Multi-View Hierarchical Semi-supervised Learning by Optimal Assignment of Sets of Labels to Instances

Bhavana Dalvi · William W. Cohen

the date of receipt and acceptance should be inserted later

Abstract In multiclass semi-supervised learning, sometimes the information about data-points is present in multiple views. In this paper we propose an optimization based method to tackle semi-supervised learning in the presence of multiple views. Our techniques make use of mixed integer linear programming formulations along with the EM framework to find consistent class assignments given the scores in each data view. We compare our techniques against existing baselines, including a cotrain variant for K-Means, on a number of multi-view datasets. Our proposed techniques give state-of-the-art performance in terms of F1 score, outperforming a well-studied SSL method based on co-training. Further, we show that our techniques can be easily extended to multi-view learning in the presence of hierarchical class constraints. These extensions improve the macro-averaged F1 score on a hierarchical multi-view dataset.

1 Introduction

In multiclass semi-supervised learning, sometimes the information about datapoints is present in multiple views. For instance consider Web document classification: a learning algorithm can use two views, the text within the document and the anchor texts of its inbound hyperlinks. Similarly, in an information extraction task to populate a Knowledge Base(KB) like NELL [8], each noun-phrase to be classified has different sets of features or data views associated with it; e.g., text contexts that appeared with it, its occurrences in HTML table-columns, morphological features, and so on. As an example, consider the 2 view dataset in Figure 1 with each noun-phrase being represented by distributional features w.r.t its occurrences with text-patterns and in HTML-Tables. For the noun-phrase “Carnegie Mellon University”, a text-pattern feature, value of (“_arg1 is located in”, 100) denotes that the noun-phrase “Carnegie Mellon University” appeared in arg1 position of the context “_arg1 is located in” 100 times in the input corpus of sentences. For the same noun-phrase having a HTML-Table feature a value of (“doc04::2:1”, 1) means that the noun-phrase “Carnegie Mellon University” appeared once in HTML table 2, column 1 from document id “doc04”.

Bhavana Dalvi · William W. Cohen
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
E-mail: {bbd,wcohen}@cs.cmu.edu
Fig. 1 An example of multi-view dataset for Knowledge Base population task. For each noun-phrase distributional features are derived from two data sources. Occurrences of the noun-phrase with text-patterns result in View-1 and occurrences of the noun phrase in HTML table columns result in View-2.

A common approach is to concatenate the feature vectors for each view but this is not always optimal. Multi-view learning [41,2,35,34,14] addresses this problem by introducing a different function to model each view, and jointly optimizing all the functions to exploit the redundant views and improve learning performance.

Fig. 2 An example of ontological with subset and mutual exclusion relations between classes.

Multiple views are only one issue arising in complex real-world learning tasks. For instance, in the above mentioned KB population task, labels assigned to each noun-phrase need to be consistent with the hierarchical class constraints posed by the KB ontology. Consider a toy example of ontological class constraints in Figure 2. Here, we can see two kinds of class constraints imposed by the ontology. Following are example constraints:

1. The “Subset” constraint between “Fruit” and “Food” categories suggests that if a data-point is classified as “Fruit”, then it should also be classified as “Food”. (2) The “Mutual Exclusion” constraint between “Food” and “Organization” says if a data-point is classified as “Food”, then it should not be classified as “Organization”, and vice versa. Thus, while classifying the noun-phrase “Carnegie Mellon University” w.r.t. class ontology in Figure 2 we need to choose the labels Everything, Organization and University (consistent with the class constraints) while combining clues from both data views (text-patterns and HTML-tables).

There has already been a lot of research in the individual areas of multi-view learning [41,2,35,34,14], semi-supervised learning [36,8,16], and learning in the presence of class hierarchies [28,26,33,15]. However, the problem of unifying these aspects into a single framework is less explored. In this paper we focus on the problem of hierarchical multi-view semi-supervised learning. We propose an optimization based formulation for this problem in the EM framework which extends the popular spherical K-Means algorithm. The main idea behind our approach is to use different binary labels to model membership in each
view, and each level of a hierarchy. We then use mixed integer programming formulations to optimally assign sets of labels to an instance. Instead of collectively optimizing labels for all datapoints, we solve an integer linear program for every datapoint, deciding the optimal label assignments for the datapoint. We compare our methods against a state-of-the-art co-training approach, applied to semi-supervised spherical K-Means algorithm [1].

Our experiments show that our proposed methods work as well as or better than standard multi-view baselines like multiplication (or addition) of scores, concatenation of feature vectors, and outperform a well-studied co-training based baseline, when applied in the standard multi-view k-way classification setting. We further show that our methods are easily extensible to hierarchical multi-view classification scenarios i.e., problems where a datapoint can belong to multiple classes at different levels of a hierarchy.

Contributions. Past approaches consider multi-view and hierarchical learning scenarios separately. We propose a unified optimization based framework for multi-class multi-view hierarchical semi-supervised learning. We show that using this framework we can derive multiple existing as well as new flat multi-view learning methods.

We present extensive experiments on 9 different multi-view datasets, including document classification, image classification, publication categorization and knowledge based information extraction datasets. The data views also vary in their nature including word occurrences, binary features, link features, image histograms and co-occurrence features. We showed that our techniques give state-of-the-art performance when compared to existing multi-view learning methods including the co-training based algorithm proposed by Bickel and Scheffer [1], on the problem of flat multi-view semi-supervised learning. We also found that using hierarchical variants that use class hierarchy in the learning process improve over their flat counterparts.

This shows the potential of such linear optimization based formulations for complex learning scenarios that cover multi-view and hierarchical classification in a single framework. Finally, we have made the hierarchical multi-view NELL_mv dataset available [1]. We have published the text context and HTML table features, class hierarchy, hierarchical labels for all entities, and seed train-test partitions of NELL_mv dataset used in this paper.

Outline. In Section 2 we propose our optimization framework for multi-view semi-supervised learning. We then discuss various multi-view methods that can be instantiated using this framework. Section 3 presents extensions of our methods to multi-view problems with hierarchical class constraints. We then describe the datasets and experimental methodology in Section 4 and present our findings in Section 5. Finally, we discuss related work in Section 6 followed by conclusions.

2 Multi-View Semi-supervised Learning

The spherical K-Means algorithm [19], i.e., the K-Means algorithm with cosine similarity, is a popular method for clustering high-dimensional data such as text. In this section we will first review this existing algorithm, we then present our proposed extension called “multi-view spherical K-Means”. There are different ways in which scores from multiple views can be combined to infer labels of every data point. We formulate the multi-view semi-supervised K-Means as a generic optimization problem, and instantiate various existing as well as our proposed methods of combining scores from multiple views as special cases of this optimization problem.

