMax vs. JS criterion for Exploratory
EM.
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Figure 4.5: Comparison of Exploratory EM w.r.t. CRPGibbs by varying the concentration pa-
rameter of CRP.
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4.6 Related Work: Semi-supervised Learning, Negative Class
Discovery, Topic Detection and Tracking

In this chapter we described and evaluated a novel multiclass SSL method “Exploratory EM”
that is more robust when there are unanticipated classes in the data—or equivalently, when the
algorithm is given seeds from only some of the classes present in the data. To the best of our
knowledge this specific problem has not been explored in detail before, even though in real-world
settings, there can be unanticipated (and hence unseeded) classes in any sufficiently large-scale
multiclass SSL task.

More generally, however, it has been noted before that SSL may suffer due to the presence of
unexpected structure in the data. For instance, Nigam et al’s early work on SSL based EM with
multinomial Naive Bayes [98] noted that adding too much unlabeled data sometimes hurt per-
formance on SSL tasks, and discusses several reasons this might occur, including the possibility
that there might not be a one-to-one correspondence between the natural mixture components
(clusters) and the classes. To address this problem, they considered modeling the positive class
with one component, and the negative class with a mixture of components. They propose to
choose the number of such components by cross-validation; however, this approach is relatively
expensive, and inappropriate when there are only a small number of labeled examples (which
is a typical case in SSL). More recently, McIntosh [87] described heuristics for introducing new
“negative categories” in lexicon bootstrapping, based on a domain-specific heuristic for detecting
semantic drift with distributional similarity metrics. Our setting is broadly similar to these works,
except that we consider this task in a general multiclass-learning setting, and do not assume seeds
from the explicitly-labeled “negative” class, which is a mixture; instead, we assume seeds from
known classes only. Thus we assume that the data fits a mixture model with a one-to-one corre-
spondence with the classes, but only after the learner introduces new classes hidden in the data.
We also explore this issue in much more depth experimentally, by systematically considering the
impact of having too few seed classes, and propose and evaluate a solution to the problem. There
has also been substantial work in the past to automatically decide the right “number of clusters”
in unsupervised learning [30, 40, 59, 88, 102, 138]. Many of these techniques are built around
K-Means and involve running it multiple times for different values of K. Exploratory learning
differs in that we focus on a SSL setting, and evaluate specifically the performance difference on
the seeded classes, rather than overall performance differences.

There is also a substantial body of work on constrained clustering; for instance, Wagstaff
et al [133] describe a constrained clustering variant of K-Means “must-link” and “cannot-link”
constraints between pairs. This technique changes the cluster assignment phase of K-Means
algorithm by assigning each example to the closest cluster such that none of the constraints are
violated. SSL in general can be viewed as a special case of constrained clustering, as seed labels
can be viewed as constraints on the clusters; hence exploratory learning can be viewed as a
subtype of constrained clustering, as well as a generalization of SSL. However, our approach is
different in the sense that there are more efficient methods for dealing with seeds than arbitrary
constraints.

In this section we focus on EM-like SSL methods. Another widely-used approach to SSL
is label propagation. In the modified adsorption algorithm [120], one such graph-based label
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propagation method, each datapoint can be marked with one or more known labels, or a special
“dummy label” meaning “none of the above”. Exploratory learning is an extension that applies to
a different class of SSL methods, and has some advantages over label propagation: for instance,
it can be used for inductive tasks, not only transductive tasks. Exploratory EM also provides
more information by introducing multiple “dummy labels” which describe multiple new classes
in the data.

A third approach to SSL involves unsupervised dimensionality reduction followed by su-
pervised learning (e.g., [122, 125]). Although we have not explored their combination, these
techniques are potentially complementary with exploratory learning, as one could also apply
EM-like methods in a lower-dimensional space (as is typically done in spectral clustering). If
this approach were followed then an exploratory learning method like Exploratory EM could
be used to introduce new classes, and potentially gain better performance, in a semi-supervised
spectral setting.

One of our benchmark tasks, entity classification, is inspired by the NELL (Never Ending
Language Learning) system [25]. NELL performs broad-scale multiclass SSL. One subpro-
ject within NELL [92] uses a clustering technique for discovering new relations between exist-
ing noun categories—relations not defined by the existing hand-defined ontology. Exploratory
learning addresses the same problem, but integrates the introduction of new classes into the SSL
process. Another line of research considers the problem of “open information extraction”, in
which no classes or seeds are used at all [41, 126, 145]. Exploratory learning, in contrast, can
exploit existing information about classes of interest and seed labels to improve performance.

Another related area of research is novelty detection. Topic detection and tracking task aims
to detect novel documents at time t by comparing them to all documents till time t−1 and detects
novel topics. Kasiviswanathan et al. [70] assumes the number of novel topics is given as input
to the algorithm. Masud et al. [85] develop techniques on streaming data to predict whether
next data chunk at time t + 1 is novel or not based on data stream observed till time t. Our
focus is on improving performance of semi-supervised learning when the number of new classes
is unknown. Bouveyron [14] worked on the EM approach to model unknown classes, but the
entire EM algorithm is run for multiple numbers of classes; we use this as an upper bound on the
baseline described as ‘EM with best m extra classes’ in Table 4.2. Our algorithm jointly learns
labels as well as new classes. Schölkopf et al. [112] defines a problem of learning a function
over the data space that isolates outliers from class instances. Our approach is different in the
sense we do not focus on detecting outliers for each class but on detecting new and unanticipated
classes.

Because Exploratory EM is broadly similar to non-parametric Bayesian approaches, we also
compared Explore-KMeans to a seeded version of an unsupervised mixture learner that explores
differing numbers of mixture components with the Chinese Restaurant process (CRP). Explore-
KMeans is faster than this approach, and more accurate as well, unless the parameters of the
CRP are very carefully tuned. Explore-KMeans also generates a model that is more compact,
having close to the true number of clusters. The seeded CRP process can be improved, moreover,
by adapting some of the intuitions of Explore-KMeans, in particular by introducing new clusters
most frequently for hard-to-classify examples (those with nearly-uniform posteriors).
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4.7 Conclusion
In this chapter, we investigated and improved the robustness of SSL methods in a setting in which
seeds are available for only a subset of the classes—the subset of most interest to the end user. We
performed systematic experiments on fully-labeled multiclass problems, in which the number of
classes is known. We showed that if a user provides seeds for only some, but not all, classes, then
SSL performance is degraded for several popular EM-like SSL methods (semi-supervised multi-
nomial Naive Bayes, seeded K-Means, and a seeded version of mixtures of von Mises-Fisher dis-
tributions). We then described a novel extension of the EM framework called Exploratory EM,
which makes these methods much more robust to unseeded classes. Exploratory EM introduces
new classes on-the-fly during learning based on the intuition that hard-to-classify examples—
specifically, examples with a nearly-uniform posterior class distribution—should be assigned to
new classes. The exploratory versions of these SSL methods often obtained dramatically better
performance—e.g., on Delicious Sports dataset up to 49% relative improvements in F1, on 20-
Newsgroups dataset up to 28% relative improvements in F1, and on Reuters dataset up to 190%
relative improvements in F1.

4.8 Future Research Directions
The techniques we developed till now are limited to flat classification tasks. In the real world data,
there are a variety of constraints between classes like inclusion, mutual exclusion etc. In the next
few chapters, we extend the Exploratory Learning technique to model arbitrary class constraints.
Further, information about entities can be present in multiple views, it is an interesting research
direction to extend SSL methods to handle multi-view data. The upcoming chapters talk about
these and other directions of proposed research.

Further, the exploratory learning techniques we described here are limited to problems where
each data point belongs to only one class. An interesting direction for future research can be
to develop such techniques for multi-label classification, and hierarchical classification. An-
other direction can be create more scalable parallel versions of Explore-KMeans for much larger
datasets, e.g., large-scale entity-clustering tasks.
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Chapter 5

Constrained Semi-supervised Learning
with Multi-view Datasets

In semi-supervised learning, sometimes the information about datapoints is present in multi-
ple views. In this chapter we propose an optimization based method to tackle semi-supervised
learning in the presence of multiple views. Our techniques make use of mixed integer linear pro-
gramming formulations along with the EM framework to find consistent class assignments given
the scores in each data view. We compare our techniques against existing baselines, on a num-
ber of multi-view datasets. Our proposed techniques give state-of-the-art performance in terms
of F1 score, outperforming a well-studied SSL method based on co-training. Later, in Chapter
6, we show that our techniques can be easily extended to multi-view learning in the presence
of hierarchical class constraints. These extensions improve the macro-averaged F1 score on a
hierarchical multi-view dataset. This work is currently in preparation for submission [123].

5.1 Motivation

In multiclass semi-supervised learning, sometimes the information about datapoints is present
in multiple views. For instance consider Web document classification: a learning algorithm can
use two views, the text within the document and the anchor texts of its inbound hyper-links.
Similarly, in an information extraction task to populate a Knowledge Base (KB) like NELL [25],
each noun-phrase to be classified has different sets of features or data views associated with it;
e.g., text contexts that appeared with it, its occurrences in HTML table-columns, morphological
features, and so on. As an example, consider the two view dataset in Figure 5.1, with each noun-
phrase being represented by distributional features w.r.t its occurrences with text-patterns and in
HTML-Tables. For the noun-phrase “Carnegie Mellon University”, a text-pattern feature (“ arg1
is located in”, 100) denotes that the noun-phrase “Carnegie Mellon University” appeared in arg1
position of the context “ arg1 is located in” 100 times in the input corpus of sentences. For the
same noun-phrase having a HTML-Table feature (“doc04::2:1”, 1) means that the noun-phrase
“Carnegie Mellon University” appeared once in HTML table 2, column 1, from document id
“doc04”.

A common approach to multi-view learning is to concatenate the feature vectors for each
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Figure 5.1: An example of multi-view dataset for Knowledge Base population task. For each
noun-phrase distributional features are derived from two data sources. Occurrences of the noun-
phrase with text-patterns result in View-1 and occurrences of the noun phrase in HTML table
columns result in View-2.

view but this is not always optimal. Multi-view learning [13, 97, 122, 131, 144] addresses this
problem by introducing a different function to model each view, and jointly optimizing all the
functions to exploit the redundant views and improve learning performance.

Multiple views are only one issue arising in complex real-world learning tasks. For instance,
in the above mentioned KB population task, the labels assigned to each noun-phrase need to
be consistent with the hierarchical class constraints posed by the KB ontology. We deal with
hierarchical multi-view learning problems in Chapter 6.

There has already been a lot of research in the individual areas of multi-view learning [13, 97,
122, 131], semi-supervised learning [25, 98, 128], and learning in the presence of class hierar-
chies [54, 67, 95, 127]. However, the problem of unifying these aspects into a single framework
is less explored. In this chapter, we focus on the problem of multi-view semi-supervised learning
and later extend it to incorporate class hierarchies in Chapter 6. We propose an optimization
based formulation for this problem in the EM framework, which extends the popular K-Means
algorithm. The main idea behind our approach is to use different binary labels to model mem-
bership in each view. We then use mixed integer programming formulations to optimally assign
a set of labels to each instance. Instead of collectively optimizing labels for all datapoints, we
solve an integer linear program for every datapoint, deciding the optimal label assignments for
the datapoint. We compare our methods against a state-of-the-art co-training approach, applied
to the semi-supervised spherical K-Means algorithm [10].

Our experiments show that our proposed methods work as well as or better than standard
multi-view baselines like multiplication (or addition) of scores, concatenation of feature vectors,
and outperform a well-studied co-training based baseline, when applied in the standard multi-
view k-way classification setting.

In Section 5.2 we propose our optimization framework for multi-view semi-supervised learn-
ing. We then discuss various multi-view methods that can be instantiated using this framework.
We then describe the datasets and experimental methodology in Section 5.3, and present our
findings in Section 5.4. Finally, we discuss related work in Section 5.5, followed by conclusions.
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5.2 Multi-View Semi-supervised Learning
The spherical K-Means algorithm [37], i.e., the K-Means algorithm with cosine similarity, is a
popular method for clustering high-dimensional data such as text. In this section we will first
review this existing algorithm, we then present our proposed extension called “multi-view spher-
ical K-Means”. There are different ways in which scores from multiple views can be combined
to infer labels of every data point. We formulate the multi-view semi-supervised K-Means as a
generic optimization problem, and instantiate various existing methods, as well as our proposed
methods of combining scores from multiple views as special cases of this optimization problem.

5.2.1 Background and Notation
Let us start with the spherical K-Means optimization problem, which makes use of cosine sim-
ilarity between datapoint and centroids to do the clustering. In this algorithm [37], each docu-
ment, as well as each cluster centroid, is represented as a high-dimensional unit-length vector.
Let X = X1, . . . XN be the datapoints, C1, . . . CK be the clusters, yij be an indicator variable
specifying whether datapoint xj belongs to cluster Ci, and µi denotes the centroid for cluster
Ci. The task is to find optimal values of label assignments yij and cluster centroids µi, so as to
optimize the objective function given in Equation 5.1.

max
yij ,µi

(
N∑
j=1

K∑
i=1

yij ∗ cos(xj, µi)

)
s.t.

K∑
i=1

yij = 1,∀j = 1 . . . N, yij ∈ {0, 1} (5.1)

Since the variables yij and µi are dependent on each other, the above function can be optimized
using an iterative EM like algorithm such that the E step finds the best of values of yij given
µi’s and the M step takes these yij’s to recompute the optimal µi’s. Instead of probabilistically
assigning a datapoint to a number of clusters, we choose hard assignments [28] i.e., we restrict yij
as binary integers, hence this is the hard-EM algorithm. Fixing the values of µi’s, the objective
function is maximized when yij = 1 for i = argmaxi cos(xj, µi) and 0 otherwise. Let us now
compute the µi that maximizes the objective given the values for yij’s. (〈a, b〉 denotes dot product
of vectors a and b.)

max
µi

(
N∑
j=1

yij ∗ cos(xj, µi)

)
= max

µi

〈( N∑
j=1

yij
xj
||xj||

)
,
µi
||µi||

〉
(5.2)

The Cauchy-Schwartz inequality [48] states that |〈x, y〉| ≤ ||x|| ∗ ||y||, and the two sides are
equal only if x and y are linearly dependent. To maximize Equation 5.2, we can set µi =(∑

j yij
xj
||xj ||

)
. If we normalize xj and µi to be unit vectors, then the equations can be simplified

further. Given µi’s, yij = 1 for i = argmaxi
〈
xj, µi

〉
and 0 otherwise. Similarly, given yij’s,

µi =
∑

j yij ∗ xj . Henceforth, we assume that xj and µi are normalized to be unit vectors.
Hence, cos(xj, µi) =

〈
xj, µi

〉
. Finally, the spherical K-Means algorithm repeats these two steps

iteratively till convergence.
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5.2.2 Multi-View K-Means

We extend the spherical K-Means algorithm [37] for the multi-view setting and present a general
optimization based framework for Multi-View K-Means. Later, we also describe various ways
of combining evidence from the different views to instantiate multiple variants of this general
algorithm.

In the multi-view scenario, a datapoint xj has a feature representation in each view denoted by
x

(1)
j in view 1 and x(2)

j in view 2. Once the datapoints are clustered in k clusters using K-Means
representation, each centroid can also be represented differently in each view; i.e., centroid µi
can be represented as µ(1)

i in view 1 and µ(2)
i in view 2. There is one score for every datapoint in

every view; i.e., we will have scores s(1)
ij and s(2)

ij for datapoint xj and centroid µi in view 1 and
view 2 respectively to be defined below. There is a single label assignment vector per datapoint
that combines scores from different views, which we represent as matrix Y , i.e., yij = 1 indicates
that datapoint xj belongs to cluster µi.

Let us define an effective score sij of datapoint xj belonging to cluster µi as an overall mea-
sure of similarity of xj to µi under both views. Then the optimization problem described in
Equation 5.1 can be re-written as:

max
yij

(
N∑
j=1

K∑
i=1

yij ∗ sij

)
s.t.

K∑
i=1

yij = 1,∀j = 1 . . . N, yij ∈ {0, 1} (5.3)

In the multi-view scenario, the score sij can be defined as a function of s(1)
ij and s(2)

ij . This
can be done in various ways: e.g., a linear combination of scores, multiplication of scores, taking
max or min over scores and so on.

Algorithm 9 describes a generic semi-supervised multi-view K-Means algorithm. It is differ-
ent from standard K-Means in that each datapoint Xi and cluster centroid µj has a representation
in each data view. In the E step of each EM iteration, for each unlabeled datapoint x we have
a separate score from each view, a score of x belonging to a centroid µj . Line 8 in Algorithm
9 combines these scores and decides best cluster assignment for each datapoint. In the M step,
centroids are recomputed per view based on the label assignments done in the E step. For sim-
plicity of understanding, the algorithm is presented for two data views. However our techniques
are easily applicable to datasets with more than two views.

Next, we will see various ways in which the cluster assignment step (line 8) and the cen-
troid computation step (line 10) in this algorithm can be done, leading to new multi-view SSL
algorithms. Recall that instead of probabilistically assigning a datapoint to a number of clusters,
we choose hard assignments, i.e., we restrict Y u

t (x) (in Line 8) as binary integers, hence this is
the hard-EM algorithm (or classification EM) [28]. Even though finding an optimal set of hard
assignments using mixed integer programs is relatively more expensive than soft assignments,
we are solving it per datapoint, instead of collectively optimizing labels for all datapoints. Hence
we can divide the datapoints into multiple shards and parallelize the computation in Line 8 of
Algorithm 9. Since we are using the spherical K-Means algorithm in a semi-supervised setting,
henceforth we will use “cluster” and class” interchangeably.
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Algorithm 9 Semi-supervised Multi-View K-Means Algorithm.
1: function Multi-view-K-Means (X l(1), X l(2), Y l, Xu(1), Xu(2), k): µ(1), µ(2), Y u

2: Input: X l(1), X l(2) labeled data points in view 1 and view 2 resp. with L2 norm = 1; Y l labels(or
cluster assignments) for datapoints X l; Xu(1), Xu(2) unlabeled datapoints in view 1 and view 2 resp.
with L2 norm = 1 (same feature space as X l); k number of clusters to which the datapoints belong.

3: Output: µ(1), µ(2) cluster centroids in view 1 and view 2 resp. with L2 norm = 1, µ(1) =

{µ(1)
1 . . . µ

(1)
k } ; Y u labels(or cluster assignments) for unlabeled data points Xu

{Initialize model parameters using labeled data}
4: t = 0 , µ(1)

0 = argmaxµ L(X
l(1), Y l|µ),

µ
(2)
0 = argmaxµ L(X

l(2), Y l|µ), here L refers to the likelihood.

{here, µ(1)
0 , µ(2)

0 are cluster centroids at iteration 0 in view 1,2 resp.}
5: while cluster assignments not converged, t = t+ 1 do

{E step: (Iteration t) Make cluster predictions for the unlabeled data-points}
6: for x ∈ Xu do
7: s

(1)
j = 〈x(1), µ

(1)
j,t−1〉,

s
(2)
j = 〈x(1), µ

(2)
j,t−1〉, for all labels 1 ≤ j ≤ k

8: Compute cluster assignments Y u
t (x) given scores s(1)

1...k,s(2)
1...k.

9: end for
{M step : Recompute model parameters using current assignments for Xu}

10: Compute cluster centroids µ(1)
t , µ(2)

t given Y u
t (x).

11: end while
12: end function

5.2.3 Cluster Assignment using Scores from Two Data Views

In this section, we go through various ways in which the cluster assignment and centroid com-
putations steps (lines 8, 10) in Algorithm 9 can be done. We will start with an assumption that
each datapoint belongs to exactly one cluster. (This can be viewed as a constraint that says “all
classes C1 . . . Ck are mutually exclusive”.) We also assume that the cluster assignment for a
datapoint remains same in all data views. Later we will relax these assumptions one by one and
present a way to solve these problem variants. Note that alternatives to these score combination
methods are trivial methods like picking the best of available views, or concatenating feature
vectors from different views. Later in Section 5.3 we will compare the performance of our pro-
posed techniques against these baselines, and show the effectiveness of a carefully chosen score
combination strategy.

SUMSCORE Method: Here we define the effective score as an addition of scores in different
views: sij = s

(1)
ij + s

(2)
ij . Let us say s(1)

ij = 〈x(1)
j , µ

(1)
i 〉 and s(2)

ij = 〈x(2)
j , µ

(2)
i 〉.

max
yij ,

µ
(1)
i ,µ

(2)
i

(
N∑
j=1

K∑
i=1

yij ∗
(〈
x

(1)
j , µ

(1)
i

〉
+ 〈x(2)

j , µ
(2)
i

))
s.t.

K∑
i=1

yij = 1 ∀j, yij ∈ {0, 1} ∀i, j
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In this setting the optimization objective can be written as follows:

max
yij ,

µ
(1)
i ,µ

(2)
i

〈 N∑
j=1

yij ∗ x(1)
j , µ

(1)
i

〉
+

〈 N∑
j=1

yij ∗ x(2)
j , µ

(2)
i

〉 (5.4)

For the E step, keeping µi’s fixed, the closed form solution to compute the yij’s is as follows:
yij = 1 for i = argmaxi (〈x(1)

j , µ
(1)
i 〉+ 〈x

(2)
j , µ

(2)
i 〉) and 0 otherwise. In the M step, once yij’s are

fixed, the optimal µi’s are those for which this objective function is maximized i.e., the two terms
being summed are individually maximized. Each term is identical to Equation 5.2, and hence
will have same solution. Given yij , we can compute µ(1)

i and µ(2)
i as follows: µ(1)

i =
∑

j yij ∗x
(1)
j ,

and µ(2)
i =

∑
j yij ∗ x

(2)
j . Henceforth, we will refer to this method as SUMSCORE method.

