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Abstract In multiclass semi-supervised learning, sometimes the information about data-
points is present in multiple views. In this paper we propose an optimization based method
to tackle semi-supervised learning in the presence of multiple views. Our techniques make
use of mixed integer linear programming formulations along with the EM framework to
find consistent class assignments given the scores in each data view. We compare our tech-
niques against existing baselines, including a cotrain variant for K-Means, on a number
of multi-view datasets. Our proposed techniques give state-of-the-art performance in terms
of F1 score, outperforming a well-studied SSL method based on co-training. Further, we
show that our techniques can be easily extended to multi-view learning in the presence of
hierarchical class constraints. These extensions improve the macro-averaged F1 score on a
hierarchical multi-view dataset.

1 Introduction

In multiclass semi-supervised learning, sometimes the information about datapoints is present
in multiple views. For instance consider Web document classification: a learning algorithm
can use two views, the text within the document and the anchor texts of its inbound hyper-
links. Similarly, in an information extraction task to populate a Knowledge Base(KB) like
NELL [8], each noun-phrase to be classified has different sets of features or data views
associated with it; e.g., text contexts that appeared with it, its occurrences in HTML table-
columns, morphological features, and so on. As an example, consider the 2 view dataset
in Figure|l| with each noun-phrase being represented by distributional features w.r.t its oc-
currences with text-patterns and in HTML-Tables. For the noun-phrase “Carnegie Mellon
University”, a text-pattern feature, value of (“_argl is located in”, 100) denotes that the
noun-phrase “Carnegie Mellon University” appeared in argl position of the context “_argl
is located in” 100 times in the input corpus of sentences. For the same noun-phrase having
a HTML-Table feature a value of (“doc04::2:1”, 1) means that the noun-phrase “Carnegie
Mellon University” appeared once in HTML table 2, column 1 from document id “doc04”.
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View-1: Text-patterns View-2: HTML-tables
Noun-phrase: _arglﬁlocatdeg in, 100 doc04::2:1, 1
. . - are offerred by _argl, 56 doc10::1:2, 1
Carnegie Mellon University “argl has branches in, 23 doc17o11 1
_argl is renowned for, 15 ¥

B

Doc04, table 2

Text sentences .-

............................................................................................... X Column 1 Column 2

i Carnegie Mellon University is located in Pittsburgh. H ' . . . Vo :
i Various masters and PhD programs in computer science are offerred by Carnegie Mellon University. | 1 Carnegie Mellon University E Pittsburgh, PA
+ Online courses in machine learning are offerred by Stanford University. : 1 Stanford University + Stanford, CA

1+ Carnegie Mellon University has branches in Pittsburgh, Qatar and Sillicon Valley.

i UMass Amherst i Amherst, MA
H H

Fig. 1 An example of multi-view dataset for Knowledge Base population task. For each noun-phrase distri-
butional features are derived from two data sources. Occurrences of the noun-phrase with text-patterns result
in View-1 and occurrences of the noun phrase in HTML table columns result in View-2.

A common approach is to concatenate the feature vectors for each view but this is not al-
ways optimal. Multi-view learning [41112l/351341/14] addresses this problem by introducing
a different function to model each view, and jointly optimizing all the functions to exploit
the redundant views and improve learning performance.
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Fig. 2 An example of ontological with subset and mutual exclusion relations between classes.

Multiple views are only one issue arising in complex real-world learning tasks. For in-
stance, in the above mentioned KB population task, labels assigned to each noun-phrase
need to be consistent with the hierarchical class constraints posed by the KB ontology. Con-
sider a toy example of ontological class constraints in Figure[2] Here, we can see two kinds
of class constraints imposed by the ontology. Following are example constraints:

(1) The “Subset” constraint between “Fruit” and “Food” categories suggests that if a data-
point is classified as “Fruit”, then it should also be classified as “Food”. (2) The “Mutual
Exclusion” constraint between “Food” and “Organization” says if a datapoint is classified as
“Food”, then it should not be classified as “Organization”, and vice versa. Thus, while clas-
sifying the noun-phrase “Carnegie Mellon University” w.r.t. class ontology in Figure 2] we
need to choose the labels Everything, Organization and University (consistent with the class
constraints) while combining clues from both data views (text-patterns and HTML-tables).