1 Dataset link: http://rtw.ml.cmu.edu/wk/WebSets/multiView_2015_online
2.1 Background and Notation

Let us start with the spherical K-Means optimization problem, which makes use of cosine similarity between datapoint and centroids to do the clustering. In this algorithm [19], each document, as well as each cluster centroid, is represented as a high-dimensional unit-length vector. Let \(X = x_1, \ldots, x_N \) be the datapoints, \(C_1, \ldots, C_K \) be the clusters, \(y_{ij} \) be an indicator variable specifying whether datapoint \(x_j \) belongs to cluster \(C_i \), and \(\mu_i \) denotes the centroid for cluster \(C_i \). The task is to find optimal values of label assignments \(y_{ij} \) and cluster centroids \(\mu_i \), so as to optimize the objective function given in Equation 1.

\[
\max_{y_{ij}, \mu_i} \left(\sum_{j=1}^{N} \sum_{i=1}^{K} y_{ij} \cos(x_j, \mu_i) \right) \quad \text{s.t.} \quad \sum_{i=1}^{K} y_{ij} = 1, \forall j = 1 \ldots N, y_{ij} \in \{0, 1\} \quad (1)
\]

Since the variables \(y_{ij} \) and \(\mu_i \) are dependent on each other, the above function can be optimized using an iterative EM like algorithm such that the E step finds the best of values of \(y_{ij} \) given \(\mu_i \)'s and the M step takes these \(y_{ij} \)'s to recompute the optimal \(\mu_i \)'s. Instead of probabilistically assigning a datapoint to a number of clusters, we choose hard assignments [9] i.e., we restrict \(y_{ij} \) as binary integers, hence this is the hard-EM algorithm. Fixing the values of \(\mu_i \)'s, the objective function is maximized when \(y_{ij} = 1 \) for \(i = \arg\max_i \cos(x_j, \mu_i) \) and 0 otherwise. Let us now compute the \(\mu_i \) that maximizes the objective given the values for \(y_{ij} \)'s. \(\langle a, b \rangle \) denotes dot product of vectors \(a \) and \(b \).

\[
\max_{\mu_i} \left(\sum_{j=1}^{N} y_{ij} \cos(x_j, \mu_i) \right) = \max_{\mu_i} \left\langle \sum_{j=1}^{N} y_{ij} \frac{x_j}{\|x_j\|}, \frac{\mu_i}{\|\mu_i\|} \right\rangle = \max_{\mu_i} \left\langle \frac{x_j}{\|x_j\|}, \frac{\mu_i}{\|\mu_i\|} \right\rangle \quad (2)
\]

The Cauchy-Schwartz inequality [22] states that \(|\langle x, y \rangle| \leq ||x|| \cdot ||y|| \), and the two sides are equal only if \(x \) and \(y \) are linearly dependent. To maximize Equation 2, we can set \(\mu_i = \sum_j y_{ij} \frac{x_j}{\|x_j\|} \). If we normalize \(x_j \) and \(\mu_i \) to be unit vectors, then the equations can be simplified further. Given \(\mu_i \)'s, \(y_{ij} = 1 \) for \(i = \arg\max_i \langle x_j, \mu_i \rangle \) and 0 otherwise. Similarly, given \(y_{ij} \)'s, \(\mu_i = \sum_j y_{ij} \cdot x_j \). Henceforth, we assume that \(x_j \) and \(\mu_i \) are normalized to be unit vectors. Hence, \(\cos(x_j^{(2)}, \mu_i^{(2)}) = \langle x_j^{(2)}, \mu_i^{(2)} \rangle \). Finally, the spherical K-Means algorithm repeats these two steps iteratively till convergence.

2.2 Multi-View K-Means

We extend the spherical K-Means algorithm [19] for the multi-view setting and present a general optimization based framework for Multi-View K-Means. Later, we also describe various ways of combining evidence from the different views to instantiate multiple variants of this general algorithm.

In the multi-view scenario, a datapoint \(x_j \) has a feature representation in each view denoted by \(x_j^{(1)} \) in view 1 and \(x_j^{(2)} \) in view 2. Once the datapoints are clustered in \(k \) clusters, each centroid can also be represented differently in each view; i.e., centroid \(\mu_i \) can be represented as \(\mu_i^{(1)} \) in view 1 and \(\mu_i^{(2)} \) in view 2. There is one score for every datapoint in every view; i.e., we will have scores \(s_j^{(1)} \) and \(s_j^{(2)} \) for datapoint \(x_j \) and centroid \(\mu_i \) in view 1 and view 2 respectively to be defined below. There is a single label assignment vector per datapoint that combines scores from different views, which we represent as matrix \(Y \), i.e. \(y_{ij} = 1 \) indicates that datapoint \(x_j \) belongs to cluster \(\mu_i \).
Let us define an effective score s_{ij} of datapoint x_j belonging to cluster μ_i as an overall measure of similarity of x_j to μ_i under both views. Then the optimization problem described in Equation 1 can be re-written as:

$$\max_{y_{ij}} \left(\sum_{j=1}^{N} \sum_{i=1}^{K} y_{ij} * s_{ij} \right) \text{ s.t. } \sum_{i=1}^{K} y_{ij} = 1, \forall j = 1 \ldots N, y_{ij} \in \{0, 1\}$$

In the multi-view scenario, the score s_{ij} can be defined as a function of $s_{ij}^{(1)}$ and $s_{ij}^{(2)}$. This can be done in various ways: e.g., a linear combination of scores, multiplication of scores, taking max or min over scores and so on.

Algorithm 1 describes a generic semi-supervised multi-view K-Means algorithm. It is different from standard K-Means in the sense that each datapoint X_i and cluster centroid μ_j has a representation in each data view. In the E step of each EM iteration, for each unlabeled datapoint x we have a separate score from each view, a score of x belonging to a centroid μ_j. Line 8 in Algorithm 1 combines these scores and decides best cluster assignment for each datapoint. In the M step, centroids are recomputed per view based on the label assignments done in the E step. For simplicity of understanding, the algorithm is presented for two data views. However our techniques are easily applicable to datasets with more than two views, as discussed later in Section 2.4.

Next, we will see various ways in which the cluster assignment step (line 8) and the centroid computation step (line 10) in this algorithm can be done, leading to new multi-view SSL algorithms. Recall that instead of probabilistically assigning a datapoint to a number of clusters, we choose hard assignments, i.e., we restrict $Y^{it}(x)$ (in Line 8) as binary integers, hence this is the hard-EM algorithm (or classification EM) [9]. Even though finding an optimal set of hard assignments using mixed integer programs is relatively more expensive than soft assignments, we are solving it per datapoint, instead of collectively optimizing labels for all datapoints. Hence we can divide the datapoints into multiple shards and parallelize the computation in Line 8 of Algorithm 1. Since we are using the spherical K-Means algorithm in a semi-supervised setting, henceforth we will use “cluster” and “class” interchangeably.