PRODSCORE Method: Here we define the effective score as a product of scores in different
views: sij = s

(1)
ij ∗ s

(2)
ij . Keeping µi’s fixed, we can compute yij’s as follows: yij = 1 for

i = argmaxi (〈x(1)
j , µ

(1)
i 〉∗ 〈x

(2)
j , µ

(2)
i 〉) and 0 otherwise. Given yij , µ

(1)
i and µ(2)

i can be computed
as follows:

max
µ
(1)
i ,µ

(2)
i

 N∑
j=1

yij ∗
(〈

x
(1)
j , µ

(1)
i

〉
∗
〈
x

(2)
j , µ

(2)
i

〉) (5.5)

Note that in Equation 5.5, unlike Equation 5.4, µ(1)
i and µ(2)

i cannot be independently optimized.
However we can still follow an iterative procedure, that in the E step assigns yij = 1 for i =

argmaxi (〈x(1)
j , µ

(1)
i 〉 ∗ 〈x

(2)
j , µ

(2)
i 〉) and 0 otherwise; and in the M step, recompute the centroids

in different views as µ(1)
i =

∑
j yij ∗ x

(1)
j , and µ(2)

i =
∑

j yij ∗ x
(2)
j . Henceforth, we will refer to

this method as the PRODSCORE method.
Next we propose yet another variant of the multi-view K-Means algorithm, which differs

from the PRODSCORE and SUMSCORE methods in terms of their label assignment strategy in
the E step of the EM algorithm.

MAXAGREE Method: The SUMSCORE and PRODSCORE methods assign the same label
vector for each datapoint in both views and selects only one of the available labels (a hard mutual
exclusion constraint). However for some datapoints, view 1 and view 2 might not agree on
labels in the initial EM iterations; here we relax this constraint. Further, the mutual exclusion
constraints between labels are also softened. Equation 5.6 (Figure 5.2 (a)) shows a new objective
function that is being optimized for the entire dataset. Here, f(y

(1)
ij , y

(2)
ij , s

(1)
ij , s

(2)
ij ) is a function of

label vectors, and score vectors in the two views. Note that in this case multiple bits in yi can be
1, and finding the best possible bit vector of yi’s can lead to evaluating 2k possible assignments.

Equation 5.7 (Figure 5.2 (b)) shows an instantiation of Equation 5.6 and gives the mixed
integer linear program (MIP) that is solved per datapoint. This new method, called MAXAGREE
(maximize agreement) allows different views to assign a datapoint to different clusters, with a
penalty on cluster assignments being different. In particular, label predictions are done by solving
a MIP on scores produced in the two views and choosing a label vector per datapoint per data
view, with a penalty for assigning different labels across views and a penalty for not following
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(a)
maximize

y
(1)
ij ,y

(2)
ij ,µ

(1)
i ,µ

(2)
i

(∑
j

(
f(y

(1)
ij , y

(2)
ij , s

(1)
ij , s

(2)
ij )−

(
Penalty for

( K∑
i=1

y
(1)
ij 6= y

(2)
ij

)
,
( 2∑
v=1

K∑
i=1

y
(v)
ij 6= 1

))))
subject to, y

(1)
ij ∈ {0, 1}, y

(2)
ij ∈ {0, 1}

(5.6)

(b)

maximize
y
(1)
i ,y

(2)
i ,di,ζ1,ζ2,δ1,δ2

(
α1 ∗

(∑
i

y
(1)
i ∗ s

(1)
i + y

(2)
i ∗ s

(2)
i

)
− α2 ∗

(∑
i

di

)
− α3 ∗

(
ζ1 + ζ2 + δ1 + δ2

))
subject to, di = |y(1)

i − y
(2)
i |, ∀i = 1 . . . k∑

i

y
(1)
i ≤ 1 + δ1,

∑
i

y
(2)
i ≤ 1 + δ2, ∀i = 1 . . . k∑

i

y
(1)
i ≥ 1− ζ1,

∑
i

y
(2)
i ≥ 1− ζ2, ∀i = 1 . . . k

ζ1, ζ2, δ1, δ2 ≥ 0, y
(1)
i ∈ {0, 1}, y

(2)
i ∈ {0, 1} ∀i

(5.7)
Figure 5.2: (a) Optimization formulation for multi-view learning (b) Mixed integer program for
MAXAGREE method with two views.

the mutual exclusion constraints. Further, Equation 5.6 can be independently optimized for each
datapoint.

For each datapoint s(1)
i and s(2)

i are scores of x belonging to cluster i according to data view
1 and view 2 respectively. y(1)

i and y(2)
i represent cluster assignments in view 1 and view 2 re-

spectively. The term di is the penalty on y(1)
i and y(2)

i being different. Terms ζ1 and ζ2 are the
penalty terms for the constraint that each datapoint should be assigned to at least one cluster in
each view. Similarly, δ1 and δ2 are the penalty terms for the constraint that each datapoint should
be assigned to at most one cluster in each view. Terms α1, α2 and α3 are constants that define
relative importance of terms in the objective function.

COTRAIN Method: We also experiment with a well-studied co-training based method CO-
TRAIN as one of the baselines. This method is a multi-view spherical K-Means algorithm that
is proposed by Bickel and Scheffer [10]. In particular, it is a co-training variant of the spherical
K-Means algorithm, in which predictions made for view 1 in the E step are used to recompute
centroids of view 2 in the M step and visa versa.

5.3 Datasets and Experimental Methodology
Here, we first describe the datasets used. We then explain the experimental setup and evaluation
criteria used.

5.3.1 Datasets
We present experiments with eight multi-view datasets, summarized in Table 5.1. The first six
of them are publicly available, and the last two were created by us for exploring the multi-
view learning task. Cora, WebKB and CiteSeer1 [52] consists of two data views for scientific
publications. The first view consists of 0/1-valued word vector derived from the document text,
and the other view is citation links between these documents (represented as binary features).
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Figure 5.3: Class ontology used in the NELL mv dataset.

Each document in the Cora, WebKB and CiteSeer1 datasets has been classified into one of the
seven, five and six classes respectively. The next two datasets, Wikipedia linqs and Pubmed linqs
[52] also contain a bag of words and the links between documents as the two views, but they are
different from the earlier datasets in the sense that words features are TF/IDF-weighted instead of
being 0/1-valued. Wikipedia linqs has 19 distinct categories, whereas the Pubmed linqs dataset
has 3 categories.

The UCI Leaves image dataset [81] contains sixteen samples of leaves of each of one-hundred
plant species. For each sample, a shape descriptor and texture histogram (feature vectors of size
64 each) are given. The Citeseer2 dataset contains text and author views for around 6K scientific
articles, classified into 17 categories. The NELL mv dataset was created using around 1800
entities in the NELL KB, and the data views are occurrences of those entities in ClueWeb09 text
and HTML table data [23, 126]. The NELL mv dataset contains hierarchical labels that can be
arranged in an ontology shown in Figure 5.3. For the experiments in this chapter, we use labels
at a particular level of hierarchy, while for hierarchical multi-view learning experiments (see
Chapter 6.2.2) we make use of the ontology to create class constraints.

General statistics like the number of datapoints, features, classes etc. about these datasets are
summarized in Table 5.1. We can see that our datasets have varying number of datapoints and
classes. They also cover different kinds of features like: binary text features, tfidf text features,
link features, semi-structured data features and image features. We have made the hierarchical
multi-view NELL mv dataset available11 for the research community to help future research in
this field.

5.3.2 Experimental Setting

In addition to the SUMSCORE and PRODSCORE baselines, we experimented with three other
single view baselines. Methods V1 and V2 are single-view spherical K-Means methods that
use only view 1 and view 2 of the data respectively. For the experiments in this section we
order the views for each dataset such that view 1 is on average better than view 2 in terms of
F1 scores. Using the concatenation of two views as feature vectors yields Method V12. Method
COTRAIN is the co-training based multi-view spherical K-Means algorithm proposed by Bickel
and Scheffer [10]. We compared these baseline methods with multi-view methods based on our
proposed optimization formulation: These methods include SUMSCORE, PRODSCORE, and
MAXAGREE (Section 5.2.3).

11The dataset can be downloaded from http://rtw.ml.cmu.edu/wk/WebSets/multiView_2015_
online/index.html
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View statistics
Dataset #Datapoints #Classes View 1 View 2

#Features #(Datapoint, #Features #(Datapoint,
feature) pairs feature) pairs

Cora 2708 7 1433 49.2K 2222 5.4K
WebKB 877 5 1703 79.4K 735 1.6K
Citeseer1 3312 6 3703 105.1K 2312 4.7K
Wikipedia linqs 3363 19 4973 2.1M 2851 45.0K
Pubmed linqs 19.7K 3 500 988.0K 19.7K 44.3K
UCI Leaves 1600 100 64 102.0K 64 102.4K
Citeseer2 6601 17 26.7K 392.0K 10.8K 16.0K
NELL mv 1855 11 3.4M 8.8M 1.1M 2.4M

Table 5.1: Statistics of all datasets used.

5.3.3 Evaluation Criteria

To evaluate the performance of various methods, we use macro and micro averaged F1 scores.
The macro averaged F1 score gives equal weight to performance on all classes, hence is better in
cases where class distribution is skewed. On the other hand, the micro averaged F1 score gives
equal weight to performance on all datapoints, hence it is biased towards the frequent classes.
For each dataset we experimented with different values of the training percentage. For each value
of training percentage, we average the scores across 10 random train/test partitions. Note that
we are running these experiments in the transductive setting i.e., our semi-supervised learning
algorithm will get as input training examples with ideal labels as well as unlabeled test examples;
and the task is to learn a model from labeled training and unlabeled test data to in turn label the
test datapoints.

For the multi-view experiments presented in Section 5.4.1, we run experiments on all 8
datasets, with 2 values of training percentages {10, 30}. For the NELL mv dataset we do sepa-
rate evaluation at the second and third levels of the class hierarchy. Hence for each method we
get 18 values of average F1 scores for each of the macro and micro averaging methods.

Next, we compute the average rank of methods for these 18 test-cases. While computing
average rank, we first compute a method’s average rank according to macro-averaged F1 scores,
and micro-averaged F1 scores, and take the average of these 2 ranks. The lower the average rank,
the better the method’s performance. Further we visualize these results using scatter plots that
show the F1 score of each of the proposed method vs. baseline method. The proposed methods
are shown on the x axis compared to baselines on the y axis, hence points below the ‘x=y’ dotted
line mean that the proposed methods performed better. Both average rank and scatter plots help
us measure the effectiveness of methods over a number of datasets.

Finally, we also present correlation analysis of performance improvements produced by our
techniques w.r.t dataset characteristics like View agreement, and View imbalance. view agree-
ment is defined as the fraction of datapoints for which methods V1 and V2 produce same labels;
its value varies between 0 to 1. We define view imbalance as the difference between the perfor-
mances of the two views; its value can vary between 0 to 100. Consider an example where on a
particular dataset, V1 and V2 gave F1 score of 55.0 and 42.7 respectively, then view imbalance
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is |55.0 − 42.7| = 12.3. If the final labels produced by V1 and V2 agree on 500 out of 1000
datapoints, then the view agreement is 500/1000 = 0.5.

5.4 Experimental Results
In this section we go over our experimental findings.

5.4.1 Comparison of Multi-view Learning Methods in Terms of F1
Table 5.2 compares the macro-averaged F1 scores of the proposed optimization based methods
with baseline methods on all 8 multi-view datasets with 10% and 30% training data. V12 method
came out as a strong baseline. We can see that our proposed methods SUMSCORE, and MAXA-
GREE give comparable or better performance w.r.t all baseline methods, and clearly outperform
the COTRAIN and V1 (best of two views) methods on most datasets. We can also see that the
MAXAGREE method performs as well as and sometimes better than the SUMSCORE method.
MAXAGREE allows different label vectors to be assigned in different views and hence is the
most expressive of the proposed methods.
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(a) Macro Averaged F1

(b) Micro Averaged F1

Figure 5.4: Scatter plots of F1 scores of Flat Multi-view methods on all datasets. Proposed
methods (PRODSCORE, SUMSCORE, MAXAGREE) are on the x axis compared to baselines
(Max(V1,V2), V12, COTRAIN) on the y axis, hence points below the ‘x=y’ dotted line mean
that the proposed method performed better.

Figure 5.4 shows the scatter plot of the macro and micro averaged F1 scores of our proposed
methods (PRODSCORE, SUMSCORE, and MAXAGREE) vs. baselines (V1, V2, V12, and
COTRAIN). Points below x=y line denotes that our proposed method (plotted on the x axis)
performed better than the baseline method (plotted on the y axis). These plots reinforce the fact
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Dataset Train View Baseline methods Proposed methods
percen- Agree- V1 V2 V12 CO- PROD- SUM- MAX-

tage ment TRAIN SCORE SCORE AGREE
Cora 10 0.30 55.0 42.7 56.2 48.8 45.0 67.8+ 67.8+

30 0.50 69.2 62.1 70.6 64.3 63.1 77.6+ 77.6+
WebKB 10 0.32 55.1 29.0 56.1 36.8 29.1 49.6 49.6

30 0.50 68.9 50.0 69.8 57.6 50.6 62.8 62.8
Citeseer1 10 0.35 64.4 33.3 64.4 49.4 34.3 65.9+ 65.9+

30 0.52 73.2 54.9 73.3 63.3 55.7 75.0+ 75.0+
Wikipedia linqs 10 0.44 57.4 42.0 56.8 49.9 53.1 54.6 53.5

30 0.60 68.0 55.7 66.8 62.0 66.6 66.5 65.7
Pubmed linqs 10 0.67 69.8 37.0 70.8 35.6 37.0 72.7+ 72.7+

30 0.77 68.7 37.7 69.6 36.6 37.7 71.9+ 71.9+
UCI Leaves 10 0.42 71.6 56.8 78.7 56.3 22.0 79.4+ 78.7+

30 0.59 81.2 70.6 86.3 76.1 47.1 86.6+ 86.3+
Citeseer2 10 0.13 17.4 14.1 14.1 14.4 17.5+ 16.0+ 16.0+

30 0.33 37.5 30.0 30.0 30.9 37.7+ 32.1 32.1
NELL mv level=2 10 0.66 78.3 53.2 53.3 59.3 78.1 56.9 56.5

30 0.79 69.4 55.1 55.4 59.1 69.4+ 57.7 58.0
NELL mv level=3 10 0.45 48.8 42.7 42.5 44.6 50.8+ 46.8 45.6

30 0.57 60.0 50.2 50.7 53.0 61.9+ 54.0 53.3
Avg. Rank 3.6 5.8 3.3 5.1 4.6 2.7 2.9

Table 5.2: Comparison of proposed optimization based multi-view methods w.r.t baselines on
all 8 datasets in terms of macro-averaged F1 scores. Best F1 scores in each row are bold-faced.
(+) in front of scores for proposed methods indicate that for that dataset the proposed method
performed better than or equal to the best baseline score for the dataset. Last row of the table
shows average rank of each method in terms of both macro averaged F1 and micro averaged F1
scores. Top 3 method ranks are bold-faced.

that the SUMSCORE and MAXAGREE methods are performing comparable to or better than
all baseline methods whereas the PRODSCORE method does not consistently outperform the
baselines.

We also compare these methods in terms of their average rank according to both macro av-
eraged and micro averaged F1 scores. According to this metric, the top 3 methods are SUM-
SCORE, MAXAGREE and V12, in that order.

Thus we observed that our optimization based label assignment strategies (SUMSCORE and
MAXAGREE) give state-of-the-art or comparable performance when compared to existing flat
multi-view techniques, including the well studied co-training based baseline COTRAIN. In terms
of average rank of the baselines V12 performed best of the baselines.

5.4.2 Analysis of Results
From Table 5.2 and scatter plots in Figure 5.4, we can see that different methods gave the best
performance on different datasets. To help understand the reasons for this, we studied the cor-
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Correlation with % relative improvement correlation pVal
View imbalance PRODSCORE over V12 -0.50 0.03

MAXAGREE over V12 -0.39 0.11
MAXAGREE over PRODSCORE 0.36 0.14

Table 5.3: Flat Classification: Pearson Correlation coefficient between the view imbalance and
performance improvements produced by multi-view methods over the baselines.
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Figure 5.5: Percentage relative improvement of multi-view methods for datasets with varying
view imbalance.

relation of performance improvements of proposed methods (over baseline V12) w.r.t the view
imbalance. As described in Section 5.3.3, view imbalance is defined as the difference between
the performances of V1 and V2. From Figure 5.5 and Table 5.3, we can see that the performance
improvements of both PRODSCORE and MAXAGREE over V12 are negatively correlated with
the difference between the two views, i.e., there is less improvement over the baseline when there
is larger view imbalance (as the performance of two views differ by larger amount). This seems
natural as simpler score combination methods (like best view or concatenation of views) should
work well when most information about an example is in only one view. Further we can see that
the improvement of MAXAGREE over PRODSCORE is higher with larger view imbalance; we
found a weak positive correlation of 0.36 with pVal = 0.14.

Prior work [33] has also studied correlation between the performance of multi-view meth-
ods and view agreement. The third column of Table 5.2 gives the value of agreement between
methods V1 and V2. We could not find any significant correlation between the view agreement
and the improvements of proposed methods w.r.t. baselines. This might be due to the fact that
the datapoints for this correlation analysis are coming from different kinds of datasets. When we
did similar analysis in the subsequent hierarchical experiments on the single NELL mv dataset,
we found a significant correlation between agreement rate and performance improvement of pro-
posed methods w.r.t. baselines (refer to Figure 6.3).

5.5 Related Work
Multi-view learning as defined by Xu et al. [144] is a paradigm that introduces a different func-
tion to model each view and jointly optimizes all the functions to exploit the redundant views of
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the same input data and improves the learning performance.
Blum and Mitchell [13] proposed the co-training algorithm for problems where the examples

are described by two conditionally independent views. It jointly trains two classifiers such that
classifier A adds examples to the labeled set that classifier B will then be able to use for learning.
If the two views are conditionally independent, then co-training will always improve the results,
otherwise it may not be successful. Later, Nigam and Ghani [97] analyzed the performance of
co-training when certain assumptions are violated. More generally, one can define a learning
paradigm that utilizes the agreement among different learners, and the particular assumptions
of co-training are not required. Bickel and Scheffer proposed a multi-view spherical K-Means
algorithm [10]. In particular, it is a co-training variant of the spherical K-Means algorithm, in
which predictions made for view 1 in the E step are used to recompute centroids of view 2 in the
M step and visa versa. We used this method as a baseline (referred to as COTRAIN in Section
5.3).

Instead, multiple hypotheses with different inductive biases, e.g., decision trees, SVMs,
etc. can be trained from the same labeled data set, and are required to make similar predic-
tions on any given unlabeled instance. Sindhwani et al. [114] and Brefeld et al. [17] proposed
multi-view semi-supervised regression techniques.

Another related area of research is multi-task learning. Jin et al. [66] proposed a single frame-
work to incorporate multiple views and multiple tasks by learning shared predictive structures.
On similar lines, Hu et al. [62] handle the problem of heterogeneous feature spaces in the context
of transfer learning, and show improved performance on the tag recommendation task. Kang
and Choi [69] developed a method based on restricted deep belief networks for multi-view prob-
lems, such that layer of hidden nodes in the belief network have view-specific shared hidden
nodes. Usunier et al. [131] focus on learning to rank multilingual documents, using machine
translation of documents in other languages as different data views. Several boosting approaches
like Mumbo [72] and ShareBoost [103] are also proposed for multi-view learning problems. Our
techniques are weakly supervised and do not assume the amount of training data required to train
such boosting algorithms.

Recent research on multiple kernel learning has proposed a number of approaches for com-
bining kernels in the regularized risk minimization framework [38, 45, 78]. Researchers have
also explored dimensionality reduction techniques to create unified low-dimensional embeddings
from multi-view datasets so as to benefit semi-supervised learning and information extraction
tasks [122, 125]. Cai et al. [22] proposed the use of structured sparsity inducing norms to make
K-Means algorithm run on large datasets using multi-threaded machines. Their method is com-
plementary to our techniques because we focus on consistent label assignment for a single data-
point in the E step of every K-Means iteration, which can be incorporated in their multi-threaded
setting.

Brefeld et al. [15, 16] proposed multi-view learning techniques for more challenging struc-
tured output spaces. Our methods are different in that we make use of the well-studied EM
framework, pose the label assignment in the E step as an optimization problem, and propose
multiple linear and mixed-integer formulations to solve such optimization problem. Gilpin et
al. [54] have proposed a integer linear programming based method for hierarchical clustering.
Our techniques are different in that Gilpin et al. focus on unsupervised agglomerative clustering
whereas we focus on semi-supervised and multi-view clustering in the presence of predefined
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class hierarchy.

5.6 Conclusions
In this chapter, we investigated the problem of semi-supervised learning in the presence of
multiple-data views. We formulated the problem as an optimization problem, and solved it using
the standard EM framework. We then focused on the sub-problem of assigning labels to each dat-
apoint (part of E step), and studied various methods for such prediction. Our proposed method
solves a mixed integer linear program to find consistent class assignments given the scores in
each data view. Because our multi-view techniques are broadly similar to co-training based al-
gorithms, we also compared them to a seeded version of multi-view spherical K-Means algorithm
that is proposed by Bickel and Scheffer [10]. Our methods produced better performance in terms
of macro-averaged F1 score compared to this co-training baseline.