There has already been a lot of research in the individual areas of multi-view learning
[2,351134.114]], semi-supervised learning [36./8}16]], and learning in the presence of class hier-
archies [28.26l1331[15]]. However, the problem of unifying these aspects into a single frame-
work is less explored. In this paper we focus on the problem of hierarchical multi-view
semi-supervised learning. We propose an optimization based formulation for this problem
in the EM framework which extends the popular spherical K-Means algorithm. The main
idea behind our approach is to use different binary labels to model membership in each
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view, and each level of a hierarchy. We then use mixed integer programming formulations
to optimally assign sets of labels to an instance. Instead of collectively optimizing labels
for all datapoints, we solve an integer linear program for every datapoint, deciding the opti-
mal label assignments for the datapoint. We compare our methods against a state-of-the-art
co-training approach, applied to semi-supervised spherical K-Means algorithm [1]].

Our experiments show that our proposed methods work as well as or better than standard
multi-view baselines like multiplication (or addition) of scores, concatenation of feature vec-
tors, and outperform a well-studied co-training based baseline, when applied in the standard
multi-view k-way classification setting. We further show that our methods are easily exten-
sible to hierarchical multi-view classification scenarios i.e., problems where a datapoint can
belong to multiple classes at different levels of a hierarchy.

Contributions. Past approaches consider multi-view and hierarchical learning scenarios
separately. We propose a unified optimization based framework for multi-class multi-view
hierarchical semi-supervised learning. We show that using this framework we can derive
multiple existing as well as new flat multi-view learning methods.

We present extensive experiments on 9 different multi-view datasets, including docu-
ment classification, image classification, publication categorization and knowledge based
information extraction datasets. The data views also vary in their nature including word oc-
currences, binary features, link features, image histograms and co-occurrence features. We
showed that our techniques give state-of-the-art performance when compared to existing
multi-view learning methods including the co-training based algorithm proposed by Bickel
and Scheffer [1]], on the problem of flat multi-view semi-supervised learning. We also found
that using hierarchical variants that use class hierarchy in the learning process improve over
their flat counterparts.

This shows the potential of such linear optimization based formulations for complex
learning scenarios that cover multi-view and hierarchical classification in a single frame-
work. Finally, we have made the hierarchical multi-view NELL_mv dataset available E] We
have published the text context and HTML table features, class hierarchy, hierarchical labels
for all entities, and seed train-test partitions of NELL_mv dataset used in this paper.

Outline. In Section [2[ we propose our optimization framework for multi-view semi-
supervised learning. We then discuss various multi-view methods that can be instantiated
using this framework. Section [3] presents extensions of our methods to multi-view problems
with hierarchical class constraints. We then describe the datasets and experimental method-
ology in Section[d] and present our findings in Section[5] Finally, we discuss related work in
Section [] followed by conclusions.

2 Multi-View Semi-supervised Learning

The spherical K-Means algorithm [[19], i.e., the K-Means algorithm with cosine similarity,
is a popular method for clustering high-dimensional data such as text. In this section we will
first review this existing algorithm, we then present our proposed extension called “multi-
view spherical K-Means”. There are different ways in which scores from multiple views
can be combined to infer labels of every data point. We formulate the multi-view semi-
supervised K-Means as a generic optimization problem, and instantiate various existing as
well as our proposed methods of combining scores from multiple views as special cases of
this optimization problem.