2.3 Cluster Assignment using Scores from Two Data Views

In this section, we go through various ways in which the cluster assignment and centroid computations steps (lines 8, 10) in Algorithm 1 can be done. We will start with an assumption that each datapoint belongs to exactly one cluster. (In case of classification, this can be viewed as a class constraint that says “all classes $C_1 \ldots C_k$ are mutually exclusive”.) We also assume that the cluster assignment for a datapoint remains same in all data views. Later we will relax these assumptions one by one and present a way to solve these problem variants. Note that alternatives to these score combination methods are trivial methods like picking the best of available views, or concatenating feature vectors from different views. Later in Section 4 we will compare the performance of our proposed techniques against these baselines, and show the effectiveness of a carefully chosen score combination strategy.

SUMSCORE Method: Here we define the effective score as an addition of scores in different views: $s_{ij} = s_{ij}^{(1)} + s_{ij}^{(2)}$. Let us say $s_{ij}^{(1)} = \langle x_j^{(1)}, \mu_i^{(1)} \rangle$ and $s_{ij}^{(2)} = \langle x_j^{(2)}, \mu_i^{(2)} \rangle$.

$$\max_{y_{ij}, \mu_i^{(1)}, \mu_i^{(2)}} \left(\sum_{j=1}^{N} \sum_{i=1}^{K} y_{ij} * (\langle x_j^{(1)}, \mu_i^{(1)} \rangle + \langle x_j^{(2)}, \mu_i^{(2)} \rangle) \right) \text{ s.t. } \sum_{i=1}^{K} y_{ij} = 1 \forall j, y_{ij} \in \{0, 1\}$$
Algorithm 1 Semi-supervised Multi-View K-Means Algorithm

1: function Multi-view-K-Means (X(l)1, X(l)2, Y1, X(u)1, X(u)2, k; µ(l), µ(2), Y^u)
2: Input: X(l)1, X(l)2 labeled data points in view 1 and view 2 resp. with L2 norm = 1; Y1: labels(or
3: cluster assignments) for datapoints X(l); X(u)1, X(u)2 unlabeled datapoints in view 1 and view 2 resp.
4: with L2 norm = 1; k number of clusters to which the datapoints belong;
5: Output: µ(l), µ(2) cluster centroids in view 1 and view 2 resp. with L2 norm = 1; µ(l) =
6: \{µ(l)^1, ... , µ(l)^k\}; Y^u labels(or cluster assignments) for unlabeled data points X^u
7: \{Initialize model parameters using labeled data\}

4: t = 0, µ(l)^0 = argmax_L L(X(l), Y^l(µ)),
5: µ(2)^0 = argmax_L L(X(2), Y^1(µ)), here L refers to the likelihood.
6: \{here, µ(l)^0, µ(2)^0 are cluster centroids at iteration 0 in view 1, 2 resp.\}
7: while cluster assignments not converged, t = t + 1 do
8: for x ∈ X^u do
9: \(s_l^{(1)} = \langle x^{(1)}, \mu_{lj}^{(1)} \rangle, \)
10: \(s_{l}^{(2)} = \langle x^{(2)}, \mu_{lj}^{(2)} \rangle,\) for all labels 1 ≤ j ≤ k
11: Compute cluster assignments Y_l^u(x) given scores \(s_{l}^{(1)} \ldots k \cdot s_{l}^{(2)}\)
12: end for
13: \{M step : Recompute model parameters using current assignments for X^u\}
14: Compute cluster centroids µ(l), µ(2) given Y_l^u(x).
15: end while
16: end function

In this setting the optimization objective can be written as follows:

\[
\max_{\mu_l^{(1)}, \mu_l^{(2)}} \left(\sum_{j=1}^{N} y_{lj} \ast x_{l}^{(1)} \ast \mu_{lj}^{(1)} \right) + \left(\sum_{j=1}^{N} y_{lj} \ast x_{l}^{(2)} \ast \mu_{lj}^{(2)} \right) \tag{4}
\]

For the E step, keeping µ_l’s fixed, the closed form solution to compute the y_{lj}’s is as follows: y_{lj} = 1 for i = argmax \(\langle x^{(1)}, \mu_{lj}^{(1)} \rangle + \langle x^{(2)}, \mu_{lj}^{(2)} \rangle\) and 0 otherwise. In the M step, once \(y_{lj}\)’s are fixed, the optimal µ_l’s are those for which this objective function is maximized i.e. the two terms being summed are individually maximized. Each term is identical to Equation [4] and hence will have same solution. Given \(y_{lj}\), we can compute \(\mu_{lj}^{(1)}\) and \(\mu_{lj}^{(2)}\) as follows: \(\mu_{lj}^{(1)} = \sum_{i} y_{ij} \ast x_{j}^{(1)}\) and \(\mu_{lj}^{(2)} = \sum_{i} y_{ij} \ast x_{j}^{(2)}\). Henceforth, we will refer to this method as ‘SUMSCORE’ method.

PRODSCORE Method

Here we define the effective score as a product of scores in different views: \(s_{ij} = \langle x_{i}^{(1)} \ast x_{j}^{(2)} \rangle\). Keeping \(\mu_l\)’s fixed, we can compute \(y_{ij}\)’s as follows: \(y_{ij} = 1\) for \(i = argmax \(\langle x_{i}^{(1)}, \mu_{li}^{(1)} \rangle \times \langle x_{i}^{(2)}, \mu_{li}^{(2)} \rangle\)\) and 0 otherwise. Given \(y_{ij}\), \(\mu_{li}^{(1)}\) and \(\mu_{li}^{(2)}\) can be computed as follows:

\[
\max_{\mu_{li}^{(1)}, \mu_{li}^{(2)}} \left(\sum_{j=1}^{N} y_{ij} \ast \left(\langle x_{i}^{(1)}, \mu_{li}^{(1)} \rangle \times \langle x_{i}^{(2)}, \mu_{li}^{(2)} \rangle \right) \right) \tag{5}
\]

Note that in Equation [5] unlike Equation [4], \(\mu_{li}^{(1)}\) and \(\mu_{li}^{(2)}\) cannot be independently optimized. However we can still follow an iterative procedure, that in the E step assigns \(y_{ij} = 1\) for \(i = argmax \(\langle x_{i}^{(1)}, \mu_{li}^{(1)} \rangle \times \langle x_{i}^{(2)}, \mu_{li}^{(2)} \rangle\)\) and 0 otherwise; and in the M step, recom-
puts the centroids in different views as \(\mu_i^{(1)} = \sum_j y_{ij} * x_{ij}^{(1)} \), and \(\mu_i^{(2)} = \sum_j y_{ij} * x_{ij}^{(2)} \)

Henceforth, we will refer to this method as the ‘PRODSCORE’ method.