We present extensive experiments on 8 different multi-view datasets, including document
classification, image classification, publication categorization and knowledge based information
extraction datasets. The data views also vary in their nature including word occurrences, binary
features, link features, image histograms and co-occurrence features. We showed that our tech-
niques give state-of-the-art performance when compared to existing multi-view learning methods
including the co-training based algorithm proposed by Bickel and Scheffer [10], on the problem
of flat multi-view semi-supervised learning.

Finally, we have made the hierarchical multi-view NELL mv dataset available12. We have
published the text context and HTML table features, class hierarchy, hierarchical labels for all
entities, and seed train-test partitions of NELL mv dataset used in this thesis.

12Dataset link: http://rtw.ml.cmu.edu/wk/WebSets/multiView_2015_online
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Chapter 6

Constrained Semi-supervised Learning in
the Presence of Ontological Constraints

In the last chapter, we discussed semi-supervised learning techniques that can make use of the
multi-view datasets. We also found that such multi-view models are more effective than models
learnt using any single view or concatenation of views. However, multiple views are only one
issue arising in complex real-world learning tasks. For instance, in the earlier mentioned KB pop-
ulation task, the labels assigned to each noun-phrase need to be consistent with the hierarchical
class constraints posed by the KB ontology.

Figure 6.1: An example of ontological with subset and mutual exclusion relations between
classes.

Consider a toy example of ontological class constraints in Figure 6.1. Here, we can see two
kinds of class constraints imposed by the ontology. (1) The “Subset” constraint between “Fruit”
and “Food” categories suggests that if a datapoint is classified as “Fruit”, then it should also be
classified as “Food”. (2) The “Mutual Exclusion” constraint between “Food” and “Organization”
says if a datapoint is classified as “Food”, then it should not be classified as “Organization”,
and vice versa. Further, the combination of these constraints induce many more constraints.
For example, “Food” is mutually exclusive with “Organization” and “Company” is subset of
“Organization”, implies that “Vegetable” and “Company” classes are mutually exclusive.

Thus, while classifying the noun-phrase “Carnegie Mellon University” w.r.t. class ontology
in Figure 6.1, we need to choose the labels Everything, Organization and University (consis-
tent with the class constraints) while combining clues from both data views (text-patterns and
HTML-tables).
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6.1 Hierarchical Semi-supervised Learning
Similar to the multi-view semi-supervised learning techniques discussed in Chapter 5, we are
formulating the semi-supervised learning with ontological constraints as a constrained learning
task. In this task, each datapoint is assigned a bit vector of labels, one bit per class in the ontology.
The ontological constraints tell us which bit vectors are consistent and which are invalid. Further,
our proposed optimization method is not limited to tree-structured class hierarchies. It can also
deal with non-tree class hierarchies defined by sets of subset and mutual exclusion constraints.
Next, we discuss this procedure in detail (Section 6.1.1).

6.1.1 Method
We propose Hier-Semi-EM, a hierarchical semi-supervised Expectation Maximization (EM) al-
gorithm. It uses small amount of labeled data and large amount of unlabeled data in an iterative
EM framework to learn a hierarchical model for this task. The algorithm is presented in Algo-
rithm 10.

Algorithm 10 Hierarchical Semi-supervised Learning.
1: function Hier-Semi-EM (X l, Y l, Xu, {C1 . . . Ck}, Zk): θ1 . . . θk, Y u

2: Input: X l labeled data points; Y l labels of X l; Xu unlabeled data points;
{C1 . . . Ck} set of known classes to which x’s belong;
Zk manually input constraints on k seed classes;⇐=

3: Output: θ1 . . . θk parameters for k classes; Y u labels for Xu

{Initialize classifiers θj for class Cj using seeds provided for Cj}
4: θ0

1 . . . θ
0
k = argmaxθL(X

l, Y l)
5: while Class assignments not converged do

{E step: (Iteration t) Classify each datapoint at each level of class hierarchy}
6: for i = 1 to |Xu| do
7: Find P (Cj |Xi, θ

(t)
1 , . . . , θ

(t)
k ) for all labels 1 ≤ j ≤ k

8: Y
(t)
i = ConsistentAssignment(P (Cj |Xi), h, Zk)⇐=

9: end for
{M step: Recompute model parameters based on Y (t) }

10: θ
(t+1)
k = argmaxθL(X

l, Y l, Xu, Y u(t)|θ(t)
k )

11: end while
12: end function
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Before getting into the details of the algorithm, let us review the notations. Let X =
{X1, . . . XN} be the datapoints to be classified, and {C1, . . . CK} be the KB categories. Let
yji ∈ {0, 1} be an indicator variable specifying whether a datapoint Xi belongs to category Cj .
Let θj denote the centroid/classifier for category Ci. Using the model parameters θj for class Cj ,
we can estimate P (Cj|Xi), the probability of Xi belonging to category Cj . Hier-Semi-EM aims
to find optimal values of label assignments yji and model parameters θj , so as to maximize the
overall data likelihood. Let Subset be the set of all subset or inclusion constraints, and Mutex
be the set of all mutual exclusion constraints. In other words, Subset = {〈i, k〉 : Ci ⊆ Ck} and
Mutex = {(i, k) : Ci ∩ Ck = φ}.

Hier-Semi-EM takes in as input the set of datapoints X , out of which X l is the labeled subset
with category labels in Yl, and the remaining Xu is unlabeled. Additionally, it takes as input a
set of ontological constraints, Z. In the E step of this algorithm, each datapoint Xi is assigned a
bit vector of labels Yi = [y1i, . . . yki]. The class hierarchy is incorporated as constraints on bits in
this bit vector. For example, if for a datapoint cat, a bit corresponding to KB category mammal is
set then the bit corresponding to category animal should also be set (subset constraint: mammal
⊆ animal), and for the same datapoint the bit corresponding to category reptile should not be
set (mutual exclusion constraint: mammal ∩ reptile = φ). The M step recomputes the model
parameters for each KB category using the label assignments done in the E step.

The E step of Hier-Semi-EM may be broken down into two stages, which we describe in
more detail below:

• Algorithm 10 Line 7: This step computes probabilities P (Cj|Xi; θj), where θj is the cur-
rent estimate of model parameters for category Cj . A variety of techniques may be used
for this estimation. We briefly describe one such choice here: the semi-supervised ver-
sion of multinomial Naive Bayes [98]. In this model P (Cj|Xi) ∝ P (Xi|Cj) ∗ P (Cj), for
each unlabeled gloss Xi. The probability P (Xi|Cj) is estimated by treating each feature in
Xi as an independent draw from a class-specific multinomial. In this task, the features are
word occurrences in the candidate glosses, and the number of outcomes of the multinomial
is the vocabulary size. The Naive Bayes version can be referred to as Hier-Semi-EM-NB,
whereas the K-Means version is referred to as Hier-Semi-EM-KM.

• ConsistentAssignment (Refined Label Assignment using Ontological Constraints) (Algo-
rithm 10 Line 8): Given the category memberships probabilities {P (Cj|Xi)} estimated
above, this step computes the category membership variables {yji, ∀ 1 ≤ i ≤ N, 1 ≤ j ≤
K}. Hier-Semi-EM solves a Mixed-Integer Program (MIP) to estimate these variables.
One such problem is solved for each datapoint. This MIP takes the scores {P (Cj|Xi)},
and class constraints Z as input and produces a bit vector of labels as output, each bit
representing whether the datapoint belongs to that particular category.
The MIP formulation for a datapoint Xi is presented in Equation 6.1. For each Xi, this
method tries to maximize the sum of scores of selected labels, after penalizing for violation
of class constraints. Let ζjk are slack variables for Subset constraints, and δjk are slack
variables for Mutex constraints.
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maximize
{yji},ζjk,δjk

∑
j

yji ∗ P(Cj|Xi)−
∑

〈i,k〉∈Subset

ζik −
∑

(i,k)∈Mutex

δik

subject to,
yji ≥ yki − ζjk, ∀〈j, k〉 ∈ Subset

yji + yki ≤ 1 + δjk, ∀(j, k) ∈ Mutex
ζjk, δjk ≥ 0, yi ∈ {0, 1}, ∀j, k

(6.1)

6.1.2 Experimental Results: Do ontological constraints help?
Table 6.1 shows the comparison between semi-supervised EM algorithm with and without on-
tological constraints. The best values in each row (per dataset per level in the hierarchy) are
bold-faced. We can see that for 9 out of 10 cases, the best performance was given by a method
that uses ontological constraints while clustering. Hence we can say that ontological constraints
do help in this learning task. The Hier-Semi-EM algorithm is on average 8.7 times more expen-
sive than EM in terms of average runtime.

Dataset Level Macro-avg. seed class F1
EM Hier-Semi-EM

Text-Small 2 46.6 52.0
3 23.5 25.8 M

Text-Medium 2 53.2 53.3
3 27.9 33.9 N
4 17.4 26.8 M

Table-Small 2 69.5 74.8 N
3 36.8 38.9 N

Table-Medium 2 62.7 62.2
3 43.7 48.0 N
4 47.3 57.1 N

Table 6.1: Comparison of flat vs. hierarchical semi-supervised EM methods using KM repre-
sentation on Text-Small to Table-Medium.

6.2 Multi-view Learning in the Presence of Ontological Con-
straints

In Chapter 5 we discussed semi-supervised learning techniques that can make use of the multi-
view datasets. The proposed techniques make use of linear optimization based formulations to
incorporate evidence from multiple data views. In this section, we present their hierarchical
variants that use a class hierarchy in the learning process to improve over their flat counterparts.
This shows the potential of such linear optimization based formulations for complex learning
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scenarios that cover multi-view and hierarchical classification in a single framework. This work
is currently in preparation for submission [123].

6.2.1 Hierarchical Multi-view Learning
In this section we will discuss natural extensions of our proposed multi-view approaches for hi-
erarchical multi-view learning. The only change that needs to be made is that each datapoint can
be assigned multiple labels, so that they satisfy the class constraints. Further, instead of making
the constraints hard, we relax them using slack variables. These slack variables add a penalty
to the objective function upon violating any of the class constraints. Let Subset be the set of
all subset or inclusion constraints, and Mutex be the set of all mutual exclusion constraints. In
other words, Subset = {〈i, j〉 : Ci ⊆ Cj} and Mutex = {(i, j) : Ci ∩ Cj = φ}. Note that our
only assumption is that we know the subset and mutual exclusion constraints between classes
under consideration. However, we do not assume that the classes are necessarily arranged in a
tree structured hierarchy. Next, we will discuss three methods that do multi-view learning in the
presence of such class constraints.
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Figure 6.2: Mixed integer program for (a) Hier-SUMSCORE method and (b) Hier-MAXAGREE
method.

Hier-SUMSCORE Method: This method is an extension of the SUMSCORE method discussed
in Section 5.2.3. For each datapoint, this method tries to maximize the sum of scores of selected
labels, after penalizing for violation of class constraints. The scores from two views are com-
bined through addition. There is a unique label assignment vector for each datapoint across two

71



views computed by solving the mixed integer program given Equation 6.2 (Figure 6.2 (a)).

Hier-PRODSCORE Method: This method is an extension of the PRODSCORE method. The
mixed integer program for this method is very similar to that of the Hier-SUMSCORE method
except that in the objective function, scores from two views are combined using product instead
of addition of scores. There is a unique label assignment vector for each datapoint across two
views.

Hier-MAXAGREE Method: This is an immediate extension of the MAXAGREE method de-
scribed in Section 5.2.3, to incorporate class hierarchy. Different views can assign a datapoint to
different sets of clusters. There is a penalty on cluster assignments being different across views,
and any violation of the class constraints. Equation 6.3 (Figure 6.2 (b)) shows the mixed integer
linear program to be solved for each datapoint. For each datapoint s(1)

i , s(2)
i represent scores of

x belonging to cluster i; and y(1)
i , y(2)

i represent cluster assignment of x in view 1 and view 2
respectively. di is the penalty on y(1)

i and y(2)
i being different. ζ(1)

ij and ζ(2)
ij are the penalty terms

for Subset constraints. Similarly, δ(1)
ij and δ(2)

ij are the penalty terms for Mutex constraints. α1, α2

and α3 are constants that define relative importance of terms in the objective function.
Integer linear programming is used by several existing approaches to do constrained infer-

ence. [95] used mixed integer linear programming techniques to encode ontological constraints
–they assign multiple plausible KB categories to ‘emerging’ entities, which are not yet repre-
sented in the KB, and consider mutual exclusion constraints as a post-processing step, so as to
output a consistent set of category assignments. On the other hand, our method jointly models
multi-view, subset and mutual exclusion constraints, within an iterative semi-supervised EM al-
gorithm. Note that the hierarchical methods discussed here can work with any class ontology
and are not limited to tree structured ontologies.

6.2.2 Experimental Results

Note that out of the eight multi-view datasets we experimented with in Section 5.3 only NELL mv
dataset is hierarchical. To test hierarchical multi-view methods, we performed experiments on
the NELL mv dataset with the training percentage varying from 5% to 30%. We generated 10
random train/test partitions for each training percentage value. Both flat and hierarchical meth-
ods got exactly the same train and test instances as input. Hierarchical methods had access to the
entire hierarchy of labels and classified each datapoint w.r.t all classes in the hierarchy follow-
ing the class constraints. Flat methods on the other hand learnt models only for the leaf classes
of the hierarchy. We compared average F1 scores of all methods on the leaf classes. Further,
we also compare these methods in terms of their average rank according to macro averaged F1
scores. According to this metric, the Hier-MAXAGREE method is the best followed by Hier-
SUMSCORE, and Hier-PRODSCORE.

Table 6.2 shows the macro-averaged F1 results for all methods varying the training percent-
age. We can see that all the proposed hierarchical methods Hier-SUMSCORE, Hier-PRODSCORE
and Hier-MAXAGREE improve over their flat counterparts in terms of macro-averaged F1 scores
for all values of the training percentage. Columns marked as ∆ shows the percentage relative
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improvement of the hierarchical method over its flat counterpart. We can see that all meth-
ods benefit from hierarchy and the maximum percentage improvements are 18.3% for SUM-
SCORE, 6.7% for PRODSCORE and 20.1% for the MAXAGREE method. Overall, the Hier-
MAXAGREE method performs best when the amount of training data is very small, followed
by Hier-SUMSCORE and Hier-PRODSCORE methods. Further Hier-PRODSCORE works best
for higher values of training percentages.

Train View Baselines Flat vs. hierarchical multi-view methods
Perce- Agree- V12 CO- SUM- Hier- PROD- Hier- MAX- Hier-
ntage ment TRAIN SCORE SUMSCORE SCORE PRODSCORE AGREE MAXAGREE

F1 ∆ F1 ∆ F1 ∆
5 0.41 41.3 42.4 43.5 47.4 +9.0% 43.9 44.4 +1.1% 42.2 47.5 +12.6%
10 0.45 42.5 44.6 46.8 51.9 +11.0% 50.8 50.8 +0.1% 45.6 52.0 +14.0%
15 0.49 45.9 47.9 49.1 55.3 +12.8% 54.3 55.0 +1.1% 48.2 55.4 +15.1%
20 0.51 47.8 50.0 51.8 59.2 +14.2% 57.2 59.0 +3.1% 51.0 59.2 +16.0%
25 0.54 49.3 51.3 52.8 61.0 +15.5% 59.9 62.6 +4.4% 52.0 61.1 +17.4%
30 0.57 50.7 53.0 54.0 63.8 +18.2% 61.9 66.0 +6.6% 53.3 63.9 +20.0%
Avg. rank 7.8 4.7 6.0 2.3 4.2 2.5 7.2 1.3

Table 6.2: Comparison of hierarchical vs. flat multi-view methods in terms of % Macro averaged
F1 on the NELL mv dataset. Column ∆ lists the percentage relative improvement of the hier-
archical methods over their flat counterparts. Last row of the table shows average rank of each
method in terms of both macro averaged F1 and micro averaged F1 scores. Top 3 method ranks
are bold-faced.

Figure 6.3 shows the correlation between view agreement and % relative improvement w.r.t.
the V12 method. From the trend and correlation coefficient values we can say that improvements
of PRODSCORE and MAXAGREE w.r.t. V12 are positively correlated with agreement between
the views. Further, with lower agreement rate MAXAGREE performs best, whereas with high
values of the agreement rate PRODSCORE performs best.
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Figure 6.3: Percentage relative improvement of hierarchical multi-view methods for datasets
with different view agreement rates.

Figure 6.4 compares the learning curves of hierarchical and flat versions of MAXAGREE and
PRODSCORE methods vs.b̃aselines. We can see all methods are improving with more training
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data, however the learning curves of Hier-MAXAGREE and Hier- PRODSCORE are better than
baselines V12 and COTRAIN, validating the effectiveness of proposed methods.
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Figure 6.4: Effect of varying the training percentage for various flat and hierarchical multi-view
methods on NELL mv dataset.

Figure 6.5(a), (b) shows the scatter plot of hierarchical vs. flat methods (SUMSCORE, PROD-
SCORE and MAXAGREE) in terms of both macro and micro averaged F1 scores. Each method
has six datapoints corresponding to the six different training percentages as shown in Table 6.2.
We can see that hierarchical methods always outperform flat methods in terms of macro-averaged
F1, but they might be worse in terms of micro averaged F1 scores. Figure 6.5(c) shows that the
histogram of NELL mv leaf class frequencies is skewed. It has been observed that skewed
category distribution often leads to less reliable micro averaged performance [31] (since it is
dominated by performance on the most popular classes). This can justify the surprising trend
in Figure 6.5(a), (b) that for 6 out of 18 datapoints, the flat method outperforms the hierarchical
method in terms of micro averaged F1 score. We found that all of these 6 datapoints come from
PRODSCORE method. Hence Hier-MAXAGREE and Hier-SUMSCORE outperform their flat
counterparts in terms of both macro and micro averaged F1 scores.
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Figure 6.5: Results on NELL mv dataset: (a) Scatter plot of hierarchical vs. corresponding flat
multi-view methods in terms of macro-averaged F1 score, (b) Scatter plot in terms of micro-
averaged F1 score, and (c) Class frequency histogram of leaf classes.

Finally we compare the flat and hierarchical multi-view methods in terms of average run-
time. Figure 6.6 (a) shows the bar-chart of average run-times of methods. In our MATLAB
implementation, the running time of proposed multi-view methods Hier-PRODSCORE, Hier-
SUMSCORE and Hier-MAXAGREE are longer than traditional PRODSCORE, SUMSCORE
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Figure 6.6: Results on NELL mv dataset: (a) Average run-times of methods. (b) Convergence
trends with 30% training data.

methods, but not unreasonably so. However, the flat multi-view method MAXAGREE is rela-
tively more expensive, due to the combinatorial number of possible label assignments it needs
to evaluate while solving mixed integer linear programs. We believe that adding the hierarchical
constraints and ignoring unnecessary variables (an implementation trick 13), reduces the number
of possible candidate assignments to evaluate for Hier-MAXAGREE, making it more efficient
than MAXAGREE. Further, Figure 6.6 (b) shows the convergence trends for some of the meth-
ods in terms of number of label bits flipped across EM iterations. The algorithms converge when
no bit is flipped. We can see that hierarchical methods converge quickly compared to the V1 and
V12 methods. Also note that V2 is the worse of two views, even though it converges quickly, its
performance in terms of Macro averaged F1 score is lower.

Results in this section suggest that the superiority of hierarchical multi-view techniques based
on our proposed optimization framework. It was also observed that with small amount of training
data, Hier-MAXAGREE method gave state-of-the-art performance on NELL mv dataset on the
task of hierarchical multi-view learning in terms of both macro and micro averaged F1 scores.

6.3 Application: Automatic Gloss Finding for a KB using On-
tological Constraints

In this section we will describe a real world application of the hierarchical semi-supervised learn-
ing algorithm (Algorithm 10) discussed earlier in this chapter.

While there has been much research on automatically constructing structured Knowledge
Bases (KBs), most of it has focused on generating facts to populate the KB. However, a useful KB
must go beyond facts. For example, glosses (short natural language definitions) have been found
to be found to be very useful in other tasks such as Word Sense Disambiguation. However, the
important problem of Automatic Gloss Finding, i.e., assigning glosses to entities in an initially

13If class A is disjoint with classes B and C, and C is subset of B, then A∩B = φ and C ⊆ B infer the remaining
constraint A ∩ C = φ. We remove such redundant constraints while solving the optimization problem.
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gloss-free KB is relatively unexplored – we address that gap in this section. In particular, we
propose GLOFIN, a hierarchical semi-supervised learning system for this problem which makes
effective use of limited amounts of supervision and available ontological constraints. To the best
of our knowledge, GLOFIN is the first such system for this task. This work is published in the
proceedings of WSDM 2015 [130].

Through extensive experiments on real-world datasets, we demonstrate GLOFIN’s effective-
ness. It is encouraging to see that GLOFIN outperforms other state-of-the-art SSL algorithms,
especially when little labeled data is available. We also demonstrate GLOFIN’s robustness to
noise through experiments on two different KBs, a user contributed KB (Freebase) and an au-
tomatically constructed KB (NELL). To facilitate further research in this area, we have made
datasets used in this chapter publicly available. Note that this is a larger scale task and we are
looking at a single view dataset with a hierarchy of classes.