Next we propose yet another variant of the multi-view K-Means algorithm, which differs from the PRODSCORE and SUMSCORE methods in terms of their label assignment strategy in the E step of the EM algorithm.

\[
\text{maximize} \quad y_i^{(1)} \cdot y_i^{(2)} \cdot f_i \cdot \mu_i^{(1)} \cdot \mu_i^{(2)}
\]

subject to,
\[
\sum (f(y_{ij}^{(1)}, y_{ij}^{(2)}, s_{ij}^{(1)}, s_{ij}^{(2)}) - (\text{Penalty for}(\sum_{i=1}^{K} y_{ij}^{(1)} = y_{ij}^{(2)}), (\sum_{i=1}^{y_{ij}^{(v)} = 1} 1)))
\]

\[
\sum_i y_i^{(1)} \leq 1 + \delta^1, \quad \sum_i y_i^{(2)} \leq 1 + \delta^2, \quad \forall i = 1 \ldots k
\]

\[
\sum_i y_i^{(1)} \geq 1 - \zeta^1, \quad \sum_i y_i^{(2)} \geq 1 - \zeta^2, \quad \forall i = 1 \ldots k
\]

\[
\zeta^1, \zeta^2, \delta^1, \delta^2 \geq 0, \quad y_i^{(1)} \in \{0, 1\}, \quad y_i^{(2)} \in \{0, 1\} \quad \forall i
\]

Fig. 3 (a) Optimization formulation for multi-view learning (b) Mixed integer program for MAXAGREE method with two views and (c) Mixed integer program for MAXAGREE method with three views.

MAXAGREE Method: The SUMSCORE and PRODSCORE methods assign the same label vector for each datapoint in both views and selects only one of the available labels (hard mutual exclusion constraint). However for some datapoints, view 1 and view 2 might not agree on labels in the initial EM iterations; here we relax this constraint. Further, mutual exclusion constraints between labels are also softened. Equation 6 (Figure 3(a)) shows a new objective function that is being optimized for the entire dataset. \(f(y_{ij}^{(1)}, y_{ij}^{(2)}, s_{ij}^{(1)}, s_{ij}^{(2)}) \) is a function of label vectors, and score vectors in the two views. Note that in this case multiple bits in \(y_i \) can be 1, and finding the best possible bit vector of \(y_i \)'s can lead to evaluating \(2^k \) possible assignments.

Equation 8 (Figure 3(b)) shows an instantiation of Equation 6, the mixed integer linear program (MIP) that is solved per datapoint. This new method, called MAXAGREE (maximize agreement) allows different views to assign a datapoint to different clusters, with a penalty on cluster assignments being different. In particular, label predictions are done by
solving a MIP on scores produced in the two views and choosing a label vector per datapoint per view, with a penalty for assigning different labels across views and a penalty for not following the mutual exclusion constraints. Further, Equation 6 can be independently optimized for each datapoint.

For each datapoint $s_i^{(1)}$ and $s_i^{(2)}$ are scores of x belonging to cluster i according to data view 1 and view 2 resp. $y_i^{(1)}$ and $y_i^{(2)}$ represent cluster assignments in view 1 and view 2 resp. d_i is the penalty on $y_i^{(1)}$ and $y_i^{(2)}$ being different. ζ^1 and ζ^2 are the penalty terms for the constraint that each datapoint should be assigned to at least one cluster in each view. Similarly, δ^1 and δ^2 are the penalty terms for the constraint that each datapoint should be assigned to at most one cluster in each view. α_1, α_2 and α_3 are constants that define relative importance of terms in the objective function.

COTRAIN Method: We also experiment with a well-studied co-training based method ‘COTRAIN’ as one of the baselines. This method is a multi-view spherical K-Means algorithm that is proposed by Bickel and Scheffer [1]. In particular, it is a co-training variant of the spherical K-Means algorithm, in which predictions made for view 1 in the E step are used to recompute centroids of view 2 in the M step and visa versa.

2.4 Incorporating more than two views

Note that the optimization based methods discussed in this section are presented for two views. However, all methods instantiated using our optimization framework are easily extensible to additional number of views. Say, a datapoint x_j in the third view is represented as $x_j^{(3)}$; and the cluster centroid μ_i in the third view is represented as $\mu_i^{(3)}$. Let us see example adaptations for two of the proposed methods: SUMSCORE and MAXAGREE.

SUMSCORE method with three views: SUMSCORE method will add scores from all three views. In the E step, keeping μ_i’s fixed, the closed form solution to compute the y_{ij}’s is as follows: $y_{ij} = 1$ for $i = \arg\max_i \left(\langle x_j^{(1)}, \mu_i^{(1)} \rangle + \langle x_j^{(2)}, \mu_i^{(2)} \rangle + \langle x_j^{(3)}, \mu_i^{(3)} \rangle \right)$ and 0 otherwise. In the M step, once y_{ij}’s are fixed, the optimal μ_i’s are computed as follows:

$$\mu_i^{(1)} = \sum_j y_{ij} * x_j^{(1)}, \quad \mu_i^{(2)} = \sum_j y_{ij} * x_j^{(2)}, \quad \text{and} \quad \mu_i^{(3)} = \sum_j y_{ij} * x_j^{(3)}.$$

MAXAGREE method with three views: Equation 8 (Figure 3 (c)) shows the modified optimization problem for the MAXAGREE method. It tries to maximize pairwise agreement between all three views indicated by variables $d_i^{(12)}$, $d_i^{(23)}$ and $d_i^{(13)}$. Two new penalty terms ζ^3 and δ^3 are introduced. ζ^3 constrains each datapoint should be assigned to at least one cluster in each view. Similarly, δ^3 are the penalty terms for the constraint that each datapoint should be assigned to at most one cluster in each view.

Although our methods are easily extensible to additional number of views, it is not the focus of this paper; hence we limit all experiments in this paper to two data views.

3 Extensions to Hierarchical Multi-view Learning

The methods we discussed in the previous section assume the flat classification scenario, i.e. all classes are mutually exclusive, hence there is a penalty on assigning multiple labels to a single datapoint. However, in real world datasets it is often the case that classes are arranged in a hierarchy. They have subset and mutual exclusion constraints among them i.e. pairs of
classes might be constrained to be disjoint ($C_i \cap C_j = \emptyset$) or in a subset relation ($C_i \subseteq C_j$). E.g., in an information extraction task to populate a KB, the KB ontology might pose constraints that if a noun-phrase is classified as “Animal” then it should also be classified as “Reptile” (i.e. $Mammal \subseteq Animal$), and further the same noun-phrase should not be classified as “Mammal” (i.e. $Mammal \cap Reptile = \emptyset$). Further, our proposed optimization method is not limited to tree-structured class hierarchies. It can also deal with non-tree class hierarchies defined by sets of subset and mutual exclusion constraints.

$$\begin{align*}
\text{maximize} & \quad \sum_{i} \alpha_i \left(\sum_{j} \beta_{ij} \sum_{i,j} \delta_{ij} \right) \\
\text{subject to} & \quad y_i + y_j \leq 1 + \delta_{ij}, \forall (i,j) \in \text{Mutex}, \quad \delta_{ij}, \forall i \in \{0,1\} \forall i,j
\end{align*}$$

(a)

$$\begin{align*}
\text{maximize} & \quad \alpha_1 \sum_{i} \left(\sum_{j} \beta_{ij} \sum_{i,j} \delta_{ij} \right) + \alpha_2 \sum_{i} \sum_{j} \sum_{i,j} \delta_{ij} \\
\text{subject to} & \quad d_i = |y_i^1 - y_i^2|, \forall i = 1 \ldots k \\
\text{subject to} & \quad y_i^1 - \epsilon_{i,j}^1 \geq 0, \forall (i,j) \in \text{Subset}, \\
\text{subject to} & \quad y_i^1 + y_i^2 \leq 1 + \delta_{ij}, \forall (i,j) \in \text{Mutex}
\end{align*}$$

(b)

Fig. 4 Mixed integer program for (a) Hier-SUMSCORE method and (b) Hier-MAXAGREE method.