6.3.1 Motivation
Automatic construction of knowledge bases (KBs) has attracted much attention over the past
years. Knowledge bases provide structured representation of entities and the relationships be-
tween them, which is key in semantic processing tasks such as concept tagging, disambiguation
and normalization. While facts are obviously essential for a KB, a useful KB must contain more
than facts. Many widely-used KBs, including Freebase and WordNet, also include glosses—i.e.,
natural language definitions of the entities in the KB. A large KB may contain glosses for each
of the many entities it contains. In manually-constructed KBs like WordNet [90], glosses are
typically provided as the KBs constructed by human experts; however, in many automatically
generated KBs, like NELL [91] or YAGO [118] there are no glosses, or only a few. For instance,
YAGO supports glosses, but only a small fraction of entities (68.9K out of 10M) have glosses
assigned to them. Since manually adding definitions for a large number of entities is infeasible,
glosses must be added automatically. In this section, we focus on the problem of augmenting
an existing KB with gloss information. To the best of our knowledge, this is the first attempt of
enriching an automatically-constructed KB, like NELL, with glosses.

To illustrate the problem, Figure 6.7 (top part) describes the structure of the NELL KB.
As shown, the entities represented in NELL are organized in a hierarchy, in which nodes are
linked over is-a (subset) relations. General semantic categories, like fruit and company, are
represented by nodes that are linked to higher level categories in the hierarchy–food and orga-
nization, respectively. Concrete entity nodes, such as Microsoft and Google, are linked to their
hypernym–company. In addition, entities are associated in NELL with their lexical aliases; e.g.,
‘Microsoft’ and ‘MS’ are both aliases of Microsoft. Notably, lexical aliases are often ambiguous,
e.g., the name ‘Apple’ refers to either fruit:Apple or company:Apple. While this representation of
NELL KB provides valuable structured semantic knowledge, it does not contain glosses. Ideally,
we would like to associate glosses to each entity node. For example, Company:Apple may be
described as “Apple, formerly Apple computer Inc, is an American company headquartered in
Cupertino...”.

In addition to helping users understand the semantics (or intended semantics) of an entity,
glosses are used in many technical tasks. In information retrieval, several recent approaches to
query expansion make use of glosses [34, 129, 143] to improve the performance of ad-hoc infor-
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Figure 6.7: Graph construction for Entity Sense Disambiguation, using features like lexical
matches, and is-a relationships (subset constraints) in the KB.

mation retrieval, based on a semantic, entity-rich representation of queries and documents. More
generally, in the entity linking (EL) task [26, 65], named entity mentions in text are mapped onto
canonicalized nodes in the KB, thus disambiguating the named entity mentions. Classical ap-
proaches to EL make heavy use of glosses: typically, an entity mention and surrounding context
are treated as a query against a repository of glosses, with cosine similarity or word overlap [77]
between the query and the node descriptions used for scoring, and the highest-scoring gloss be-
ing used to indicate the matching entity. For example, given a mention of ‘Apple’ in the context
of ‘Cupertino’, a better match is to be expected against the gloss of Company:Apple (Fig. 6.7),
compared with the alternative, Fruit:Apple.

One potential way of producing glosses might be to construct sentences out of the facts al-
ready stored in the KB: e.g., if the entity node Michael Jordan is linked to the category node Pro-
fessor and related to the entity UC/Berkeley via the relationship employedBy, then it is possible to
create a gloss that contains the sentence “Michael Jordan is a professor working at UC/Berkeley”.
However, many KB entities have few known relationships, so many such descriptions will be
short and uninformative. Hence, rather than treating the task as a natural-language generation
task, we consider an alternative method: we collect large numbers of definitional sentences, and
attempt to match these existing sentences to KB entities. While the experiments described in
this section focus on definitions collected from DBPedia, our approach is general, and could be
applied as well to definitions harvested from any dictionary or glossary.

In short, the gloss finding task addressed in this section corresponds to matching potential
glosses with the respective KB nodes. While some matches are obvious, many are ambigu-
ous. While ambiguous matches are a problem in many other alignment tasks (e.g., the EL task
described above), this task is unusual in that it is an asymmetric resource alignment, where a col-
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lection of lexical glosses, which contain no structure information, is aligned against a structural
KB, which contains no textual descriptions.

We define and address this task using semi-supervised learning (SSL) techniques. We rely
on several simple intuitions to solve the above mentioned problem. First, it has already been
observed [95, 118] that entity ambiguity is often resolved given its semantic category. Hence,
rather than target a named entity linking problem, we solve an entity categorization problem.
Next, we use the unambiguous glosses as labeled data for this entity categorization task. How-
ever, such labeled data is limited and noisy. We therefore propose Gloss Finder (GLOFIN)
method for this task, which internally uses the semi-supervised Expectation Maximization (EM)
method described in Algorithm 10.

6.3.2 Automatic Gloss Finding (GLOFIN)

In this section, we describe GLOFIN, our approach to the Gloss Finding problem. We first
describe an entity-gloss candidate generation stage whose output is used by all the methods
considered in the section.

Candidate Entity-Gloss Generation

In this step, for each gloss in the candidate pool of glosses given as input, we first identify the
noun phrase that is being defined by the gloss. We refer to this noun phrase as head-NP in this
section. For DBPedia abstracts this step is trivial in the sense that DBPedia dataset gives us the
head-NP for each short abstract. However, we can easily apply existing syntactic taggers, e.g.,
the Stanford tagger [83], and detect the head-NP in the definitional sentence(s). After this, the
head NP of each gloss is lexically matched against the entities in the KB. Even though simple
string matchings are used for the experiments here, more sophisticated string matchers may also
be used.

At the end of this stage, we end up with a set of candidate entity-gloss matchings. Please note
that this relationship may be many-many and thereby ambiguous as one entity may be connected
to multiple glosses, and a single gloss may be assigned multiple entities. Such ambiguity are
resolved using the techniques described below.

Proposed Approach: Gloss Finder (GLOFIN)

Our Gloss Finder (GLOFIN) method uses the hierarchical semi-supervised Expectation Maxi-
mization (EM) algorithm (refer to Algorithm 10) to classify glosses into KB categories while
satisfying ontological constraints. GLOFIN uses automatically acquired labeled data (unam-
biguous candidate glosses) and large amount of unlabeled data (rest of the candidate glosses)
in an iterative EM framework to learn a model for this task. The hierarchical semi-supervised
Expectation Maximization (EM) algorithm uses the MIP formulation (Equation 6.1) to get the
best label vector for each datapoint.
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Scaling GLOFIN

Note that, the MIP formulation presented in Equation 6.1 adds a constraint per subset and mutual
exclusion constraints in the KB ontology. Further, in the E step of every iteration, we solve a MIP
per gloss. These two result in longer runtimes for this method. We make our method scalable
and efficient in following ways:
• We discard the redundant mutex constraints, the ones that can be inferred using remaining

subset and mutex constraints.
• We reduce the number of classes considered per gloss, by keeping only top-Q classes relevant

to the gloss, as detailed below.
• Since MIP for each gloss is independent, we parallelize the E step of every iteration, and con-

solidate results in the M-step.

Reducing the MIP size per gloss: We keep only a small number of categories in the optimiza-
tion problem that is being solved for each gloss. We tried the following three ways of keeping
only some of the candidate classes:
• Diameter of the class graph: The class graph is an undirected graph of ontology classes, where

nodes are classes and edges represent either subset or mutual exclusion constraints. In this
approximation, we rank all classes by the scores P (Cj|Xi) for a datapoint Xi, and choose the
top Q classes, where Q is the diameter of the category graph. Since the class assignments are
hierarchical, we also include all ancestors of these top-Q classes in the optimization.
• Square-root of number of classes: Here, we select Q =

√
K, where K is the total number of

classes in the ontology. Similar to diameter based method, we include all ancestors of these
top-Q classes in the optimization.
• Thresholding: If the score P (Cj|Xi) is greater than a predefined threshold then we consider

the category. Note that the threshold is set for the entire dataset, so for each datapoint, it might
result in a different number of categories and constraints.

6.3.3 Datasets and Experimental Methodology
In our experiments, we enrich two existing knowledge bases with available glosses, namely
NELL and Freebase. NELL is a machine generated knowledge base that does not have existing
glosses, whereas most Freebase entities have descriptions/glosses we can compare against. Our
resource of glosses is DBPedia, a database of factual descriptions extracted from Wikipedia
editions in 97 different languages. DBPedia contains a large set of Wikipedia titles and short
abstracts.

A DBPedia short abstract of an entity is essentially the first paragraph (up to 500 characters)
on the Wikipedia page of that entity. Some sample entity titles and their corresponding DBPedia
abstracts are given in Table 6.3.

We now describe two experimental datasets that were labeled for evaluation purposes. We
have made both these gloss finding datasets available14 for the research community to help the

14The dataset can be downloaded from http://rtw.ml.cmu.edu/wk/WebSets/glossFinding_
wsdm_2015_online/index.html
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future research in this field.

Entity Title Definition (DBPedia short abstract)
Platinum Platinum is a chemical element with the chemical

symbol Pt and an atomic number of 78. . . .
Britwell Britwell is a residential housing estate and civil

parish in the north west of Slough Berkshire in the
south of England. . . .

Albi Albi is a commune in southern France. It is the pre-
fecture of the Tarn department. It is located on the
River Tarn c 85 km . . .

Nuraghe The nuraghe is the main type of ancient me-
galithic edifice found in Sardinia developed during
the Nuragic Age between 1900 . . .

Cardassian The Cardassians are an extraterrestrial species in the
Star Trek science fiction franchise. First introduced
in the 1991 Star Trek . . .

Table 6.3: Sample candidate glosses.

Freebase dataset

Freebase is a tuple database used to structure general human knowledge. Currently Freebase
consists of over 44M topics and 2613M facts about entities, their relationships and attributes.
We use the Freebase entity snapshot provided by the ERD’14 challenge [26] as a gold standard
mapping of Freebase to DBPedia abstracts. Thus we get a good quality training and test data for
our semisupervised methods on the task of finding glosses for Freebase.

Table 6.4 includes detailed statistics of the Freebase dataset. Overall, Freebase entities in
this dataset belong to 46 Freebase classes. Having considered their parent types, the dataset
includes 66 classes in total. There are 5.5M Freebase entities in total that belong to these 66
classes. In order to obtain the underlying subset and mutual exclusion constraints, we built a
co-occurrence matrix of entities belonging to each pair of classes. Based on this matrix, we
elicited constraints of the two types: |Ci∩Cj| = 0 implies that Ci is mutually exclusive with Cj;
similarly, |Ci ∩ Cj| = |Ci| implies that Ci is subset of Cj . We discovered 46 subset constraints
and 1,455 mutual exclusion class constraints from this data. Note that, Freebase is a sparse graph
and hence the mutual exclusion constraints derived from this labeled dataset are approximate,
and expected to be stricter than the ideal set of constraints.

NELL dataset

The NELL knowledge base is created by a machine learning system named Never Ending Lan-
guage Learning [91]. NELL is composed of various information extraction components [24, 74,
137] that independently extract facts from text and semi-structured information on the Web. We
used a version of the NELL KB that consists of 275 categories and 1.67M instances belonging to
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Statistic Dataset
Freebase NELL

#Classes 66 275
#Subset class constraints 46 313
#Mutex class constraints 1455 18.1K
Diameter of class graph 4 10√

#classes 9 17
#DBPedia abstracts 284.5K 246.7K
#Words 496.8K 472.4K
#(abstract, word) edges 5.7M 7.1M
#Unambiguous DBPedia abstracts 257.3K 195.8K
#Ambiguous DBPedia abstracts 32.8K 50.0K
#Ambiguous abstracts with

ground-truth KB mappings 12.4K 383
Table 6.4: Statistics about the datasets.

these categories. Though the facts in NELL are extracted by a computer system, it takes as input
a human created ontology containing categories, and subset and mutual exclusion constraints
between them. So we don’t have to infer class constraints as we did for the Freebase dataset.

We constructed a dataset using the NELL KB and candidate DBPedia abstracts. Statistics
about the NELL dataset are included in Table 6.4. Unlike Freebase, NELL entities do not have
glosses associated with them, so we do not have a ground truth gloss data for NELL. Further,
since this KB is automatically generated by a computer system it contains noisy facts, hence the
training data used by our methods is noisy.

Next we present results of two manual evaluation experiments for the NELL dataset. We do
our first evaluation to understand the quality of automatically acquired seeds and predicted entity
labels for ambiguous DBPedia abstracts. This will later help us to make claims about robustness
of our proposed methods towards noisy training data.

Quality of automatically acquired seeds

Our methods consider unambiguous mappings of DBPedia abstracts onto NELL entities as la-
beled data. As such mappings are determined automatically for the NELL dataset, we performed
manual evaluation in order to assess the quality of the unambiguous alignments, inspecting 100
randomly sampled unambiguous DBPedia-NELL matches. For each abstract in this sample, we
evaluate whether the assigned class is precise, correct, and whether its higher level category is
correct. We illustrate these measures using examples. If a DBPedia abstract about “Shively Field
(public airport)” was mapped to the category “airport”, then the mapping is considered to be
precise, correct, and the higher level category is correct as well. Mapping between another DB-
Pedia abstract about “Christopher McFarland (baseball player)” to the category “person-north-
america”, is judged as correct, but not precise, as there exists concrete “athlete” category in
NELL. Finally, a mapping between “Jonathan Andersson (hockey player)” and “director”, is in-
correct and not precise. The higher level category in this case is correct however, since “director”
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is a descendant of “person”, which is correct.

Statistic Value
#unambiguous abstracts evaluated 100
#abstracts s.t. assigned category was correct 81
#abstracts s.t. assigned category was most precise 72
#abstracts s.t. assigned higher level category was correct 94

Table 6.5: Evaluating quality of unambiguous mappings of DBPedia abstracts to NELL enti-
ties/categories.

Table 6.5 shows the results of this evaluation. We found that out of 100 unambiguous map-
pings between abstracts and NELL categories, 72% were precise and 81% were correct. The
higher level category was correct in 94% of the considered examples. While these alignments
are imperfect, we consider them to be of high quality. The experimental results described in the
following section will show that our techniques make effective use of this automatically labeled
data.

Manually creating gold-standard mappings from DBPedia abstracts to NELL entities

As we have already stated, NELL does not have glosses for its entities, and unlike Freebase
there is no gold-standard mapping available from DBPedia abstracts to NELL entities. Hence
we randomly sampled 383 DBPedia abstracts for which multiple candidate NELL entities and
categories were found. For each abstract, we manually checked whether one of the candidate
NELL entities and categories was a correct match. We also checked whether the most precise
entity is present in the NELL KB. For some DBPedia abstracts, the most precise (entity, category)
combination was not present in NELL, but the most precise category was present. The statistics
of our evaluation are listed in Table 6.6.

Statistic Value
#abstracts evaluated 383
%abstracts with at least 1 NELL entity, category match 79%
%abstracts with most precise entity candidate present in KB 68%
%abstracts with most precise category candidate present in KB 98%

Table 6.6: NELL Dataset: Manual evaluation of ambiguous glosses.

From Table 6.6 we can say that 79% of the DBPedia abstracts have at least one correct entity
match in the candidate entity set. For example, a DBPedia abstract about “Michael Jordan”
as Basketball player, can be matched to NELL entity “michael jordan:person”; however the
most precise entity will be “michael jordan:athlete”. We consider “michael jordan:person” as
an accurate candidate entity, however “michael jordan:athlete’ is the most precise entity, and
“athlete” is the most precise category.

82



Methods

We experimented with the following eight methods for the gloss finding task. The first two
methods are existing supervised and semisupervised methods.
• SVM: This is a traditional supervised linear SVM algorithm applied for the task of clas-

sifying head-NPs from candidate glosses into KB categories. We learnt a separate binary
classifier for each KB category. For this purpose, we used the publicly available LibLinear
package [43] with varying values of parameter “C” that controls penalty on slack vari-
ables. The higher the value of “C”, the higher the penalty on slack variables, the harder
the model will try to fit the training data. Similar method was used by Martinez et al. [84]
which trains a decision list classifier on monosemous (unambiguous) words for the word
sense disambiguation task. Instead we choose a more widely used supervised learning
method SVM.

• Label propagation: In order to remove uncertainties from the candidate matchings gen-
erated in Section 6.3.2, we first use Modified Adsorption (MAD) [120], a representative
graph-based semi-supervised learning (SSL) algorithm. This choice was prompted by the
fact that such Label Propagation (LP) techniques have achieved considerable success in
various weakly-supervised NLP tasks, and that they could potentially exploit the graph
structure of the current problem.
In order to apply MAD to this Gloss Finding problem, we first create an augmented version
of the graph in Figure 6.7 by connecting each gloss to its content words. Please note
that mutual exclusion constraints were not used in this augmented graph as MAD is not
capable of handling such relations. We then inject each entity node with its own node-
specific label. Such self-labeling approach was also used in [140], although for an entirely
different problem. Starting with this augmented graph and self-injected seed labels, the
MAD algorithm is used to classify the rest of the nodes in the graph. At the end of the
algorithm, MAD assigns each candidate gloss a set of labels, where each label corresponds
to an entity since the labels were entity-specific self-injections.
This distribution of entities on a candidate gloss node is intersected with the candidate
entities generated in Section 6.3.2, and the resulting entities are sorted based on the as-
signment score generated by MAD. The top entity in this ranked list is then chosen as the
inferred entity match for the candidate gloss. As we shall see in Section 6.3.4, while this
LP-based approach is effective in some settings, it is not always the case. To address this
shortcoming, we present GLOFIN, our main proposed method is described below.

• GLOFIN: The next three methods are variants of our proposed GLOFIN algorithm (Sec-
tion 6.3.2) using different document representations: GLOFIN-NB, GLOFIN-KM, and
GLOFIN-VMF. These three document representations (Naive Bayes, K-Means, and von-
Mises Fisher) are discussed in Section 4.1.3.

To evaluate the benefits of incorporating hierarchy, we also consider flat versions of semisu-
pervised Naive Bayes, seeded spherical K-Means and seeded von-Mises Fisher. For each flat
method, the E step (Algorithm 10: Line 8) computes P (Ci|xj) for all leaf classes Ci in the on-
tology and picks the one with maximum probability, skipping the mixed integer programming
step (Algorithm 10: Line 9). The M step does not change. These methods are referred to as
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GLOFIN-flat-NB, GLOFIN-flat-KM and GLOFIN-flat-VMF.

Features

Each gloss can be represented by the term frequency (TF) of words that occurred in it. We
can also collect the inverse document frequency (IDF) of each word in the vocabulary from
the entire gloss corpus. This gives us a choice of using either TF (mere term frequencies) or
TFIDF (multiplication of TF and IDF values) feature representations. We use the TFIDF values
to threshold the words used for each gloss. For all the experiments presented here, we keep only
those words per gloss that cross TFIDF threshold15 of 1E-3, thereby discarding stop-words and
other unimportant words.

For each method, we performed experiments with both TF and TFIDF based feature rep-
resentations (considering only those words that pass TFIDF threshold). In our experiments we
found that SVM and Label-propagation methods give better performance for the TFIDF based
feature representation, whereas all semisupervised EM methods (GLOFIN variants) work best
with a TF based feature representation. Henceforth, we present all results using these choices of
feature representations.

6.3.4 Experimental Results

Gloss Finding Results

In this section we present experimental results on the gloss finding task. For the first set of results
we use all unambiguous glosses (glosses with only one candidate entity mapping to the KB) as
training data. The next set of experiments make use of only 10% of unambiguous matches as
training data. We compare all eight methods that we presented in Section 6.3.2: SVM, label
propagation, the hierarchical and flat variants of GLOFIN.

For the SVM method, we tried different values of ‘C’ for the LibLinear package. We observed
the change in performance varying the values of ‘C’ in the range [1E-24, 100] for both datasets.
The change in performance for different values of C for both datasets, is plotted in Figure 6.8.
We found that the best performance is achieved for ‘C’ in the range [1E-6, 0.01]. The results
presented here are with C = 1E-6.

From the experiments presented here, we try to answer the following research questions:

• How does our proposed GLOFIN-NB method compare with SVM and label propagation on
the task of assigning glosses for NELL and Freebase datasets?
• How do the Naive Bayes, K-Means and von Mises-Fisher variants of GLOFIN method com-

pare?
• Does the use of ontological constraints always improve results for GLOFIN method?
• What is the effect of the different strategies of limiting the set of considered classes per gloss

on scalability (and performance) of GLOFIN method?

15After this filtering step, each candidate gloss in the NELL dataset has on average 30 unique words.
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Figure 6.8: Evaluation of linear SVM with varying values of parameter ‘C’, for both NELL and
Freebase datasets.

Here we compare our proposed GLOFIN-NB method against supervised SVM and semi-
supervised label propagation methods. We compare them in two settings: first using all unam-
biguous glosses as training data and second, by simulating a harder problem i.e., using only 10%
of the unambiguous glosses for training.

Comparing GLOFIN-NB against SVM and label propagation

Using all unambiguous glosses for training: Table 6.7 shows the summary of results while
using all unambiguous glosses as training data and ambiguous glosses for evaluation.

We can see that the supervised SVM classification performs worst on both datasets. La-
bel propagation gives the best F1 score for Freebase, however it performs poorly on the NELL
dataset, whereas the GLOFIN-NB method works well on both NELL and Freebase datasets. On
the Freebase dataset, GLOFIN-NB has higher precision, lower recall, and hence slightly lower
F1 score than the label propagation method.

Both label propagation and GLOFIN-NB perform better on the Freebase dataset compared
to the NELL dataset. This can be explained by the the difference in quality of the automatically
acquired seeds for the two datasets. Note that the unambiguous glosses used for the Freebase
dataset are from the ERD’14 gold standard dataset hence are very accurate, whereas for the
NELL dataset our evaluation in Table 6.5 shows that only 81% of the seed gloss mappings were
accurate. Hence the results in Table 6.7 indicate that our proposed GLOFIN-NB method is
relatively robust to noise compared to the label propagation method.

We also investigated why the supervised SVM method performs poorly even though 80% of
the total data is used as training. We found that there is a huge skew in the class frequencies. For
the Freebase dataset with 45 leaf classes, the average number of training instances per class are
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Method Performance on “Ambiguous glosses”
NELL Freebase

P R F1 P R F1
SVM 59.3 21.3 31.3 87.8 13.0 22.7
Label Propagation 42.8 54.0 47.8 89.8 89.1 89.4
GLOFIN-NB 70.4 65.4 67.8 94.6 74.2 83.2

Table 6.7: Comparison of gloss finding methods using all unambiguous glosses as training data
and ambiguous glosses as test data. Best values in each column are bold-faced. GLOFIN-NB
method is robust to noisy training data for the NELL dataset.

2.27K with a standard deviation of 10.8K; e.g., “/location/location” category has 72.6K training
examples, whereas “/education/university” category has just 10 training examples. We observed
that the number of seed examples are skewed across KB categories. Our method performs better
than SVM due to two reasons, GLOFIN can deal with small amount of training data and we use
unlabeled data in the process of EM to do better classification.

Note that in the experiments presented in Table 6.7, the number of unambiguous glosses used
as training data covered a large part of the overall dataset (80% for NELL and 90% for Freebase).
However, in real life scenarios, the amount of training data can be much smaller. The Freebase
dataset is artificially created using ERD’14 data and a subset of Freebase KB categories. NELL
populates its KB by bootstrapping against many different categories simultaneously, beginning
with a small set of hand-chosen seeds. It may be the case that this learning process tends to
favor entity names that can be confidently assigned to a single category (i.e., that are not highly
ambiguous); to support this conjecture, we note that an alternative instance of NELL which used
a larger set of automatically generated low-quality seeds required modifications to suppress the
use of ambiguous entities in bootstrapping [94]. This suggests that other real-world KBs may
have a lower proportion of unambiguous entities. Next, we conduct experiments which simulate
this setting, by using only 10% of the available unambiguous matches as seeds.

Using 10% unambiguous glosses for training: Table 6.8 shows detailed results of GLOFIN-
NB compared to SVM and label propagation methods when only 10% unambiguous glosses are
used as training data. Since we are using only a fraction of unambiguous glosses as training data,
the rest of them can be used as test data. Additionally, all gold-standard mappings of ambiguous
glosses are always part of the test data. We generate 10 random train/test partitions and average
results on these 10 runs. Performance on ambiguous glosses is particularly interesting hence
listed separately. Note that “All glosses” include ambiguous as well as unambiguous glosses.

Method NELL Dataset Freebase Dataset
Ambiguous glosses All glosses Ambiguous glosses All glosses

P R F1 P R F1 P R F1 P R F1
SVM 64.2 17.3 27.3 99.9 27.9 43.7 87.8 11.3 20.1 97.9 71.1 82.5
Label Propagation 55.0 12.3 20.1 99.7 5.2 9.8 84.6 27.5 41.5 99.7 88.1 93.6
GLOFIN-NB 71.7 62.0 66.5 99.9 62.0 76.5 95.1 72.0 82.0 97.6 79.6 87.6

Table 6.8: Comparison of gloss finding methods with 10% unambiguous abstracts used as train-
ing data. GLOFIN-NB always gives best or near-best F1 scores.
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We can see that with less training data the performance of all methods degrades to varying
degrees. Also, all methods give higher performance on “all glosses” compared to the harder task
of matching ambiguous glosses. In terms of F1 scores on ambiguous glosses, SVM results in the
worst performance and GLOFIN-NB method gives the best performance. In terms of F1 score
on “all glosses”, hier-NB performs better in all cases, except the Freebase dataset “all glosses”
case where hier-NB has higher precision and lower recall, and hence lower F1 score compared
to label propagation method.

To summarize, we showed that GLOFIN performs best on the harder task of matching am-
biguous glosses when the amount of training data is small.

Discussion: Comparing the results across Tables 6.7 and 6.8, we can hypothesize that, with
large fraction (90% for Freebase dataset) of glosses being unambiguous in our artificially created
dataset, its very easy to get high values for F1 score using the label propagation method (Table
6.7), because rest of the 10% nodes might get high quality labels from its nearest neighbors.
However when the amount of training data is smaller, generative models like hier-NB work
better (Table 6.8) as they generalize better. Note that the performance of GLOFIN method on the
NELL dataset saturates at the F1 score of 67.8% (from table 6.7), this might be due to the fact
that the seed data is only 81% accurate.

One more advantage of GLOFIN lies in its generative nature. Label propagation is a trans-
ductive approach, whereas GLOFIN is a generative approach, i.e., EM models learnt by GLOFIN
on a set of datapoints can be applied to an unseen datapoint having similar vocabulary. In other
words, they can predict labels for an unseen datapoint. However, label propagation just predicts
labels for the datapoints in the set being used while learning.

Comparing Variants of GLOFIN

Table 6.9 shows detailed results of our proposed methods (GLOFIN-NB, GLOFIN-KM and
GLOFIN-VMF) w.r.t their flat counterparts (GLOFIN-flat-NB, GLOFIN-flat-KM and GLOFIN-
flat-VMF). The GLOFIN-NB method works best on both NELL and Freebase datasets.

Method Performance on “Ambiguous glosses”
NELL Freebase

P R F1 P R F1
GLOFIN-flat-KM 74.8 36.5 49.1 97.6 61.0 75.1
GLOFIN-KM 65.2 49.8+ 56.5+ 96.1 71.8+ 82.2+
GLOFIN-flat-VMF 73.6 44.5 55.5 96.3 56.0 70.8
GLOFIN-VMF 77.2 59.5+ 67.2+ 95.7 59.3+ 73.2+
GLOFIN-flat-NB 70.3 59.1 64.3 95.9 71.1 81.7
GLOFIN-NB 70.4 65.4+ 67.8+ 94.6 74.2+ 83.2+

Table 6.9: Comparison of GLOFIN variants using all unambiguous glosses as training data and
ambiguous glosses as test data. Best values of F1 for each dataset is bold-faced. ‘+’ in front of a
hierarchical method score indicates that the score improved over its flat version.

GLOFIN-NB outperforms GLOFIN-KM in the experiments. Importantly, GLOFIN-NB
models class priors. As mentioned before, the class frequencies in our datasets are very skewed;
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hence modeling class priors is highly useful. In contrast, GLOFIN-KM merely computes cosine
similarity of a datapoint with respect to a cluster centroid, hence its inferior performance. The
GLOFIN-VMF method provides the second-best performance to GLOFIN-NB on the ambiguous
gloss. Although GLOFIN-VMF is cluster-based, it also models class priors.

Effect of using ontological constraints

From Table 6.9, we can also see that all hierarchical semisupervised EM methods are better
than their flat counterparts. Hence we conclude that using ontological constraints help improve
gloss finding performance. Note that relative improvements of hierarchical methods are higher
for the NELL dataset (upto 21% relative improvement in F1 scores). The reason traces back to
evaluation of NELL seeds in Section 6.3.3, Table 6.5. We saw that 81% the leaf category seed
labels were correct, whereas 94% of the higher level category labels were correct. Thus learning
separate model parameters for higher level categories in the ontology and using ontological con-
straints to resolve ambiguity employed by hierarchical GLOFIN methods prove beneficial. Since
Freebase seed labels are accurate, and the hierarchy contains just 2 levels, hierarchical models do
not have as much added advantage over flat models as the NELL dataset, resulting in 9% relative
improvement in F1 scores.

Comparing different ways of scaling GLOFIN

We tried various approximations to reduce the runtime of GLOFIN (Please refer to Section 6.3.2
for details). The summary is presented in Table 6.10. We found that setting Q, the number of
classes considered in a MIP (Equation 6.1) as the diameter of the class graph, gives huge time
savings and does not harm the performance in terms of F1 score on ambiguous entities. Hence
we use this approximation for all runs of GLOFIN in this section. Other approximations like
Q =

√
K and the score threshold are also effective for maintaining goof F1 scores, however they

were not as effective as their diameter method for lowering runtimes. Note that for the NELL
dataset these approximations are crucial. Otherwise, run time on a PC machine (with 30GB
memory) exceeds 64 hours. Due to large processing requirements, we do not have F1 score
values for this case. In addition to this, we also use 12 parallel threads in the E step to compute
label assignments of all datapoints in parallel.

Approximations Performance on “Ambiguous glosses”
NELL Freebase

F1 Time (in seconds) F1 Time (in seconds)
keep all classes - >230.4K 80.4 15.2K
Q = diameter 81.7 5.2K 81.8 5.7K
Q =
√
K 83.4 15.9K 83.1 3.6K

score threshold= 1E-5 83.4 22.1K 71.4 9.3K
Table 6.10: Comparison of different approximations to scale our GLOFIN-NB method using
10% unambiguous glosses as training and ambiguous glosses as test data. Time measurements
are in seconds.
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Evaluating NELL to Freebase mappings via common glosses

One of the consequences of running GLOFIN on the NELL and Freebase datasets is that we get
some mappings from NELL to Freebase entities based on common gloss matchings. Here we
manually evaluate whether these mappings look meaningful. From the output of the GLOFIN-
NB method, we randomly sampled 100 DBPedia abstracts that got assigned entities from both
NELL and Freebase KB. Then we did a manual evaluation whether entities from NELL and
Freebase correspond to each other, and whether the categories they belong to in respective KBs
are semantically similar.

Eval Type Statistic Value
#Abstracts Evaluated 100

Assigned entities are correct, corresponding
categories are semantically related 93

Assigned NELL category is precise 92
Assigned Freebase category is precise 38

#Category Found in 100 abstracts evaluated 39
pairs NELL category = Freebase category 6

NELL category⊂ Freebase category 23
Freebase category⊂ NELL category 1

Table 6.11: Evaluating quality of NELL to Freebase mappings via common DBPedia abstracts.

From Table 6.11, we can see that out of 100 abstracts that were evaluated, 93 of them had
correct NELL and Freebase entities assigned to them, and their corresponding categories were
semantically related. For 92 of those abstracts, the NELL category was precisely correct, while
for 38 of them Freebase category was precise. This is due to the fact that the Freebase cate-
gories we use to build our dataset are more general categories like “/organization/organization”,
“/location/location”, and more precise categories like “/location/city” and “/organization/biotech-
company” are missing. NELL has all these categories at higher granularity, hence it can classify
DBPedia abstracts into more fine-grained categories. For instance, a DBPedia abstract about
“Biotronik” is classified into the “biotechcompany” category from NELL, and the “/organiza-
tion /organization” category from Freebase. We evaluate the entities from 2 KBs to be correct,
and the corresponding categories as semantically related.

We also evaluated whether we can come up with a relationship between the categories corre-
sponding to NELL and Freebase mappings. From 100 abstracts, we found 39 category pairs that
got manually evaluated. We found six category pairs are equivalent. For Example, we marked
the category “geopoliticallocation” from NELL to be equivalent to category “/location/location”
from Freebase. In 23 category pairs, we found that a NELL category was strict subset of Freebase
category, e.g., the “actor” category from NELL is strict subset of the “/person/person” category
from Freebase. Only one category in Freebase “/broadcast/broadcast was found to be a strict sub-
set of the NELL category “company”. For nine category pairs we could not define an equality
or subset relation between them. They include either the semantically unrelated class pairs like
“visualartist” and “/location/location” corresponding to incorrect entity matches, and or semanti-
cally related categories like “drug” and “/business/brand”. (There are many drugs like Donnatal,
Excedrin that are classified as “drugs” in NELL and as “/business/brand” in Freebase. Though
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these categories are related to each other we can not easily classify them into equivalence or
subset relations.)

Example glosses matched by our method

Here we present some sample outputs of our methods. Table 6.12 lists some of the candidate
glosses matched to NELL entities by our GLOFIN-NB method.

head-NP Gloss

NELL
entity
selected by
GLOFIN-
NB

Candidate NELL
entities

Kingston
upon Hull

Kingston upon Hull frequently referred to as Hull is a city and unitary
authority area in the ceremonial county of the East Riding of Yorkshire
England It stands on the River Hull at its junction with . . .

city:E city:E, visualartist:E

Robert
Southey

Robert Southey was an English poet of the Romantic school one of the so
called Lake Poets and Poet Laureate for 30 years from 1813 to his death in
1843 Although his fame has been long eclipsed by that of his contempo-
raries and friends William Wordsworth . . .

person-
europe:E

personafrica:E, per-
soneurope:E, politi-
cianus:E

McGill
University

McGill University is a research university located in Montreal Quebec
Canada Founded in 1821 during the British colonial era the university
bears the name of James McGill a prominent Montreal merchant . . .

university:E
sportsteam:E, uni-
versity:E

Andie
MacDowell

Rosalie Anderson Andie MacDowell born April 21 1958 is an American
model and actress She has received the Goldene Kamera . . .

celebrity:E
celebrity:E, come-
dian:E, director:E

WLVW
WLVW is a radio station broadcasting a Christian music format Licensed
to Salisbury Maryland USA the station is currently owned by Educational
Media Foundation

radio-
station:E

radiostation:E,
televisionstation:E

Kevin
Youkilis

Kevin Edmund Youkilis also known as Youk is an American professional
baseball third baseman and first baseman for the New York Yankees of
Major League Baseball A native of Cincinnati Ohio . . .

athlete:E
athlete:E, person-
canada:E

Caesionidae
The fusiliers are a family Caesionidae of fishes in the order Perciformes
They are related to the snappers but adapted for feeding on plankton rather
than on larger prey They are found at reefs . . .

fish:E fish:E, mollusk:E

Chloroper-
lidae

Chloroperlidae is a family of stoneflies commonly known as green stone-
flies There are more than 180 species in the family They appear in colors
of green and yellow

insect:E insect:E, mollusk:E

Evolutionism
Evolutionism refers to the biological concept of evolution specifically to a
widely held 19th century belief that organisms are intrinsically bound to
increase in complexity The belief was extended to . . .

visualart-
movement:E

religion:E, visualart-
movement:E

Royal Bank
of Canada

The Royal Bank of Canada RBC French Banque Royale du Canada RBC
Royal Bank or RBC Financial Group is the largest financial institution in
Canada as measured by deposits revenues and market capitalization . . .

bank:E
bank:E, credit-
union:E

Neurology
Neurology from Greek neuron nerve the suffix logia study of is a medi-
cal specialty dealing with disorders of the nervous system To be specific
neurology deals with the diagnosis and treatment of . . .

academic-
field:E

academicfield:E,
medicalprocedure:E

Table 6.12: Example outputs produced by GLOFIN-NB on the NELL dataset. (Due to space
restrictions, repeatitions of Head-NP in each table row are replaced by ‘E’.)
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6.4 Related Work

6.4.1 Hierarchical Semi-supervised Learning
There has been some work on modifying EM to incorporate side information such as multi-
view constraints or domain knowledge based constraints on outputs. The posterior regularization
framework [49] modifies the EM algorithm to encode domain constraints on the expected out-
put, which has also been extended to incorporate soft agreement in a multi-view setting [50]. Our
technique Hier-MAXAGREE is different in that it maximizes agreement between the labels pro-
duced in each view while satisfying ontological class constraints if available, whereas the method
proposed by Ganchev et al. [50] minimizes the difference between actual scores produced by the
views.

Chang et al. [29] proposed an extension of EM algorithm for encoding the task specific
domain knowledge base constraints on the output. Our hierarchical techniques are similar to
this in the sense that we also modify the EM algorithm to do constrained learning. However
our techniques are different from [29] in the sense we are using constraints specific to a dataset:
e.g., for the NELL mv dataset, the ontological constraints we used are the same as the ones
which were used while building the NELL knowledge base. We did not need any hand curated
constraints for the specific task that we worked on. Further we take care of the agreement across
views and ontological constraints in a single framework using multiple soft constraints.

Graph based multi-view semisupervised learning techniques have also been proposed in past
few years. Wang et al. [135] proposed a multi-graph based semisupervised learning technique
that can incorporate multiple modalities, and multiple distance functions in the task of video
annotation. Lee et al. [75] proposed a new graph-based multi-label propagation technique and
applied it to large datasets by utilizing a map-reduce framework. Though these methods can
handle multi-view data, they fail to address the scenarios where classes/labels are arranged in a
hierarchy and inference needs to be done following certain constraints between these classes.

Here we propose a mixed integer programming based optimization method that can deal with
any class hierarchy defined by sets of subset and mutual exclusion constraints. Interestingly, a
recent work has used mixed integer LP techniques to encode ontological constraints [95]–they
assign multiple plausible KB categories to ‘emerging’ entities, which are not yet represented in
the KB, and consider mutual exclusion constraints as a post-processing step, so as to output a
consistent set of category assignments. In contrast, we apply subset as well as mutual exclusion
constraints, within an iterative EM algorithm, using semi-supervised learning Finally, while the
application of earlier variants of the EM-based framework focused on the named entity catego-
rization task, we use the proposed methods for addressing the novel task of generating glosses
for an existing KB.

6.4.2 Gloss Finding
Glosses are an important resource of word meanings, which has been used by word sense dis-
ambiguation (WSD) [96] algorithms for decades. For example, the popular Lesk method [77]
and its variants [8, 71] infer a word’s sense by measuring the overlap between available context
words and the glosses of candidate senses. Traditionally, WordNet [46] has been used as the
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main resource of word senses and respective glosses. Several recent works have investigated the
problem of automatic gloss extraction, so as to improve coverage in specific knowledge domains.
Duan and Yates [39] constructed sense descriptions for selected keywords given unlabeled doc-
uments in the Biomedical domain, and used these descriptions to perform WSD. Others [36, 44]
constructed domain-specific glossaries using definitional sentences extracted from the Web, and
successfully used these glossaries for domain WSD. We share their motivation for obtaining
glosses, however rather than generate these glosses, our goal is to associate available glosses
with an existing KB.

We match given glosses against the respective entity nodes in the KB. This task is closely
related to Entity Linking (EL), an entity-focused variant of the WSD problem [93], where named
entity mentions in a given text are linked with the respective nodes in a KB. Advanced EL meth-
ods consider multiple entity mentions in a document collectively in order to enrich the contextual
information that is modeled per entity [58, 134]. Such methods are ineffective for short text frag-
ments, like search queries, or glosses. In fact, we face a ‘chicken and egg’ problem, as most
EL methods assume that KB entities have glosses, whereas we do not [60, 80]. Here, we are
interested in enriching a KB with glosses, so as to support entity linking and other downstream
applications, such as ad-hoc information retrieval [34, 143].

Various works have addressed the problem of resource alignment, but considered different
settings. The Yago ontology [118], for example, unifies Wikipedia and WordNet using heuris-
tics that consider the structure of both resources. Ponzetto and Navigli [105] mapped Wikipedia
articles onto WordNet synsets, using the textual descriptions of entity pairs. We rather consider
an asymmetric setting, where the KB includes a semantic structure but lacks textual descrip-
tions, and the aligned glosses are not assumed to be organized in any fashion. Similarly, a
recent work [104] addressed the alignment of an arbitrary pair of lexical resources, including
machine-readable dictionaries with no structure. They proposed to induce a network structure
for dictionary resources, however textual similarity remains an important component in their ap-
proach. Importantly, having enriched a given KB with glosses using the proposed framework,
this will facilitate its alignment and integration with other KBs [32].

We addressed the gloss finding problem using a semi-supervised framework. In particular,
we consider label propagation (LP), where gloss nodes are being associated with candidate en-
tity nodes based on their relatedness in a joint graph. Talukdar [119] discuss the use of weakly
supervised label propagation methods in information extraction and integration. Previous work
applied LP to perform WSD [146]. In that case, the graph modeled words in parallel documents
in two languages, where word ambiguity in one language was resolved based on graph related-
ness to their candidate translation in the other language, and vice versa. The use of graph-based
methods is highly prevalent in WSD literature. In particular, random walks over a semantic
graph, like WordNet, have shown to yield state-of-the-art results [4, 105]. Notably, linking nodes
in the WordNet graph based on lexical gloss overlaps has been shown to contribute significantly
to the performance of graph-based WSD [4].
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6.5 Conclusion
In this chapter, we showed that our proposed linear programming based formulation can be
easily extended to multi-label classification and can incorporate hierarchical class constraints.
For the NELL dataset with hierarchy of classes, our extended optimization methods produced
better results when compared to flat multi-view clustering baselines in terms of macro-averaged
F1 score. An interesting direction for future research is to extend the techniques to the problem
of multi-view Exploratory Learning[128] which does multi-view semi-supervised learning in the
presence of unanticipated classes. Such techniques can further be used for populating knowledge
bases along with discovering new classes from multi-view unlabeled data.