In this section we will discuss natural extensions of our proposed multi-view approaches for hierarchical multi-view learning. The only change that needs to be made is that each datapoint can be assigned multiple labels, so that they satisfy the class constraints. Further, instead of making the constraints hard, we relax them using slack variables. These slack variables add a penalty to the objective function upon violating any of the class constraints. Let Subset be the set of all subset or inclusion constraints, and Mutex be the set of all mutual exclusion constraints. In other words, $\text{Subset} = \{(i,j) : C_i \subseteq C_j \}$ and $\text{Mutex} = \{(i,j) : C_i \cap C_j = \emptyset \}$. Note that our only assumption is that we know the subset and mutual exclusion constraints between classes under consideration. However, we do not assume that the classes are necessarily arranged in a tree structured hierarchy. Next, we will discuss three methods that do multi-view learning in the presence of such class constraints.

Hier-SUMSCORE Method: This method is an extension of the SUMSCORE method discussed in Section 2.3. For each datapoint, this method tries to maximize the sum of scores of selected labels, after penalizing for violation of class constraints. The scores from two views are combined through addition. There is a unique label assignment vector for each datapoint across two views computed by solving the mixed integer program given Equation 9 (Figure 4 (a)).

Hier-PRODSCORE Method: This method is an extension of the PRODSCORE method. The mixed integer program for this method is very similar to that of the Hier-SUMSCORE
method except that in the objective function, scores from two views are combined using product instead of addition of scores. There is a unique label assignment vector for each datapoint across two views.

Hier-MAXAGREE Method: This is an immediate extension of the MAXAGREE method described in Section 2.3, to incorporate class hierarchy. Different views can assign a datapoint to different sets of clusters. There is a penalty on cluster assignments being different across views, and any violation of the class constraints. Equation 10 (Figure 4(b)) shows the mixed integer linear program to be solved for each datapoint. For each datapoint $s^{(1)}_i$, $s^{(2)}_i$ represent scores of x belonging to cluster i; and $y^{(1)}_i$, $y^{(2)}_i$ represent cluster assignment of x in view 1 and view 2 respectively. d_i is the penalty on $y^{(1)}_i$ and $y^{(2)}_i$ being different. s_{ij} and ζ_{ij} are the penalty terms for Subset constraints. Similarly, $\delta^{(1)}_{ij}$ and $\delta^{(2)}_{ij}$ are the penalty terms for Mutex constraints. α_1, α_2 and α_3 are constants that define relative importance of terms in the objective function.

Note that the hierarchical methods discussed here can work with any class ontology and are not limited to tree structured ontologies.

4 Datasets and Experimental Methodology

Here, we first describe the datasets used in this paper. We then explain the experimental setup and evaluation criteria used.

4.1 Datasets

We present experiments with 9 multi-view datasets, summarized in Table 1. The first six of them are publicly available, and the last three are created by us for exploring the multi-view learning task. First three datasets Cora, WebKB and CiteSeer consists of 2 data views for scientific publications. First view consists of 0/1-valued word vector derived from the document text, and the other view is citation links between these documents. Each document in the Cora, WebKB and CiteSeer datasets has been classified into one of the seven, five and six classes respectively. Next two datasets, Wikipedia_linqs and Pubmed_linqs also contain bag of words and the links between documents as the two views, but they are different from the earlier datasets in the sense that words features are TF/IDF-weighted instead of being 0/1-valued. Wikipedia_linqs has 19 distinct categories, whereas the Pubmed_linqs dataset has 3 categories.

The UCI Leaves image dataset contains sixteen samples of leaves of each of the one-hundred plant species. For each sample, a shape descriptor, and texture histogram (feature vectors of size 64 each) are given. The Citeseer2 dataset contains text and author views for around 6K scientific articles, classified into 17 categories. The NELL_mv dataset was created using around 1800 entities in the NELL KB and the data views being occurrences of those entities in ClueWeb09 text and HTML table data. The NELL_mv dataset contains hierarchical labels that can be arranged in an ontology shown in Figure 5. For flat multi-view learning purposes, we use labels at each level of hierarchy, while for hierarchical multi-view learning experiments we make use of the ontology to create class constraints. The NELL ontology considered here is tree-structured, however our proposed hierarchical methods are not limited to tree-structured ontologies.

General statistics like the number of datapoints, features, classes etc. about these datasets are summarized in Table 1. We can see that our datasets have varying number of datapoints and classes. They also cover different kinds of features like: binary text features, tfidf text
features, link features, semi-structured data features and image features. We have made the hierarchical multi-view NELL_mv dataset available\[^{2}\] for the research community to help future research in this field.

4.2 Experimental Setting

In addition to SUMSCORE and PRODSCORE baselines, we experimented with three other single view baselines. Methods ‘V1’ and ‘V2’ are single-view spherical K-Means methods that use only view 1 and view 2 of the data respectively. For the experiments in this paper we order the views for each dataset such that view 1 is on average better than view 2 in terms of F1 scores. Using the concatenation of two views as feature vectors yields Method ‘V12’. Method ‘COTRAIN’ is the co-training based multi-view spherical K-Means algorithm proposed by Bickel and Scheffer \[^{1}\]. We compared these baseline methods with multi-view based on our proposed optimization formulation: These methods include ‘SUMSCORE’, ‘PRODSCORE’, and ‘MAXAGREE’ (Section 2.3).

Further, we evaluate extensions of some of these flat multi-view methods to the hierarchical learning scenarios: ‘Hier-SUMSCORE’, ‘Hier-PRODSCORE’, and ‘Hier-MAXAGREE’ (Section 3). For experiments in this paper we set $\alpha_1 = 0.5$, $\alpha_2 = 0.1$, and $\alpha_3 = 1$ for both the ‘MAXAGREE’ and ‘Hier-MAXAGREE’ methods.