Further we applied this technique for the important but relatively unexplored problem of
Automatic Gloss Identification, i.e., automatically generating gloss (short definitional sentences)
for an initially gloss-free knowledge base (KB) by matching candidate glosses to entities in the
KB. To the best of our knowledge, this is the first such system for this task. GLOFIN employs
a hierarchical clustering algorithm that internally uses unambiguous DBPedia abstracts as seeds
and the KB ontology as constraints to match an ambiguous candidate gloss to the right entity
from KB. GLOFIN use mixed integer programming formulation to assign the most likely set of
labels for each gloss, while following the class constraints posed by the KB ontology.

We present experiments using NELL and Freebase as KBs and DBPedia abstracts as can-
didate glosses. Our quantitative and qualitative evaluations show that GLOFIN is effective and
that it outperforms other state-of-the-art algorithms like label propagation and Support Vector
Machines (SVM). We also demonstrate GLOFIN’s robustness to noise through experiments on a
wide variety of KBs, ranging from user contributed (e.g., Freebase) to automatically constructed
(e.g., NELL). To facilitate further research in this area, we have already made datasets used in
this section publicly available, and we plan to release the code into the public domain. In future,
we would like to extend GLOFIN to discover new entities and new categories to further enrich
the knowledge bases.

6.6 Future Directions
The LP based formulation discussed here works in the semi-supervised setting. A natural direc-
tion of future work is to make this technique exploratory, i.e., to dynamically add new clusters
of datapoints that do not belong to one of the known classes, while taking into consideration
the ontological constraints. In the next chapter we describe our proposed approach for this task,
named “Hierarchical Exploratory Learning”.
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Chapter 7

Exploratory Learning with An Incomplete
Class Ontology

In an open-domain entity classification task, topic or concept hierarchies are often incomplete. In
Chapter 4 we showed that in a non-hierarchical semi-supervised classification task, the presence
of such unanticipated classes can cause semantic drift for seeded classes. Exploratory learning
[128] method was proposed to solve this problem by exploring a different number of classes
while learning classifiers for each of them. However it is limited to the flat classification task.
This chapter extends the Exploratory learning method to hierarchical classification tasks. This
work is partially published in the proceedings of AKBC 2013 [127] and the remaining work is
under preparation for submission [124].

We experimented with subsets of the NELL [25] ontology and text, and HTML table datasets
derived from the ClueWeb09 corpus. Our method OptDAC-ExploreEM improves seed class
F1 on average by 13% when compared to its semi-supervised counterpart (OptDAC). It also
outperforms both previously proposed exploratory learning approaches FLAT-ExploreEM and
DAC-ExploreEM [127] in terms of seed class F1 on average by 10% and 7% respectively.

7.1 Motivation

A common way to organize information is by classification into a concept or topic hierarchy. The
Open Directory Project and the Yahoo! Directory are examples of topic hierarchies developed to
organize pages on the Web. Wordnet, NELL and Freebase are examples of large knowledge bases
that organize entities into concept hierarchies. However, in an open-domain task, hierarchies
are often incomplete, in the sense that there is meaningful structure in the data not captured
by the existing hierarchy. For example, consider a hierarchical entity classification task, with
class hierarchy ‘onto-1’ shown in Figure 7.1 (left). There are 2 types of locations defined in
it: ‘State’ and ‘Country’. However, the unlabeled data about entities on the Web can include
location entities of type ‘City’, ‘Museum’ etc. , that are absent in this ontology, hence called
‘unanticipated classes’.

In Chapter 4 we showed that in a non-hierarchical semi-supervised classification task, the
presence of such unanticipated classes hidden in the unlabeled data can cause semantic drift for
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Figure 7.1: Subsets of the NELL [25] ontology used in our hierarchical classification experi-
ments. Some nodes in onto-1 are bold-faced, they are used as seeded classes in the experiments
described in Section 7.5.

seeded classes. They also proposed an approach to solve this semantic drift problem by employ-
ing exploratory learning. This algorithm is an extension of the semi-supervised EM algorithm
that can create new classes for datapoints that do not belong to the classes known upfront. It
explores different numbers of classes while learning. In this chapter we extend the exploratory
learning algorithm for hierarchical classification tasks.

Our proposed OptDAC-ExploreEM method traverses the class hierarchy in top-down fashion
to detect whether and where to add a new class for the given datapoint. It also uses a systematic
optimization strategy to find the best set of labels for a datapoint given ontological constraints in
the form of subset and mutual exclusion constraints.

We demonstrate OptDAC-ExploreEM’s effectiveness through extensive experiments on
datasets constructed with subsets of the NELL ontology (shown in Figure 7.1) and text and semi-
structured HTML table datasets derived from the ClueWeb09 corpus. In particular, OptDAC-
ExploreEM improves seed class F1 on average by 13% when compared to its semi-supervised
counterpart. It also outperforms flat exploratory learning approach FLAT-ExploreEM in terms of
seed class F1 on average by 10%.

7.2 Our Approach

Our method is derived from the Exploratory EM algorithm described in Chapter 4 (Algorithm 3).
Exploratory EM is limited to flat class hierarchies. Here we propose the Hierarchical Exploratory
EM algorithm which can work with incomplete class hierarchies and small amount of seed labels.
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7.2.1 Problem Definition
Given a set of class constraints Zk, a small set of labeled data points X l, their labels Y l, and a
large set of unlabeled data points Xu; the task is to label data points from Xu, adding m new
classes if needed and extending the class constraints to Zk+m. Here, each point fromX l can have
multiple labels at different levels of the hierarchy satisfying constraints Zk, and Zk+m defines the
class constraints on k seed and m newly added classes, and the labels Y u of Xu satisfy Zk+m.
Also note that when we add m new classes to the ontology, along with some new constraints,
the old constraints should still get satisfied, i.e., Zk ⊆ Zk+m. Next let us see different methods
proposed to solve this problem.

Algorithm 11 Generic Hierarchical Exploratory EM
1: function Hierarchical-ExploreEM (X l, Y l, Xu, Zk): θk+m, Zk+m, Y u

2: Input: X l labeled data points; Y l labels of X l;
Xu unlabeled data points;
Zk manually input constraints on k seed classes⇐=

3: Output: {θ1, . . . , θk+m} parameters for k seed and m newly added classes; Y u labels for Xu;
Zk+m Set of class constraints between k +m classes;⇐=
{Initialize classifiers θj for class Cj using seeds provided for Cj}

4: θ0
1 . . . θ

0
k = argmaxθL(X

l, Y l)
5: while class assignments AND #classes not converged do
6: kold is #classes before E step. Log-likelihood BaseLL = logP (X|θ(t)

kold
, Z

(t)
kold

)
{E step: (Iteration t) Classify each datapoint at each level}

7: for i=1 to |X| do
8: Find P (Cj |Xi) for all classes Cj

{Assign a bit vector of labels for each unlabeled datapoint. A new class gets created for a
datapoint that does not fit into existing classes.}

9: Y
(t)
i = ConsistentAssignment(P (Cj |Xi), h, Z(t))⇐=
{If a new class is created, then class constraints are updated accordingly.}

10: Z(t) = UpdateConstraints(X l, Y l, Xu, Y u, Z(t)) ⇐=
11: end for
12: knew is #classes after E step. Log-likelihood ExploreLL = logP (X|θ(t)

knew
, Z

(t)
knew

)

{M step: Recompute model parameters based on Y (t) }
13: if Model selection criterion(kold, BaseLL, knew, ExploreLL) selects exploratory model then

{Adopt the new model with knew classes}
14: θ

(t+1)
knew

= argmaxθL(X
l, Y l, Xu, Y u(t)|θ(t)

knew
, Z

(t)
knew

)

15: Z(t+1) = Z(t)
knew

16: else
{Keep the old model with kold classes}

17: θ
(t+1)
kold

= argmaxθL(X
l, Y l, Xu, Y u(t)|θ(t)

kold
, Z

(t)
kold

)

18: Z(t+1) = Z(t)
kold

19: end if
20: end while
21: end function
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7.2.2 Flat Exploratory EM

One simple way to use Exploratory EM algorithm [128] for our purpose will be to run it as it is at
each level of hierarchy. Henceforth, we refer to this approach as FLAT-ExploreEM and consider
it as a baseline for our proposed Hierarchical Exploratory EM approach. At each level, it selects
one of the existing classes or creates a new class in case the datapoint doesn’t clearly belong to
one of the known classes. This algorithm does not make explicit use of class constraints while
making class assignments at each step. Hence the assignments done by this algorithm might not
be consistent, since assignments at level 3 are not influenced by assignment at level 2.

7.2.3 Hierarchical Exploratory EM

We propose a generic Hierarchical exploratory learning algorithm that can take a set of class
constraints in terms of subclass or mutual exclusion constraints. This algorithm, in each iteration,
assigns a bit vector to each data point with one bit per class. Class constraints decide whether
a bit vector is consistent or not, e.g., if class constraints include “Car is of type Machine”, then
for consistency, when the bit for “Car” is set, the bit for “Machine” should also be set. Further
new classes can be added during each iteration, hence the length of these bit vectors changes
dynamically and the algorithm maintains class constraints containing old as well as newly added
classes. The generic algorithm is described in Algorithm 11. There can be multiple ways to
implement functions “ConsistentAssignment” and “UpdateConstraints”.

Lines 13-19 of Algorithm 11 do model selection. Similar to Exploratory EM [128], at the
end of every E step, we evaluate two models, one with and one without adding extra classes.
These two models are scored using a model selection criterion like AIC, BIC or AICc, and
the model with best penalized data likelihood score is selected in each iteration. The extended
Akaike information criterion (AICc) suited best for our experiments since our datasets have large
number of features and small number of data points. The class constraints are modeled in the
same way as described in Section 6.1.1.

7.3 Variants of Hierarchical Exploratory EM

Hierarchical Exploratory EM (described in Algorithm 11) is a generic algorithm that can be
instantiated in different ways, by changing the functions “ConsistentAssignment” and “Up-
dateConstraints”. Next we describe two such variants namely, DAC-ExploreEM and OptDAC-
ExploreEM.

7.3.1 Divide and Conquer (DAC-ExploreEM)

One simple instantiation of Algorithm 11 can be done by using Divide-and-Conquer (DAC)
strategy introduced in [127]. Here we assume that classes are arranged in a tree hierarchy, and
classes at any one level are mutually exclusive. To do class assignments for any unlabeled data-
point, we traverse the class ontology from root to leaf level. Every data point belongs to the root
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node. Then at each level we chose the best label at that level and consider only its children as
candidates at the next level.

Further we check whether the probability distribution among the candidate classes at each
level is nearly uniform (using heuristic described in Algorithm 5) to decide whether to create
a new class at that level. We do not describe the “ConsistentAssignment” and “UpdateCon-
straints” functions formally, however they can be easily derived by setting parameter q = 1 in
the OptDAC-ExploreEM algorithm that we present next.

DAC-ExploreEMcan do semi-supervised learning if the presence of unanticipated classes.
However, we will see in the experimental evaluation (refer to Section 7.5.2) that DAC-
ExploreEM could provide marginal improvements over the baseline (Exploratory EM). During
the error analysis we found that the classification at higher levels of hierarchy is not perfect, and
once we make a decision at level i of the ontology, there is no way to change the decision once
we move on to level i+1. Next we try a softer version of this method, that keeps track of q nodes
at each level instead of keeping only the best label.

Also, note that the example ontologies in Figure 7.1 have tree structure. However, in prac-
tice, class constraints can be more complicated (e.g., overlapping classes can exist). The DAC-
ExploreEM algorithm is limited to a tree structured ontology and assumes mutual exclusion of
classes at any level of hierarchy. Next we present the OptDAC-ExploreEM algorithm that can
work with more complicated class constraints.

7.3.2 Optimized Divide and Conquer (OptDAC-ExploreEM)
Algorithm 12 describes how the “ConsistentAssignment” and “UpdateConstraints” functions are
implemented for this approach. It is similar to DAC-ExploreEM method in the sense that we
traverse the classes in top down fashion, and check whether new class needs to be created at each
level of the hierarchy. However, at each level l of the class hierarchy, a mixed-integer program
is run to get optimal class assignments for the active classes from levels 1 to l. Further instead
of considering only the best class, top-q classes from each level are selected to be added into
the set of active classes which are used in turn to select the candidate classes at the next level of
hierarchy.

This method combines the Divide-and-Conquer strategy to detect/place new classes and the
mixed integer programming based optimization strategy to assign an optimal set of labels to
a datapoint given the ontological constraints. The optimal label assignment method is generic
enough to support any set of subset and mutual exclusion class constraints. The new class detec-
tion based on Divide and Conquer can be extended for non-tree hierarchies using a breadth first
search strategy that can be applied to any graph. Hence the OptDAC-ExploreEM method can be
extended easily for non-tree structured ontologies.

Note that similar to DAC-ExploreEM, it makes greedy decisions about new cluster creation.
However, it performs overall optimization of label assignments while satisfying the ontological
constraints. This lets us correct any sub-optimal decisions made by the greedy heuristic at higher
levels of the class hierarchy. Further, as we increase the value of q, we might get some improve-
ment in accuracy at the cost of increased runtime. Since the value of q directly decides the size of
active nodes set used while taking the decision at each level of the hierarchy, there is a trade-off
between time complexity and solution optimality. For all the experiments in this paper, we added
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top two classes per level to the set of selected classes (i.e. q = 2) in Line 21 of Algorithm 12.
This approach is referred to as OptDAC-ExploreEM below.

For each datapoint, the optimal label assignment given class constraints (Algorithm 12: Line
24) if computed using Equation 6.1. To solve these mixed integer linear programs we used the
MOSEK solver [5]. We have used such optimization techniques for the task of semi-supervised
learning in the presence of multiple data views and hierarchical class constraints [123, 130]. Here
we use this formulation for the task of hierarchical exploratory learning.
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Algorithm 12 OptDAC-ExploreEM
1: function ConsistentAssignment-OptDAC (P (Cj |x), Zk}): Yx, Zk+m

2: Input: P (Cj |x) probability distribution of classes given a datapoint x; Zk class constraints on k seed
classes.

3: Output: label(x) assignment of x to classes satisfying Zk;
Zk+m extended set of class constraints on k +m classes.

4: h is the height of the class ontology.
5: for l = 1 to h do
6: if x has seed label at level l then
7: label(x, levell) = seed label;
8: else
9: candidateC = children of the active classes

10: if candidateC is not empty then
11: Let Pcand = probability distribution over candidateC
12: if Is Nearly Uniform (Pcand) (using Algorithm ??) then
13: Create a new class Cnew at level l
14: Initialize parameters for class Cnew using x
15: Set parent(Cnew) = class choice at level l − 1
16: Add Cnew to active classes
17: end if
18: Pactive = probability distribution over active classes
19: Zactive = class constraints between active classes
20: Choose label(x, levell) by computing optimal label assignment considering (Pactive, Zactive)

(using Eq. 6.1)
21: Add top-q classes to the set of active classes using Pactive as scores
22: end if
23: end if
24: end for
25: end function
26: function UpdateConstraints-OptDAC (X , Y , Zold): Znew

27: Input: X: Dataset; Y : Class assignments for each point in X;
Zold: Old constraints on the existing set of classes.

28: Output: Znew: Updated set of class constraints,
29: Each newly created class is assigned a single parent at the time of creation
30: Add each parent, child relationship as a constraint in Zk′
31: end function
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7.4 Datasets and Experimental Methodology
In this section we present the experimental results of our Hierarchical Exploratory EM approach.
Figure 7.1 shows the two ontologies that we used, each being a subset of NELL’s ontology at
different point in NELL’s development.

Dataset Corpus Ontology #Classes #Levels #Classes #Entities #Contexts #(Entity, #(Entity,
per level context) label)

pairs pairs
Text-Small Text onto-1 11 3 1, 3, 7 2.5K 3.4M 8.8M 7.2K
Text-Medium Text onto-2 39 4 1, 4, 24, 10 12.9K 6.7M 25.8M 42.2K
Table-Small Tables onto-1 11 3 1, 3, 7 4.3K 0.96M 6.3M 12.2K
Table-Medium Tables onto-2 39 4 1, 4, 24, 10 33.4K 2.2M 21.4M 126.1K

Table 7.1: Statistics of the hierarchical entity classification datasets used in this chapter.

7.4.1 Datasets
Our task includes discovering new classes that are not present in the input class ontology. To
make the evaluation easier, we created datasets that have ground truth labels for all entities in
them, i.e., the entire class hierarchy is known. However, only part of that hierarchy and corre-
sponding training data is given as input to the algorithm. The rest of the classes and correspond-
ing labels are unknown to the algorithm, and used only during evaluation. Thus we are simulating
the scenarios where some classes are known while others are unanticipated. To achieve this, we
derived four datasets using the two ontologies (shown in Figure 7.1) and two feature sets ex-
tracted from the ClueWeb09 corpus. The first ontology, named onto-1 in Figure 7.1 (left), has 3
levels and 11 classes. The second ontology, named onto-2 in Figure 7.1 (right), has 4 levels and
39 classes.

We created our datasets using the two corpora: Text-Patterns and HTML-Tables, both derived
from ClueWeb09 data [23]. The text-patterns corpus contains frequency counts of text context
patterns that occurred with each entity w.r.t.t̃ext sentences that appeared in ClueWeb09 dataset.
The HTML-tables corpus contains frequency counts of table columns in which entities occurred,
derived from HTML tables that appeared in ClueWeb09 dataset. For Example, an entity “Pitts-
burgh” having a Text-Patterns feature, value being (“lives in arg1”, 1000) means that the entity
“Pittsburgh” appeared in arg1 position of the context “lives in arg1” for 1000 times in the sen-
tences from ClueWeb09 dataset. Similarly, an entity “Pittsburgh” having a HTML-Tables feature,
value being (“clueweb09-en0011-94-04::2:1”, 1) means that the entity “Pittsburgh” appeared
once in HTML table 2, column 1 from ClueWeb09 document id “clueweb09-en0011-94-04”.

To create a dataset from an ontology, we took all entities that are labeled with at least one of
the classes under consideration, and retrieved their feature representation in terms of occurrences
with text patterns or HTML table columns. Thus we created four datasets Text-Small to Table-
Medium, using combinations of two ontologies and two corpora. Table 7.1 describes the statistics
about these four datasets. We plan to make our hierarchical entity classification datasets publicly
available.
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7.4.2 Methods

We experimented with three different methods for the entity clustering task: FLAT, DAC and
OptDAC. Each of them have EM and Exploratory EM variants. The EM variant performs semisu-
pervised learning with the seeded classes, whereas the Exploratory EM variant can add extra
classes discovered from unlabeled data.
• FLAT: This method performs flat entity classification at each level of the class hierarchy.

Decisions made at each level are independent.
• DAC: This method performs hierarchical classification of entities, by making class assign-

ment decision in top-down fashion. At each level maximum probable class is selected and
candidates at next level are children of the class selected at previous level.
• OptDAC: This is another hierarchical classification method. It also makes class assignment

decisions in top-down fashion. The creation of extra classes and placing them in hierarchy
is similar to DAC method. However, class assignments at each level l are determined by
solving a linear optimization problem considering all nodes under consideration (ActiveC in
Algorithm 12) spanning levels 1 to l. Hence the greedy decisions about new cluster creations
are combined with overall optimization of label assignments while following ontological con-
straints.

Further we used seeded K-Means algorithm for clustering (as described in Section 7.2.3) and the
MinMax criterion [128] for new class creation16.

7.4.3 Methodology

Remember that for the experiments in this chapter, we feed a part of the ontology (seed classes) to
the algorithm and rest of the part (unanticipated classes) is hidden from the algorithm. EM variant
of each method learns classifiers only for seed classes. Along with this, Exploratory EM variant
of each method can add new classes. To make the semi-supervised and exploratory variants of
each method comparable, we use “macro-averaged seed class F1” as the evaluation metric. It
is computed by macro averaging F1 values of seed classes only. Further, if the Exploratory EM
variant improves the seed class F1 over the EM variant, it indicates that adding extra classes
helped towards keeping the seed classes pure (i.e., reducing semantic drift).

This “macro-averaged seed class F1” metric is further averaged for 10 runs of each algorithm.
Each run’s input consists of different seed ontologies and randomly sampled 10% of relevant
datapoints as seed examples. The same set of inputs is given to all algorithms being compared.
Note that, for a given dataset with a choice of of seed classes and training percentage, there
are many ways to generate a train-test partition. We report results using 10 random train-test
partitions of each dataset. The same partitions are used to run all the algorithms being compared
and to compute the statistical significance of the results.

For Text-Small and Table-Small, we generated 10 sets of seed examples, for the same seed
ontology. The chosen seed ontology is bold-faced in Figure 7.1 (left). Here seed ontology always
contains the same 7 out of 11 classes. For Text-Medium and Table-Medium, seed ontology

16MinMax criterion introduces a new class for a data point and posterior distribution of classes given the data
point, if the maximum to minimum probability ratio is less than 2.
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also varies across runs. In each run, we randomly chose 10 leaf nodes according to their class
frequency (i.e. popular class is more likely to be chosen in each run). After sampling 10 leaf
nodes (sampling without replacement), we included all their ancestors to create the seed ontology
for that run. The average ontology size generated using this method was 16.7. Table 7.3 column
2 shows avg. number of seed classes chosen at each level of the hierarchy. 10% of the datapoints
from the leaf classes are then randomly sampled, and hierarchical labels of these datapoints are
used as training data for the run.

7.5 Experimental Results
In this section we will compare semi-supervised and exploratory variants of the FLAT, DAC and
OptDAC methods, in order to answer certain research questions.

7.5.1 Do ontological constraints help?

Table 7.2 shows the comparison between semi-supervised versions of both methods. The best
values in each row (per dataset per level in the hierarchy) are bold-faced. We can see that for
every row, the best performance was given by a method that uses ontological constraints while
clustering. Hence we can conclude that using ontological constraints do help.

Dataset Level Macro-avg. Seed Class F1
W/o constraints W constraints

FLAT DAC OptDAC
EM EM EM

Text-Small 2 46.6 47.1 52.0
3 23.5 26.1 25.8 M

Text-Medium 2 53.2 53.7 53.3
3 27.9 33.4 N 33.9 N
4 17.4 24.5 26.8 M

Table-Small 2 69.5 74.6 N 74.8 N
3 36.8 38.8 M 38.9 N

Table-Medium 2 62.7 64.8 62.2
3 43.7 46.4 N 48.0 N
4 47.3 57.7 N 57.1 N

Table 7.2: Comparison of FLAT, DAC, and OptDAC methods in the semi-supervised setting. N
(and M) indicates that improvements of the DAC and OptDAC methods are statistically signifi-
cant w.r.t the FLAT method with 0.05 (and 0.1) significance level.

We also did statistical significance tests with 0.05 (and 0.1) significance level denoted by
N (and M) in Table 7.2. Results show that in 5 out of 10 cases the gains of DAC over FLAT
are statistically significant. Whereas the OptDAC method proved to be better by producing
statistically significant gains over FLAT in 7 out of 10 cases.
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7.5.2 Is Exploratory learning better than semi-supervised learning for
seed classes?

We present the comparison of Semi-supervised vs. Exploratory versions of all three methods in
Table 7.3. The best performance in each row is bold-faced. From Table 7.3 we can see that, the
Exploratory EM version of each algorithm improves seed class F1 when compared to EM for
all three methods in 24/30 cases. Our proposed approach OptDAC-ExploreEM improves seed
class F1 on average by 13% when compared to its semi-supervised counterpart. While compar-
ing among the Exploratory EM approaches, the OptDAC method independently beats previously
proposed FLAT and DAC methods in 8/10 cases each. Empirically, OptDAC-ExploreEM out-
performs FLAT-ExploreEM and DAC-ExploreEM in terms of seed class F1 on average by 10%
and 7% respectively.

Dataset #Seed Level Macro-avg. Seed Class F1
/#Ideal FLAT DAC OptDAC
classes EM Exploratory EM EM Exploratory EM EM Exploratory EM

Text-Small 2/3 2 46.6 64.4 47.1 61.8 52.0 62.6
4/7 3 23.5 32.7 26.1 36.3 25.8 42.3 N

Text-Medium 3.9/4 2 53.2 50.2 53.7 47.2 53.3 52.5
9.4/24 3 27.9 27.0 33.4 26.8 33.9 34.9 N
2.4/10 4 17.4 25.8 24.5 29.4 26.8 31.6 N

Table-Small 2/3 2 69.5 75.8 74.6 76.2 74.8 80.0 N
4/7 3 36.8 43.9 38.8 40.9 M 38.9 41.5

Table-Medium 3.9/4 2 62.7 61.3 64.8 65.0 N 62.2 65.0 N
9.4/24 3 43.7 49.1 46.4 48.6 48.0 50.1
2.4/10 4 47.3 52.2 57.7 59.9 N 57.1 58.4 N

Table 7.3: Comparison of FLAT, DAC, MIP, and OptDAC methods using KM representation on
Text-Small to Table-Medium. N (and M) indicates that improvements of the DAC-ExploreEM
and OptDAC-ExploreEM methods are statistically significant w.r.t FLAT-ExploreEM method
with 0.05 (and 0.1) significance level.

Further we did statistical significance tests for performance improvements of DAC-
ExploreEM and OptDAC-ExploreEM over FLAT-ExploreEM, with 0.05 (and 0.1) significance
level denoted by N (and M) in Table 7.3. It shows that improvements of DAC-ExploreEM are sta-
tistically significant in 3/10 cases, whereas improvements of OptDAC-ExploreEM are significant
in 6/10 cases. Thus OptDAC-ExploreEM turns out to be the best method being compared.

7.5.3 What is the effect of varying training percentage?
We ran the OptDAC-ExploreEM method on datasets Text-Small and Table-Small with different
values of training percentage averaged over 10 random train/test partitions of our data. In Figure
7.2, we can see that as training percentage increases the performance of OptDAC-ExploreEM
method improves, especially as we go down the hierarchy (relative improvements are more at
Level 3 compared to Level 2).

105



0 50 100
20

30

40

50

60

70

80

Training percentage

M
a

c
ro

 a
v

g
. 

s
e

e
d

 c
la

s
s

 F
1

0 50 100
20

40

60

80

100

Training percentage

M
a

c
ro

 a
v

g
. 

s
e

e
d

 c
la

s
s

 F
1

 

 

Level 2

Level 3

Figure 7.2: Comparison of OptDAC-ExploreEM method with different training percentage on
datasets Text-Small (left) and Table-Small (right).

7.5.4 How do the methods compare in terms of runtime?
Here we compare runtimes of all methods averaged over all the runs with different seed ontolo-
gies and seed training data. In our MATLAB implementation, the running time of Exploratory
EM is much longer. Table ?? shows that the increase in runtime of Exploratory EM variants w.r.t.
their EM counterparts is by the factor 3.2 on average across all methods and datasets. Further
the exploratory methods take on average 10.3 times when compared to EM variant of the FLAT
method.

In particular, OptDAC-ExploreEM method is on average twice as expensive as DAC-
ExploreEM. This is due to the fact that DAC-ExploreEM takes greedy decisions at each level
of the hierarchy, whereas OptDAC-ExploreEM keeps track of the top-q active nodes. We set
q = 2 in these experiments. Thus the value of q results in a trade-off between improvement in
seed class F1 and increased runtime of the algorithm.

7.5.5 Evaluation of extended cluster hierarchies
In this section, we present the evaluation of extra clusters added by our Hierarchical Exploratory
EM algorithm to the incomplete class ontology given as input. If it started with k classes, and
produced k+m classes as output, we first need to label these m extra classes. Since our datasets
are completely labeled, each new class can be assigned a majority label based on entities assigned
to that class and level of the class in the hierarchy. For Example, if the class is at level 2 in the
hierarchy then we choose the best label at level 2 of the class hierarchy.

Figure 7.3 shows an example of an extended class hierarchy generated by OptDAC-
ExploreEM algorithm on Table-Small starting with 7 seed classes from onto-1. The bold-faced
nodes are from the seed ontology, and nodes in blue (non bold-faced) are the ones added by our
proposed exploratory learning methods. It is labeled using the above described majority label
approach. (Note that there are multiple clusters with same label, to differentiate them we have
labeled them as “Food 1”, “Food 2” etc.)

Once this labeling is done, we can measure the precision of labels across (parent, child)
links in the cluster hierarchy. For Example, in Figure 7.3, parent-child link between (Food 2,
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Figure 7.3: An example extended ontology applying our OptDAC-ExploreEM method on the
Table-Small dataset. The seeded classes are bold-faced, whereas the newly added classes are in
Blue and are not bold-faced.

Beverage 2) is correct, however the link between (Location, Beverage) is incorrect. These links
can be classified into seed or extra links based on whether the child cluster was one of the seed
clusters or introduced by the Hierarchical Exploratory EM algorithm.

Dataset %Precision of (parent, child)
edges for clusters
Seed Extra All

Text-Small 88.3 84.5 85.5
Text-Medium 80.7 22.6 46.8
Table-Small 100.0 90.4 92.4
Table-Medium 95.7 36.1 63.9

Table 7.4: Precision of child, parent edges created by OptDAC-ExploreEM.

Table 7.4 shows the link precision values for OptDAC-ExploreEM algorithm when run on all
four datasets. We can see that for seed clusters, accuracy numbers are high (81 - 100%) for all
four datasets. In terms of extra clusters, for the datasets Text-Small and Table-Small with simpler
ontology “onto-1”, and unanticipated class fraction being low, the precision of edges for extra
clusters is very high in around 85%. Whereas for Text-Medium and Table-Medium, with more
complicated ontology “onto-2”, and with higher fraction of unanticipated classes, the precision
for extra clusters is quite low around 30%. This indicates that the task of detecting new classes
and adding them at right positions in the ontology is a challenging task, and it gets even more
challenging with the complexity and degree of incompleteness of the input ontology.

7.6 Related Work
There has also been some work in unsupervised hierarchical clustering [11, 82, 141] that can
discover cluster/topic hierarchies given a large unlabeled dataset, however they do not make
use of any supervision that might be available. Exploratory learning differs in that we learn
the number of clusters as well as centroids for those clusters jointly in a single run of the EM
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algorithm, while using the available supervision for seed clusters. Apart from standard K-Means,
our EM framework can also be used with other clustering/classification algorithms like Naive
Bayes and von Mises-Fisher, and we specifically evaluate the performance difference on the
seeded classes.

There has been a lot of research done in the area of supervised hierarchical classification [21,
55, 142]. These methods assume that the class hierarchy is complete and there is enough training
data to learn classifiers for each node in the class hierarchy. On the other hand we considered
the situation where only part of the ontology is known upfront with very few seed examples
for each of the seed class. Further our method can be easily extended to cases where class
constraints are more complicated than the examples considered in this chapter, e.g., overlapping
classes and mutual exclusion constraints. Another related research area is constructing web-
scale knowledge bases [2, 25] by doing information extraction from various data-sources. NELL
internally uses coupled semi-supervised learning [25] that takes into account subclass and mutual
exclusion constraints among classes to filter extraction patterns and instances at the end of each
bootstrapping iteration. The ontology (class hierarchy) is not explicitly used in the prediction
process. I.e. it does flat classification with class constraints applied as post-processing in between
two iterations of bootstrapping. Our approach on the other hand does collective hierarchical
classification.

There has also been some work to extend existing ontologies. Mohamed et al. [92] propose
a co-clustering based two step approach to discover new relations between two already existing
classes in the knowledge base. These new relations are named using centroid features of the in-
termediate clusters. This method is focused on relation discovery between known classes. Snow
et al. [116] discover new WordNet synsets by using evidence from multiple sources, however
their approach is focused on discovering new isA relations, and not meant for building hierarchi-
cal classifiers for the learnt hierarchy. Pal et al. [99] proposed a technique based on Indian Buffet
Process that could learn with existing feature hierarchies as well as extend them based on struc-
ture discovered from unlabeled data. Their method relies only on the containment relationships
and the hierarchies they experimented with are domain specific e.g., restaurants domain.

Reisinger and Paşca [108] addressed the same problem as ours, working with the Wordnet
hierarchy. Their fixed-structure and sense selective approaches use the Wordnet hierarchy di-
rectly and annotate existing concepts with generic property fields (attributes). On the other hand,
the Nested Chinese Restaurant Process (nCRP) approach is hierarchical extension of LDA to
infer arbitrary fixed-depth tree structures from data. nCRP generates its own annotated hierar-
chy whose concept nodes do not necessarily correspond to Wordnet concepts. Our method is in
the middle of these two approaches, as it uses the existing class hierarchy with small amount of
training data and extends it dynamically as new clusters of datapoints are discovered.

Another set of techniques focus on completely unsupervised information extraction and on-
tology discovery [12, 53, 108, 126]. Though very effective, these approaches are not making
use of the valuable information hidden in the existing knowledge bases. Our approach is rela-
tively novel in the sense that it is in between semi-supervised and unsupervised learning, where
some part of ontology is known, and this knowledge is used to discover the missing parts of the
ontology along with populating it with new data instances.

To define the similarity among two entities we use bag of word features about co-occurrences
of text patterns with the noun-phrases. There can be more effective approaches of document
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representation like the lower dimensional continuous Skip-gram features, proposed by Mikolov
et al. [89]. Their technique learns low dimensional vectors that potentially embed semantics of
noun-phrases.

7.7 Conclusions
We propose the Hierarchical Exploratory EM approach that can take an incomplete seed ontology
as input, along with a few examples of each seed class, to populate new instances of seed classes
and extend the ontology with newly discovered classes. Experiments with subsets of the NELL
ontology and and text, semi-structured HTML table datasets derived from the ClueWeb09 corpus
show encouraging results in terms of seed class F1 scores.

Our proposed hierarchical exploratory EM method, named OptDAC-ExploreEM performs
better than flat classification and hierarchical semi-supervised EM methods at all levels of hierar-
chy, especially as we go further down the hierarchy. Experiments show that OptDAC-ExploreEM
outperforms its semi-supervised variant on average by 13% in terms of seed class F1 scores. It
also outperforms both previously proposed exploratory learning approaches FLAT-ExploreEM
and DAC-ExploreEM in terms of seed class F1 on average by 10% and 7% respectively.

7.8 Future Research Directions
In the future, we would like to apply our method on datasets with larger and non-tree structured
class hierarchies. We briefly discussed how our proposed OptDAC-ExploreEM method can be
used for this task. Further, our experiments focused on an information extraction task of classi-
fying entities into a knowledge base class hierarchy. However, our techniques can also be used
for other tasks like document classification into topic hierarchies on datasets like Reuters, and
classifying images into a class hierarchy for datasets like ImageNet.
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Chapter 8

Concluding Remarks

Here, we first summarize the overall contributions, then we list the observations from experi-
ments presented in different chapters of this thesis. Finally, we also present the potential future
directions for this research.

8.1 Thesis Summary
We proposed several extensions to the traditional semi-supervised learning algorithm using Ex-
pectation Maximization. Combining all these extensions leads to a generic semi-supervised
learning framework that can incorporate 1) the presence of unanticipated classes, 2) multiple
data views, and 3) ontological class constraints. This framework helps reduce semantic drift on
known seeded classes as well as provides a single method that solves a continuum of tasks from
supervised learning to clustering. In both flat and hierarchical classification/clustering settings,
we observed that running an algorithm in an exploratory setting gave comparable or better seed
class F1 score when compared to the traditional semi-supervised counterpart [124, 127, 128].

Further, exploratory learning is more powerful in conjunction with ontological class con-
straints which can be imposed as soft constraints on the label vectors assigned to a datapoint. We
also found that considering ontological constraints while inferring labels improves overall per-
formance compared to flat classification for the the entity classification and gloss finding tasks
[124, 127, 130]. Through experiments in this thesis, we showed that a single semi-supervised
learning framework could handle NLP tasks like entity/document classification, entity/word
sense disambiguation, gloss finding and ontology extension. Code for the flat exploratory K-
Means, GLOFIN algorithm and most of the datasets we created during this research can be down-
loaded from http://rtw.ml.cmu.edu/wk/WebSets/exploratory_learning/.

Contributions

In this thesis we first proposed exploratory learning techniques (Chapter 4) that improve the
robustness of semi-supervised learning methods to the presence of unanticipated classes in the
unlabeled data, thereby reducing semantic drift of seeded classes. Exploratory EM introduces
new classes on-the-fly during learning based on the intuition that hard-to-classify examples—
specifically, examples with a nearly-uniform posterior class distribution—should be assigned to
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new classes. The exploratory versions of these SSL methods often obtained dramatically better
performance—e.g., on the Delicious Sports dataset up to 90% improvements in F1, on the 20-
Newsgroups dataset up to 27% improvements in F1, and on the Reuters dataset up to 200%
improvements in F1.

In Chapter 5, we investigated the problem of semi-supervised learning in the presence of
multiple data views. We formulated the problem as an optimization problem, and solved it using
the standard EM framework. We then focused on the sub-problem of assigning labels to each
datapoint (part of the E step), and studied various methods for such prediction. Our proposed
method solves a mixed integer linear program to find consistent class assignments given the
scores in each data view. Because our multi-view techniques are broadly similar to co-training
based algorithms, we also compared them to a seeded version of the multi-view spherical K-
Means algorithm that is proposed by Bickel and Scheffer [10]. Our methods produced better
performance in terms of macro-averaged F1 score compared to this co-training baseline.

Next, we worked on incorporating ontological class constraints (Chapter 6) such as subset
and mutual exclusion. For a dataset with hierarchy of classes, our extended optimization meth-
ods produced better results when compared to flat semi-supervised learning baselines in terms
of macro-averaged F1 score. We further applied this method for the important but relatively un-
explored problem of Automatic Gloss Identification, i.e., automatically generating gloss (short
definitional sentences) for an initially gloss-free knowledge base (KB) by matching candidate
glosses to entities in the KB. To the best of our knowledge, this is the first such system for
this task. Our method, GLOFIN, employs hierarchical clustering algorithm that internally uses
unambiguous DBPedia abstracts as seeds and the KB ontology as constraints to match an am-
biguous candidate gloss to the right entity from KB. Our quantitative and qualitative evaluations
using NELL and Freebase KBs show that GLOFIN is effective and that it outperforms other
state-of-the-art algorithms like label propagation and Support Vector Machines (SVM). We also
demonstrate GLOFIN’s robustness to noise in the seed data.

Finally in Chapter 7, we combined the exploratory learning and constrained learning tech-
niques into the Hierarchical Exploratory EM approach that can take do exploratory learning
in the presence of an incomplete class ontology, i.e., it can populate more instances of known
classes, and extend the ontology with newly discovered classes in a single learning framework.
Our proposed method, named OptDAC-ExploreEM, performs better than flat classification and
hierarchical semi-supervised EM methods at all levels of the class hierarchy, especially as we go
further down the hierarchy. Experiments show that OptDAC-ExploreEM outperforms its semi-
supervised variant on average by 13% in terms of seed class F1 scores. It also outperforms both
previously proposed exploratory learning approaches FLAT-ExploreEM and DAC-ExploreEM
in terms of seed class F1 on average by 10% and 7% respectively.

Exploratory Knowledge Acquisition with Human in the Loop

The exploratory learning techniques proposed in Chapter 4 and 7, proposes a way to do ex-
ploratory knowledge acquisition. The overall idea is represented in Figure 8.1. Traditional
knowledge acquisition can add new facts for categories present in the ontology. In addition
to this, the exploratory learning techniques can suggest new categories that can be added to the
ontology. A human can look at the new category suggestions, along with instances of these new
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categories, to pick the ones that look meaningful.
This kind of learning mechanism is in between open domain knowledge extraction and closed

domain (ontology driven) knowledge extraction, i.e., it can make use of the available training data
and at the same time discover new categories from unlabeled data.

Figure 8.1: Exploratory Knowledge Acquisition with Human in the Loop.

8.2 Future Research Directions
This thesis opens up many interesting directions for future research. A most straightforward
future work can be to understand how well our exploratory learning techniques work for datasets
where the classes are not clearly separable (overlapping topics). It would also be interesting to
analyze what fraction of classes need to be seeded to be able to discover the rest of them from
unlabeled data.

The intuitions behind our techniques can be used to extend few other techniques to make
them more effective. Further, the techniques proposed in this thesis are not limited to the tasks
presented in this thesis. Next, we explain some of these future directions in terms of advance-
ments in terms of the techniques and applications.

New Techniques:

Naming the Newly Discovered Concepts

Apart from reducing the semantic drift of seeded classes, another important advantage of ex-
ploratory learning methods is to discover multiple clusters of datapoints that did not fit any of the
classes given to the algorithm. These are potentially new concepts that can be added to an exist-
ing knowledge base. For example, in our experiments with the WebSets table corpus and NELL
KB, we found that with some manual inspection, our system could add good quality concepts
like “music scales”, “dental procedures” etc., that were missing in the NELL KB.
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Automatically naming the newly discovered clusters of entities is another interesting direc-
tion of future research. In Chapter 3, we described one such technique, i.e. those hypernyms
that occurred with the candidate entities in the context of Hearst patterns were used as candidate
labels for newly discovered clusters. Another way to achieve this could be to describe a cluster
by the centroid for the cluster. For Example, for a newly discovered cluster of news stories, with
a bag of words feature representation and TFIDF weights, a centroid feature vector will give us
the top distinguishing words that occurred most frequently in the cluster.

Exploratory Extensions of Mixed-Membership Methods

Our proposed Exploratory Learning technique [128] shows that the near uniformity heuristic
if applied to Chinese Restaurant Process, gives performance gains in terms of seed class F1 and
running times (Chapter 4). Exploratory EM in its current form is a hard-EM algorithm, i.e., in the
E step each datapoint gets assigned to only one of the clusters/classes. It would be an interesting
direction of future research to build mixed-membership exploratory learning techniques, i.e., a
soft-EM version of our algorithm, and use modified CRP process, to induce new clusters.

New Applications:
Word Sense Disambiguation using WordNet Hierarchy

We are currently working on using our hierarchical semi-supervised learning technique, GLOFIN
(refer Chapter 6), for the task of word sense disambiguation with respect to WordNet. Here we
consider occurrences of all unambiguous words as training data and ambiguous word occur-
rences as unlabeled data. In these experiments, we use the WordNet synset hierarchy to deduce
ontological constraints. Figure 8.2 shows an example of synset hierarchy around word ‘goal’.
Further we plan to use clues from two different data views: glosses and example usages of the
word senses.