4.3 Evaluation Criteria

To evaluate the performance of various methods, we use macro and micro averaged F1 scores. The ‘Macro averaged F1 score’ gives equal weight to performance on all classes, hence it is better in cases where class distribution is skewed. On the other hand, the ‘Micro averaged F1 score’ gives equal weight to performance on all datapoints, hence it is biased

\[^{2}\] The dataset can be downloaded from http://rtw.ml.cmu.edu/wk/WebSets/multiView_2015_online/index.html
towards the majority class. For each dataset we experimented with different values of the training percentage. For each value of training percentage, we average the scores across 10 random train/test partitions. Note that we are running these experiments in the transductive setting i.e. our semi-supervised learning algorithm will get as input training examples with ideal labels as well as unlabeled test examples; and the task is to learn a model from labeled training and unlabeled test data to in turn label the test datapoints.

For the flat multi-view experiments presented in Section 5.1, we run experiments on all 8 datasets, with 2 values of training percentage \{10, 30\}, with 10 random train-test partitions for each combination. For the NELL_mv dataset we do separate evaluation at the second and third levels of the class hierarchy. Hence for each method we get 18 values of average F1 scores for each of the ‘Macro’ and ‘Micro’ averaging methods.

Next, we compute the ‘Average rank’ of methods for these 18 test-cases. While computing average rank, we first compute a method’s average rank according to macro-averaged F1 scores, and micro-averaged F1 scores, and take the average of these 2 ranks. The lower the average rank, the better the method’s performance. Further we visualize these results using ‘scatter plots’ that show the F1 score of each of the proposed method vs. baseline method. Proposed methods are shown on the x axis compared to baselines on the y axis, hence points below the ‘x=y’ dotted line mean that proposed methods performed better. Both average rank and scatter plots help us measure the effectiveness of methods over a number of datasets.

Finally, we also present correlation analysis of performance improvements produced by our techniques w.r.t dataset characteristics like view agreement, and view imbalance. ‘View agreement’ is defined as the fraction of datapoints for which methods V1 and V2 produce same labels; its value varies between 0 to 1. We define ‘view imbalance’ as the difference between the performances of the two views; its value can vary between 0 to 100. Consider an example where on a particular dataset, V1 and V2 gave F1 score of 55.0 and 42.7 respectively, then view imbalance is $|55.0-42.7| = 12.3$. If final labels produced by V1 and V2 agree on 500 out of 1000 datapoints, then the view agreement is $500/1000 = 0.5$.

5 Experimental Results

In this section we go over our experimental findings in terms of evaluation of flat and hierarchical multi-view methods.

5.1 Results: Flat Multi-view Learning

Table 2 compares the macro-averaged F1 scores of proposed optimization based methods with baseline methods on all 8 multi-view datasets with 10% and 30% training data. V12 method came out as a strong baseline. We can see that our proposed methods SUMSCORE, and MAXAGREE give comparable or better performance w.r.t all baseline methods, and clearly outperform the COTRAIN and V1(best of two views) methods on most datasets. We can also see that MAXAGREE method performs as well as and sometimes better than the SUMSCORE method. MAXAGREE allows different label vectors to be assigned in different views and hence is the most expressive out of the proposed method.

Figure 6 shows the scatter plot of the Macro and Micro averaged F1 scores of our proposed methods (PRODScore, SUMSCORE, and MAXAGREE) vs. baselines (V1, V2, V12, and COTRAIN). Points being below x=y line denotes that our proposed method (plotted on x axis) performed better that the baseline method (plotted on y axis). These plots reinforce the fact that SUMSCORE and MAXAGREE methods are performing comparable.
Fig. 6 Scatter plots of F1 scores of Flat Multi-view methods on all datasets. Proposed methods (PRODSCORE, SUMSCORE, MAXAGREE) are on the x axis compared to baselines (Max(V1,V2), V12, COTRAIN) on the y axis, hence points below the ‘x=y’ dotted line mean that the proposed method performed better. (Please refer to Section 5.1.)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Train percentage</th>
<th>View Agreement</th>
<th>Baseline methods</th>
<th>Proposed methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>V1</td>
<td>V2</td>
</tr>
<tr>
<td>Cora</td>
<td>10</td>
<td>0.30</td>
<td>55.0</td>
<td>42.7</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.50</td>
<td>69.2</td>
<td>62.1</td>
</tr>
<tr>
<td>WebKB</td>
<td>10</td>
<td>0.32</td>
<td>55.1</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.50</td>
<td>68.9</td>
<td>50.0</td>
</tr>
<tr>
<td>Citeseer1</td>
<td>10</td>
<td>0.35</td>
<td>64.4</td>
<td>33.3</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.52</td>
<td>73.2</td>
<td>54.9</td>
</tr>
<tr>
<td>Wikipedia_linyts</td>
<td>10</td>
<td>0.44</td>
<td>57.4</td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.60</td>
<td>68.0</td>
<td>55.7</td>
</tr>
<tr>
<td>Pubmed_linyts</td>
<td>10</td>
<td>0.67</td>
<td>69.8</td>
<td>37.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.77</td>
<td>68.7</td>
<td>37.7</td>
</tr>
<tr>
<td>UCI Leaves</td>
<td>10</td>
<td>0.42</td>
<td>71.6</td>
<td>56.8</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.59</td>
<td>81.2</td>
<td>70.6</td>
</tr>
<tr>
<td>Citeseer2</td>
<td>10</td>
<td>0.13</td>
<td>17.4</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.33</td>
<td>37.5</td>
<td>30.0</td>
</tr>
<tr>
<td>NELL_mv level=2</td>
<td>10</td>
<td>0.66</td>
<td>78.3</td>
<td>53.2</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.79</td>
<td>69.4</td>
<td>55.1</td>
</tr>
<tr>
<td>NELL_mv level=3</td>
<td>10</td>
<td>0.45</td>
<td>48.8</td>
<td>42.7</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.57</td>
<td>60.0</td>
<td>50.2</td>
</tr>
<tr>
<td>Avg. Rank</td>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
</tr>
</tbody>
</table>

Table 2 Comparison of proposed optimization based multi-view methods w.r.t baselines on all 8 datasets in terms of macro-averaged F1 scores. Best F1 scores in each row are bold-faced. (+) in front of scores for proposed methods indicate that for that dataset the proposed method performed better than or equal to the best baseline score for the dataset. Last row of the table shows average rank of each method in terms of both macro averaged F1 and micro averaged F1 scores. Top 3 method ranks are bold-faced. (Refer to Section 5.1.)

To or better than all baseline methods whereas PRODSCORE method does not consistently outperform the baselines. Further, we also compare these methods in terms of their average rank according to both macro averaged and micro averaged F1 scores. According to this metric, the top 3 methods are SUMSCORE, MAXAGREE and V12.
Thus we observed that our optimization based label assignment strategies (SUMSCORE and MAXAGREE) give state-of-the-art or comparable performance when compared to existing flat multi-view techniques, including the well studied co-training based baseline CO-TRAIN. In terms of average rank of baselines V12 performed best.