Exploratory Relation Extraction

Most techniques discussed in this thesis are not tied to any particular document representation,
choice of features or task. Hence one obvious future research direction lies in applying these
ideas to tasks other than concept extraction. For example, Relation extraction is a very challeng-
ing task, and many ontologies like NELL that are rich in terms of coverage of concepts have low
coverage in terms of relations between entities. We hope that the Exploratory learning technique
can be extended for the relation extraction task.
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Figure 8.2: Example synset hierarchy for a word “goal”. There are four target synsets ‘goal#1’ to
‘goal#4’. ‘finish line#1’ is a hyponym of goal#2 and ‘end#1’ is a hypernym. ‘goal#2’ and ‘bitter
end#2’ are mutually exclusive. ‘finish line’ is unambiguous and ‘destination’ is ambiguous.
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Appendix A

WebSets: Table Driven Information
Extraction

In this Chapter we cover some additional details about our WebSets project that are not covered
in depth in Chapter 3.

A.1 Our Method

A.1.1 Table Identification
Currently WebSets parses tables defined by <table> tags17. This is only a fraction of structured
data available on the Web. Use of other techniques like Gatterbauer et al. [51] can provide more
input data to learn sets from.

Further only a small fraction of HTML tables actually contain useful relational data(see Sec-
tion A.2). Remaining tables are used for formatting or rendering purposes rather than to present
relational data. To filter out useful tables, WebSets uses the following set of features: (1) the num-
ber of rows (2) the number of non-link columns (3) the length of cells after removing formatting
tags (4) whether table contains other HTML tables. The thresholds set for our experiments are
explained in Section A.2.

A.1.2 Entity Clustering
At the end of the table identification step, we have a collection of HTML tables which are likely
to contain relational data. Each of the table-cells is a candidate entity and each table-column is
a candidate set of entities. However many columns have information that is useful only within
a site (e.g., navigational links) and many are overlapping. To solve this problem we use the
redundancy of information on the Web. If a set of entities co-occur in multiple table-columns
across the Web, then it is more likely to be an important entity set. Since these tables come
from different domains and are created by different authors, they will typically only partially

17We found that large number of HTML pages have broken syntax. We use the HTML syntax cleaning software
Tidy [1] to fix the syntax in these pages.
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Country Capital City
India Delhi
China Beijing
Canada Ottawa
France Paris

Table A.1: TableId= 21, domain= “www.dom1.com”

overlap. To cluster the entities in these columns into coherent sets, the first essential step will
be to represent this data in a way that reveals the co-occurrence of entities across multiple table
columns. In this section, we will first discuss the data representation, and then algorithms for
entity clustering.

Data Representation

We considered two ways to represent table data. With the “Entity record representation”, one
record per entity is created, and it contains information about which table-columns and URL
domains the entity was mentioned in. These entity records can then be clustered, based on the
overlap of table-columns and domains, to yield sets of entities. One advantage of this represen-
tation is that it is compact. Another advantage is that the number of distinct domains an entity
occurred in can be used as an indicator of how “important” it is. A disadvantage of this represen-
tation is that if some entity-name is ambiguous (has multiple senses), it will collapse all senses
of the entity into one record. For example, consider a corpus which contains mentions of the
entity “Apple” in two senses, “Apple as a fruit” and “Apple as a company”. This representation
will create a single record for the entity “Apple” with its occurrence as a fruit and as a company
confounded. An unsupervised IE system might find it difficult to decompose multiple senses
from this single record.

To solve this problem, we propose a novel representation of the table data called “Entity-
Triplet records”. In this representation, there is a record for each triplet of adjacent entities
instead of for individual entities. Each record contains information about which table-columns
and URL domains the triplet occurred in. Hence in case of an ambiguous entity like “Apple”, its
occurrences as a fruit will be separate from its occurrences as a company, e.g., {Apple, Avocado,
Banana} will be one triplet record and {Apple, Microsoft, DELL} will be another triplet record.
Thus entities within a triplet disambiguate each other. Since we have a list of all domains a triplet
occurred in, only those triplets which appear in enough domains can be considered as important.

In this way, we represent the table data as a triplet store, which contains a record for each
entity triplet. The triplet store can be built in one single pass over the corpus. If the system
considers all possible triplets that can be created from each table column, then number of triplet
records will be quadratic in the total size of all tables. This can be a serious concern for a
web-scale dataset. Hence our system constructs only those triplets which are adjacent i.e. sub-
sequences of entities in a table-column. This ensures that number of triplet records are linear in
total size of all tables, making the system scalable. The system keeps track of all table-columns
a triplet occurred in, which makes it possible to reconstruct a column by joining triplets on
columnId. Hence this storage method does not result in any loss of information.

Consider an example of tables containing countries and their capitals. Original tables are
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Country Capital City
China Beijing
Canada Ottawa
France Paris
England London

Table A.2: TableId= 34, URL= “www.dom2.com”

Entities Tid:Cids Domains
India,China,Canada 21:1 www.dom1.com
China, Canada, France 21:1, 34:1 www.dom1.com, www.dom2.com
Delhi, Beijing, Ottawa 21:2 www.dom1.com
Beijing, Ottawa, Paris 21:2, 34:2 www.dom1.com, www.dom2.com
Canada, England, France 34:1 www.dom2.com
London, Ottawa, Paris 34:2 www.dom2.com

Table A.3: Triplet records created by WebSets

shown in Table A.1, A.2 and the triplet records created by WebSets are shown in Table A.3.
Second row in Table A.3, indicates that the triplet (China, Canada, France) occurred in column 1
of tableId 21 and column 1 of tableId 34. Also these entities are retrieved from webpages which
reside in the domains “www.dom1.com” and “www.dom2.com”.

These triplets are canonicalized by converting entity strings to lower case and arranging the
constituent entities in alphabetical order. The triplets are then ranked in descending order of
number of domains.

We createO(n) triplets from a table column of size n. Adding each triplet to the Triplet Store
using hashmap takesO(1) time. Given a set of T HTML tables with a total ofN entities in them,
the Triplet Store can be created in O(N) time. Ranking the triplets using any common sorting
technique will take O(N ∗ logN) time. Hence the total complexity of building the Triplet Store
is O(N ∗ logN).

Building entity clusters

The next task is to cluster these triplet records into meaningful sets. The system does not know
how many clusters are present in the underlying dataset; and since our dataset will be constructed
from a huge HTML web corpus, the clustering algorithm needs to be very efficient. Given these
requirements, it can be easily seen that parametric clustering algorithms like K-means may not be
effective due to the unknown number of clusters. Non-parametric algorithms like agglomerative
clustering [35] fit most of our requirements. The most efficient agglomerative clustering algo-
rithm is the single-link clustering algorithm, but even that would require computing the similarity
of every pair of entity triplets returned. This will be very expensive for the web scale datasets we
are aiming to handle. Hence we develop a new bottom-up clustering algorithm which is efficient
in terms of both space and time. Experiments to compare our algorithm with a standard K-means
clustering algorithm are described in Section A.2.
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Computational complexity

Suppose that our dataset has total T tables. Let these tables have in total N cells. For each triplet
t, Algorithm 1 finds entity and column overlap with all existing clusters. This operation can be
implemented efficiently by keeping two inverted indices: (1) from each entity to all clusterIds it
belongs to and (2) from each columnId to all clusterIds it belongs to. ClusterIds in each “postings
list ”18 will be kept in sorted order.

Merging k sorted lists, with resultant list size of n takes O(n ∗ logk) time. Now let us
compute worst case time complexity of Algorithm 1. To compute entity overlap of each triplet,
the algorithm merges 3 postings lists with total size of O(N). This step will take O(N) time.
To compute TableId:ColumnId overlap of each triplet, it merges O(T ) postings lists with total
size of O(N). This step will take O(N ∗ logT ) time. Hence for each triplet, finding a clusterId
to merge the triplet with takes O(N ∗ logT ) time. There are O(N) triplets. So the Bottom-Up
Clusterer will have worst case time complexity of O(N2 ∗ logT ). In practice, it is much less than
this. If N is total number of table-cells in the corpus then the total number of triplet occurrences
is also O(N). Hence all the postings list merges can be amortized to be O(N). Hence amortized
complexity of this clustering algorithm is O(N ∗ logT ). Considering the time complexity to sort
the triplet store, total time complexity is O(N ∗ logN), which is much better than the complexity
of a naive single-link clustering algorithm, which is O(N2 ∗ logN).

A.1.3 Hypernym Recommendation
Previous sections described how do we obtain coordinate term clusters using co-occurrence of
terms in the table columns. In this section we label these term clusters with the help of Hyponym
Concept dataset.

Building The Hyponym-Concept Dataset

The Hyponym Concept Dataset is built by acquiring concept-instance pairs from unstructured
text using Hearst patterns. For this task we used the data extracted from the ClueWeb09 corpus
[23] by the developers of the NELL KB [91]. They used heuristics to identify and then shallow-
parse approximately 2 billion sentences, and then extracted from this all patterns of the form
“ word1 .. wordk ” where the ‘filler’ word1 .. wordk is between one and five tokens long,
and this filler appears at least once between two base noun phrases in the corpus. Each filler is
paired with all pairs of noun phrases that bracket it, together with the count of the total number
of times this sequence occurred. For instance, the filler ‘ and vacations in ’ occurs with the
pair ‘Holidays, Thailand’ with a count of one and ‘Hotels,Italy’ with a count of six, indicating
that the phrase “Hotels and vacations in Italy” occurred six times in the corpus . The hyponym
dataset was constructed by finding all fillers that match one of the regular expressions in Table
A.4. These correspond to a subset of the Hearst patterns used in ASIA [136] together with some
“doubly anchored” versions of these patterns [73].

18In the information retrieval terminology, an inverted index has a record per word that contains the list of all
document-ids the word occurred in. This list is referred to as the “postings list”. In this paper, a “postings list” refers
to the list of all clusterIds that a triplet or a columnId belongs to.
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Id Regular expression
1 arg1 such as (w+ (and|or))? arg2
2 arg1 (w+ )? (and|or) other arg2
3 arg1 include (w+ (and|or))? arg2
4 arg1 including (w+ (and|or))? arg2

Table A.4: Regular expressions used to create Hyponym Concept Dataset

Hyponym Concepts
USA country:1000
India country:200
Paris city:100, tourist place:50

Monkey animal:100, mammal:60
Sparrow bird:33

Table A.5: An example of Hyponym Concept Dataset

Each record in the Hyponym Concept Dataset contains an entity and all concepts it co-
occurred with. Table A.5 shows an example of records in this dataset. According to this table,
entity “USA” appeared with the concept “country” 1000 times. Similarly, “Monkey” appeared
with two different concepts, 100 times with “animal” and 60 times with “mammal”.

Assigning Hypernyms to Clusters

Assigning a meaningful concept-name to each entity set is important for two reasons. It enables
us to systematically evaluate entity sets; e.g., it is easier for an evaluator to answer the question:
“Is Boston a city?” than “Is Boston a member of set #37?”) It also makes the system more useful
for summarizing the data in a corpus (see Section 3.1.3). This section describes how WebSets
recommends candidate hypernyms for each entity set produced by Algorithm 1.

For this task, we use the coordinate term clusters extracted from tables and Hyponym Con-
cept Dataset extracted using Hearst patterns. Note that this part of the system uses information
extracted from unstructured text from the Web, to recommend category names to sets extracted
from tables on the Web.

A.2 Evaluation of Individual Stages of WebSets
In this section we evaluate each stage of WebSets system and measure the performance. Here
we consider WebSets as a technique to generate large number of concept-instance pairs given a
HTML corpus.

A.2.1 Evaluation: Table Identification
Table A.6 shows the statistics of table identification for each dataset. Based on the features
described in Section A.1.1, we filter out only those tables as useful which cross some predefined
thresholds. These thresholds were derived from the intuitions after manually going through some
samples of data, and are kept constant for all datasets and experiments described in this paper.
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Dataset #Tables %Rela- #Filtered %Rela- #Triplets
-tional tables -tional

filtered
Toy Apple 2.6K 50 762 75 15K
Delicious Sports 146.3K 15 57.0K 55 63K
Delicious Music 643.3K 20 201.8K 75 93K
CSEAL Useful 322.8K 30 116.2K 80 1148K
ASIA NELL 676.9K 20 233.0K 55 421K
ASIA INT 621.3K 15 216.0K 60 374K
Clueweb HPR 586.9K 10 176.0K 35 78K

Table A.6: Table Identification Statistics

When we evaluated a random sample of recursive tables, 93% of them were useless for our
purposes, and only 7% tables contained relational data. Hence we decide to ignore the recursive
tables. We construct triplets of entities in a table column, hence a table should have at least 3
rows. As we are not using any link data in our system, we consider only those columns which
do not have links. WebSets is looking for tables containing relational data, hence if a table has at
least 2 non-link columns, probability of it having relational data increases. While counting these
rows and columns, we are looking for named entities. So from each cell, all HTML tags and
links are removed. A very coarse filtering by length is then applied. We consider only those table
cells which are 2-50 characters in length. Table A.6 shows that percentage of relational tables
increases by orders of magnitude due to this filtering step.

A.2.2 Evaluation: Clustering Algorithm

In these set of experiments we first compare WebSets with baseline K-means clustering algo-
rithm. Later we see how “Entity-Triplet record” representation is better than “Entity record”
representation. We compare the clustering algorithms in terms of commonly used clustering
metrics: cluster purity (Purity), normalized mutual information (NMI), rand index (RI) [82] and
Fowlkes-Mallows index (FM) which are defined as follows:
• Cluster Purity: To compute cluster purity, for each cluster the class which is most frequent

in it gets assigned. The accuracy of this assignment is then measured by counting the
number of correctly assigned documents and dividing by total number of documents.
purity(Ω, C) = 1

N

∑
k maxj |ωk

⋂
cj| where

N is total number of documents, Ω = ω1, ω2, ..., ωK
is the set of clusters and C = c1, c2, ..., cJ is the set of classes. We interpret ωk as the set
of documents in cluster ωk and cj as the set of documents in cluster cj .

• Normalized Mutual Information: High purity is easy to achieve when the number of
clusters is large, hence purity cannot be used to trade off the quality of the clustering
against the number of clusters. NMI is a measure that allows us to make such tradeoff.
NMI(Ω, C) = I(Ω;C)

[H(Ω)+H(C)]/2

where maximum likelihood estimates for mutual information and entropy are computed as
follows:
I(Ω, C) =

∑
k

∑
j
|ωk

⋂
cj |

N
, H(Ω) = −

∑
k
|ωk|
N
∗ log |ωk|

N
.

122



• Rand Index: This metric is based on information-theoretic interpretation of clustering.
Clustering is a series of decisions, one for each of the N(N − 1)/2 pairs of documents in
the collection. True label denotes the pair belongs to same class or not. Predicted label
denotes whether the pair belongs to same cluster or not. This way we can count True
Positive(TP ), False positive (FP ), True Negative (TN ) and False Negative (FN ) score
for the clustering. Rand Index is then defined as follows: RI = TP+TN

TP+FP+FN+TN
.

• Fowlkes-Mallows index: While the previous three metrics are applicable only for hard-
clustering, this metric is defined for soft clustering of data where clusters can be overlap-
ping but classes are non-overlapping. Let nij be the size of intersection of cluster ωi and
class cj , ni∗ =

∑
j nij and n∗j =

∑
i nij .

FM = (
∑

ij

(
nij
2

)
)/

√∑
i

(
ni∗
2

)∑
j

(
n∗j
2

)
The derivation of this formula can be found in Ramirez et al. [106].

Here each triplet is considered as a document. Ω refers to clusters of these triplets generated
by WebSets or K-means. C refers to actual classes these triplets belong to. To compare quality
of clusters across algorithms, we manually labeled each table-column of Toy Apple and Deli-
cious Sports datasets. These labels are then extended to triplets within the table column. This
experiment is not repeated for remaining datasets because manual labeling of the whole dataset
is very expensive.

The performance of K-means depends on the input parameter K and random initialization of
cluster centroids to start the clustering process. We run K-means with cosine distance function,
a range of values of K and multiple starting points for each value of K. Figure A.1 shows the
plot of various runs of K-means vs. WebSets on Delicious Sports dataset. Table A.7 shows the
comparison of WebSets vs. best run of K-means on Toy Apple and Delicious Sports datasets.
We can see that WebSets performs better or comparable to K-means in terms of purity, NMI, RI,
and FM. Through manual labeling we found that there are 27 and 29 distinct category sets in
Toy Apple and Delicious Sports datasets respectively. We can see that WebSets defined 25 and
32 distinct clusters which are very close to actual number of meaningful sets, compared to 40
and 50 clusters defined by K-means.

Standard K-means algorithm has time complexity of O(I ∗ K ∗ N ∗ T ), where I is the
number of iterations, K is the number of clusters, N is the number of table-cells and T is the
number of dimensions (here number of table-columns). WebSets has time complexity of O(N ∗
logN). Hence our bottom-up clustering algorithm is more efficient than K-means in terms of
time-complexity.

To study entity disambiguation effect of triplet records, we generated both “Entity record”
and “Entity-Triplet record” representations of Toy Apple dataset. When we ran our clustering
algorithm on “Entity-Triplet record” dataset, we found “Apple” in two different clusters, one in
which it was clustered with other fruits and had supporting evidence from table-columns talk-
ing about fruits; other cluster contained companies and evidence from related table-columns.
Running the same clustering algorithm on “Entity record” dataset, resulted in a huge cluster con-
taining “Apple”, fruits and companies all combined. Thus we can say that entity triplets do help
WebSets to disambiguate multiple senses of the same entity-string.

123



(a) Cluster Purity (b) Normalized Mutual Information

(c) Rand Index

Figure A.1: Comparison of WebSets and K-Means algorithms on Delicious Sports

Dataset Method K Purity NMI RI FM
Toy Apple K-means 40 0.96 0.71 0.98 0.41

WebSets 25 0.99 0.99 1.00 0.99
Delicious Sports K-means 50 0.72 0.68 0.98 0.47

WebSets 32 0.83 0.64 1.00 0.85

Table A.7: Comparison of WebSets vs. K-means

Now we compare the performance of clustering algorithms on entity record vs. triplet record
representation. In this experiment we use Toy Apple dataset. A table-column is considered
as document and clusters produced are soft-clustering of this document set. Hence each table-
column can be present in multiple clusters, but belongs to only one class. Purity, NMI and RI
metrics are not applicable for soft clustering, however FM metric is valid. We run K-Means
algorithm for different values of K. Table A.8 shows the best performing results of K-Means.
WebSets produced 25 clusters on entity record representation and 34 clusters using triplet rep-
resentation. In terms of FM index, each method gives better performance on triplet record rep-
resentation when compared to entity record representation. Hence triplet record representation
does improve these clustering methods.
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Method K FM w/ Entity records FM w/ Triplet records
WebSets 0.11 (K=25) 0.85 (K=34)
K-Means 30 0.09 0.35

25 0.08 0.38

Table A.8: Comparison of performance on Entity vs. Triplet record representation (Toy Apple
dataset)

A.2.3 Evaluation: Hyponym-Concept Dataset
Note that the Hyponym-concept dataset is created in an unsupervised way, hence we cannot
guarantee that the concept-instance pairs in this dataset are accurate. To get an idea of quality
of concept-instance pairs in this dataset, we randomly sampled 100 pairs. 55% of them were
accurate. Hence hypernym recommendation step is dealing with noisy concept-instance pairs as
input.

A.2.4 Evaluation: Hypernym Recommendation
We compare our hypernym recommendation technique with Van Durme and Pasca technique
[132]. Our method is different from Van Durme and Pasca Method (DPM) in the sense that,
they output a concept-instance pair only when it appears in a set of candidate concept-instance
pairs i.e. it exists in Hyponym-concept dataset. In our method, based on overlap of coordinate
term cluster with the Hyponym Concept dataset, we extend the labels to whole cluster. Another
difference is the coordinate term clusters we are dealing with. DPM assumes term clusters are
semantic partitions of terms present in the text corpus. The clusters generated by WebSets are
clusters of table columns. There is higher possibility of having multiple small size clusters which
all belong to same semantic class, but were not merged due to our single pass bottom-up clusterer.
Hence the same method may not work equally well on these clusters.

We sample 100 concept-instance pairs randomly from output of each method to measure
accuracy. The results of different methods are presented in Table A.9. As we can see, DPM
generates concept-instance pairs with 50% accuracy even when run with conservative thresholds
like K = 5 and J = 0.2. We also tried an extension of DPM called DPMExt which outputs a
label for each entity in the cluster, when the label satisfies thresholds defined by J and K. This
extension increases coverage of concept-instance pairs orders of magnitude (0.4K to 1.2K) at the
cost of slight decrease in accuracy (50% to 44%). Hypernym recommendation of WebSets (WS)
is described in Algorithm 2, and only topmost hypernym in the ranked list is produced for each
cluster. Table A.9 shows that WS has a reasonable accuracy (62.2%) and yield compared to DPM
and DPMExt. As discussed in Section A.2.3, Hyponym-concept dataset has noisy pairs. We also
tried an extension of WebSets called WSExt which overcomes this problem by considering only
those class-instance pairs which have occurred at least 5 times in the corpus. Adding this simple
constraint, improves accuracy from 67% to 78% and correct pairs yield from 45K to 51K.
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Method K J %Accuracy yield (#pairs #correct pairs
produced) (predicted)

DPM inf 0.0 34.6 88.6K 30.7K
DPM 5 0.2 50.0 0.8K 0.4K
DPMExt inf 0 21.9 100,828.0K 22,081.3K
DPMExt 5 0.2 44.0 2.8K 1.2K
WS - - 67.7 73.7K 45.8K
WSExt - - 78.8 64.8K 51.1K

Table A.9: Comparison of various methods in terms of accuracy and yield on CSEAL Useful
dataset
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