From Table 2 and scatter plots in Figure 6, we can see that different methods gave best performance on different datasets. To help understand the reasons for this, we studied the correlation of performance improvements of proposed methods (over baseline V12) w.r.t the view imbalance. As described in Section 4.3, ‘view imbalance’ is defined as the difference between the performances of V1 and V2. From Figure 7 and Table 3, we can see that the performance improvements of both PRODSCORE and MAXAGREE over V12 are negatively correlated with the difference between the two views, i.e., there is less improvement over the baseline when there is larger view imbalance (as the performance of two views differ by larger amount). This seems natural as simpler score combination methods (like best view or concatenation of views) should work well when most information about an example is in only one view. However from the pVals and Figure 7 we can also see that MAXAGREE is more robust to the view imbalance as its negative correlation is not statistically significant. Further we can see that the improvement of MAXAGREE over PRODSCORE is higher with larger view imbalance; we found a weak positive correlation of 0.36 with pVal = 0.14.

Prior work [12] has also studied correlation between the performance of multi-view methods and view agreement. The third column of Table 2 gives the value of agreement between methods V1 and V2. We could not find any significant correlation between the view agreement and the improvements of proposed methods w.r.t. baselines. This might be due to the fact that the datapoints for this correlation analysis are coming from different kinds of datasets. When we did similar analysis in the subsequent hierarchical experiments on the single NELL_mv dataset, we found a significant correlation between agreement rate and performance improvement of proposed methods w.r.t. baselines (refer to Figure 8).

In the next section we will see extensions of our flat multi-view approaches for hierarchical multi-view learning problems.

Flat Classification: Pearson Correlation coefficient between the view imbalance and performance improvements produced by multi-view methods over the baselines. (Please refer to Section 5.2.)

<table>
<thead>
<tr>
<th>View imbalance</th>
<th>CORRELATION WITH</th>
<th>% relative improvement</th>
<th>correlation</th>
<th>pVal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODSCORE over V12</td>
<td>-0.50</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXAGREE over V12</td>
<td>-0.39</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXAGREE over PRODSCORE</td>
<td>0.36</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3
Fig. 7 Percentage relative improvement of multi-view methods for datasets with varying view imbalance. (Please refer to Section 5.1.)

Table 4 Comparison of hierarchical vs. flat multi-view methods in terms of % Macro averaged F1 on the NELL_mv dataset. Column Δ lists the percentage relative improvement of the hierarchical methods over their flat counterparts. Last row of the table shows average rank of each method in terms of both macro averaged F1 and micro averaged F1 scores. Top 3 method ranks are bold-faced. (Please refer to Section 5.2.)

3 methods are PRODSCORE, MAXAGREE and COTRAIN. Figure 8 shows the correlation between view agreement and % relative improvement w.r.t. the V12 method. From the trend and correlation coefficient values we can say that improvements of PRODSCORE and MAXAGREE w.r.t. V12 are positively correlated with agreement between the views. Further, with lower agreement rate MAXAGREE performs best, whereas with high values of the agreement rate PRODSCORE performs best.

Fig. 8 Percentage relative improvement of hierarchical multi-view methods for datasets with different view agreement rates. (Please refer to Section 5.2.)
Table 4 shows the macro-averaged F1 results for all methods varying the training percentage. We can see that all the proposed hierarchical methods Hier-SUMSCORE, Hier-PRODSCORE and Hier-MAXAGREE improve over their flat counterparts in terms of macro-averaged F1 scores for all values of the training percentage. Column marked as Δ shows the percentage relative improvement of the hierarchical method over its flat counterpart. We can see that all methods benefit from hierarchy and the maximum percentage improvements are 18.3% for SUMSCORE, 6.7% for PRODSCORE and 20.1% for the MAXAGREE method. Overall, Hier-MAXAGREE method performs best when the amount of training data is very small, followed by Hier-SUMSCORE and Hier-PRODSCORE methods. Further Hier-PRODSCORE works best for higher values of training percentages.

Figure 9 compares the learning curves of hierarchical and flat versions of MAXAGREE and PRODSCORE methods vs. baselines. We can see all methods are improving with more training data, however learning curves of Hier-MAXAGREE and Hier-PRODSCORE are better than baselines V12 and COTRAIN; validating the effectiveness of proposed methods.

Figure 10(a) shows the scatter plot of hierarchical vs. flat methods (SUMSCORE, PRODSCORE and MAXAGREE) in terms of both macro and micro averaged F1 scores. Each method has 6 datapoints corresponding to the 6 different training percentages as shown in Table 4. We can see that hierarchical methods always outperform flat methods in terms of macro-averaged F1, but they might be worse in terms of micro averaged F1 scores. Figure 10(b) shows that the histogram of NELL mv leaf class frequencies is skewed. It has been observed that skewed category distribution often leads to less reliable micro averaged performance [11] (since it is biased towards the most popular class(es)). This can justify the surprising trend in Figure 10(a) that for 6 out of 18 datapoints, flat method outperforms hierarchical method in terms of micro averaged F1 score. We found that all of these 6 datapoints come from PRODSCORE method. Hence Hier-MAXAGREE and Hier-SUMSCORE outperform their flat counterparts in terms of both macro and micro averaged F1 scores.

Finally we compare the flat and hierarchical multi-view methods in terms of average runtime of experiments presented in this section. Figure 11(a) shows the bar-chart of average run-times of methods. In our MATLAB implementation, the running time of proposed multi-view methods Hier-PRODSCORE, Hier-SUMSCORE and Hier-MAXAGREE are longer than traditional PRODSCORE, SUMSCORE methods, but not unreasonably so. However, flat multi-view method MAXAGREE is relatively more expensive, due to the combinatorial number of possible label assignments it needs to evaluate while solving mixed integer linear programs. We believe that adding the hierarchical constraints and ignoring unnecessary variables (an implementation trick), reduces the number of possible candidate assignments to evaluate for Hier-MAXAGREE, making it more efficient than MAXAGREE. Further, Figure 11(b) shows the convergence trends for some of the methods in terms of number of label
Hierarchical multi-view methods
Flat multi-view methods

SUMSCORE
PRODSCORE
MAXAGREE

Fig. 10 Results on NELL\textsubscript{mv} dataset: (a) Scatter plot of hierarchical vs. corresponding flat multi-view methods (b) Class frequency histogram of leaf classes. (Please refer to Section 5.2.)

Hierarchical multi-view methods
Flat multi-view methods

SUMSCORE
PRODSCORE
MAXAGREE

Fig. 11 Results on NELL\textsubscript{mv} dataset: (a) Average run-times of methods. (b) Convergence trends with 30% training data. (Please refer to Section 5.2.)

bits flipped across EM iterations, the algorithms converge when no bit is flipped. We can see that hierarchical methods converge quickly compared to the V1 and V12 methods. Also note that V2 is the worse of two views, even though it converges quickly, its performance in terms of Macro averaged F1 score is lower.

Results in this section, proved the superiority of hierarchical multi-view techniques based on our proposed optimization framework. It was also observed that with small amount of training data, Hier-MAXAGREE method gave state-of-the-art performance on NELL\textsubscript{mv} dataset on the task of hierarchical multi-view learning in terms of both macro and micro averaged F1 scores.

6 Related Work

Multi-view learning as defined by Xu et al. \cite{41} is a paradigm that introduces a different function to model each view and jointly optimizes all the functions to exploit the redundant views of the same input data and improves the learning performance. Blum and Mitchell \cite{2} proposed the co-training algorithm for problems where the examples are described by two conditionally independent views. It jointly trains two classifiers such that classifier A adds examples to the labeled set that classifier B will then be able to use for learning. If the two views are conditionally independent, then co-training will always improve the results, otherwise it may not be successful. Later, Nigam and Ghani \cite{35} analyzed the performance of co-training when certain assumptions are violated. More generally, one can define a learning paradigm that utilizes the agreement among different learners, and the particular assumptions of co-training are not required. Instead, multiple hypotheses with different inductive biases, e.g., decision trees, SVMs, etc. can be trained from the same labeled data set, and are
required to make similar predictions on any given unlabeled instance. Sindhwani et al. [38] and Brefeld et al. [4] proposed multi-view semi-supervised regression techniques.

Another related area of research is multi-task learning. Jin et al. [27] proposed a single framework to incorporate multiple views and multiple tasks by learning shared predictive structures. On similar lines, Hu et al. [20] handle the problem of heterogeneous feature spaces in the context of transfer learning, and show improved performance on the tag recommendation task. Kang and Choi [42] developed a method based on restricted deep belief networks for multi-view problems, such that layer of hidden nodes in the belief network have view-specific shared hidden nodes. Usunier et al. [34] focus on learning to rank multilingual documents, using machine translation of documents in other languages as different data views. Several boosting approaches like Mumbo [29] and ShareBoost [37] are also proposed for multi-view learning problems. Our techniques are weakly supervised and do not assume the amount of training data required to train such boosting algorithms.

Recent research on multiple kernel learning has proposed a number of approaches for combining kernels in the regularized risk minimization framework [39, 31, 21]. Researchers have also explored dimensionality reduction techniques to create unified low-dimensional embeddings from multi-view datasets so as to benefit semi-supervised learning and information extraction tasks [17, 14]. Cai et al. [6] proposed the use of structured sparsity inducing norms to make K-Means algorithm run on large datasets using multi-threaded machines. Their method is complementary to our techniques because we focus on consistent label assignment for a single datapoint in the E step of every K-Means iteration, hence can be incorporated in their multi-threaded setting.

Brefeld et al. [3, 5] proposed multi-view learning techniques for more challenging structured output spaces. Our methods are different in the sense that, we make use of the well-studied EM framework, pose the label assignment in the E step as an optimization problem, and propose multiple linear and mixed-integer formulations to solve such optimization problem. Gilpin et al. [26] have proposed a integer linear programming based method for hierarchical clustering. Our techniques are different in the sense that Gilpin et al. focus on unsupervised agglomerative clustering whereas we focus on semi-supervised and multi-view clustering in the presence of predefined class hierarchy.

Integer linear programming is used by several existing approaches to do constrained inference. Dalvi et. al [18] proposed a mixed integer programming based method (GLOFIN) for hierarchical classification of potential glosses to match them to relevant entities in a gloss-free knowledge base. Interestingly, another recent work has used mixed integer linear programming techniques to encode ontological constraints [33]—they assign multiple plausible KB categories to ‘emerging’ entities, which are not yet represented in the KB, and consider mutual exclusion constraints as a post-processing step, so as to output a consistent set of category assignments. On the other hand, our method jointly models multi-view, subset and mutual exclusion constraints, within an iterative semi-supervised EM algorithm.

There has also been some work on modifying EM to incorporate side information such as multi-view constraints or domain knowledge based constraints on outputs. The posterior regularization framework [24] modifies the EM algorithm to encode domain constraints on the expected output, which has also been extended to incorporate soft agreement in a multi-view setting [23]. Our technique Hier-MAXAGREE is different in the sense that it maximizes agreement between the labels produced in each view while satisfying ontological class constraints if available, whereas the method proposed by Ganchev et al. [23] minimizes the difference between actual scores produced by the views. Further, we present extensive experiments on variety of multi-view datasets. Chang et al. [10] proposed an extension of EM algorithm for encoding the task specific domain knowledge base constraints on the
output. Our hierarchical techniques are similar to this in the sense that we also modify the EM algorithm to do constrained learning. However our techniques are different from [10] in the sense we are using constraints specific to a dataset, i.e. for the NELL_mv dataset, the ontological constraints we used are the same as the ones which were used while building the NELL knowledge base. We don’t need any hand curated constraints for the specific task that we worked on. Further we take care of the agreement across views and ontological constraints in a single framework using multiple soft constraints.

Graph based multi-view semisupervised learning techniques have also been proposed in past few years. Wang et al. [40] proposed a multi-graph based semisupervised learning technique that can incorporate multiple modalities, and multiple distance functions in the task of video annotation. Lee et al. [30] proposed a new graph-based multi-label propagation technique and applied it to large datasets by utilizing a map-reduce framework. Though these methods can handle multi-view data, they fail to address the scenarios where classes/labels are arranged in a hierarchy and inference needs to be done following certain constraints between these classes.

7 Conclusions

In this paper, we investigated the problem of semi-supervised learning in the presence of multiple-data views. We formulated the problem as an optimization problem, and solved it using the standard EM framework. We then focused on the sub-problem of assigning labels to each datapoint (part of E step), and studied various methods for such prediction. Our proposed method solves a mixed integer linear program to find consistent class assignments given the scores in each data view. Because our multi-view techniques are broadly similar to co-training based algorithms, we also compared them to a seeded version of multi-view spherical K-Means algorithm that is proposed by Bickel and Scheffer [1]. Our methods produced better performance in terms of macro-averaged F1 score compared to this co-training baseline.

However, all the multi-view baselines discussed here are limited to problems where each data point belongs to only one class. We showed that our proposed linear programming based formulation can be easily extended to multi-label classification and can incorporate hierarchical class constraints. For a dataset with hierarchy of classes, our extended optimization methods produced better results when compared to flat multi-view clustering baselines in terms of macro-averaged F1 score. An interesting direction for future research can be to apply these linear programming based techniques for multi-view Exploratory Learning [10] that does semi-supervised learning in the presence of unanticipated classes. Such techniques can further be used for populating knowledge bases along with discovering new classes from multi-view unlabeled data.

References