! Dataset link: http://rtw.ml.cmu.edu/wk/WebSets/multiView_2015_online
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2.1 Background and Notation

Let us start with the spherical K-Means optimization problem, which makes use of cosine
similarity between datapoint and centroids to do the clustering. In this algorithm [19], each
document, as well as each cluster centroid, is represented as a high-dimensional unit-length
vector. Let X = x1,... 2 be the datapoints, C1, ... Ck be the clusters, y;; be an indicator
variable specifying whether datapoint x; belongs to cluster C;, and p; denotes the centroid
for cluster C;. The task is to find optimal values of label assignments y;; and cluster cen-
troids p;, so as to optimize the objective function given in Equation|[T}

YigrHi

K
max Zzy” * cos(xj, 1) s.t. Zyij =1,Vj=1...N,y; €{0,1} (1)

j=1i=1

Since the variables y;; and u; are dependent on each other, the above function can be opti-
mized using an iterative EM like algorithm such that the E step finds the best of values of y;;
given p;’s and the M step takes these y;;’s to recompute the optimal f;’s. Instead of prob-
abilistically assigning a datapoint to a number of clusters, we choose hard assignments [9]]
i.e., we restrict y;; as binary integers, hence this is the hard-EM algorithm. Fixing the values
of 1;’s, the objective function is maximized when y;; = 1 for ¢ = argmax; cos(x;, ;) and
0 otherwise. Let us now compute the p; that maximizes the objective given the values for
i;’s. ({a, b) denotes dot product of vectors a and b.)

N

.. ; y Z
max Zy”*cos(x],lh) _max<2yz]”%|| ||,LL > @

D 1

The Cauchy-Schwartz inequality [22] states that |(x,y)| < ||z|| = ||y||, and the two sides

are equal only if « and y are linearly dependent. To maximize Equation [2] we can set

i = Zj yij\l%\l' If we normalize z; and p; to be unit vectors, then the equations can
P .

be simplified further. Given p;’s, y;; = 1 for i = argmax; (x;, pi;) and 0 otherwise. Simi-
larly, given y;;’s, p; = Zj yi;j * «;. Henceforth, we assume that =; and p; are normalized

to be unit vectors. Hence, cos(a:;z),pEZ)) = <m§.2), p§2)>. Finally, the spherical K-Means
algorithm repeats these two steps iteratively till convergence.

2.2 Multi-View K-Means

We extend the spherical K-Means algorithm [19] for the multi-view setting and present a
general optimization based framework for Multi-View K-Means. Later, we also describe
various ways of combining evidence from the different views to instantiate multiple variants
of this general algorithm.

In the multi-view scenario, a datapoint x; has a feature representation in each view de-

noted by a:é ) in view 1 and z'? in view 2. Once the datapoints are clustered in & clusters,

each centroid can also be represented differently in each view; i.e., centroid p; can be rep-

1 ; (2) ;

resented as p; * in view 1 and p;”’ in view 2. There is one score for every datapoint in

every view; i.e., we will have scores s( ) and 51(72‘) for datapoint x; and centroid p; in view
1 and view 2 respectively to be deﬁned below. There is a single label assignment vector per
datapoint that combines scores from different views, which we represent as matrix Y, i.e.
¥;; = 1 indicates that datapoint ; belongs to cluster ;.
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Let us define an effective score s;; of datapoint x; belonging to cluster y; as an overall
measure of similarity of z; to 41; under both views. Then the optimization problem described

in Equation [I] can be re-written as:
N K

K
max z; 1yij*sij st ngij =1,¥j=1...N,y; € {0,1} 3)
J=11= 1=

In the multi-view scenario, the score s;; can be defined as a function of 51(]1) and sg)
This can be done in various ways: e.g., a linear combination of scores, multiplication of
scores, taking max or min over scores and so on.

Algorithm [T] describes a generic semi-supervised multi-view K-Means algorithm. It is
different from standard K-Means in the sense that each datapoint X; and cluster centroid
has a representation in each data view. In the E step of each EM iteration, for each unlabeled
datapoint = we have a separate score from each view, a score of z belonging to a centroid ;.
Line 8 in Algorithm [T combines these scores and decides best cluster assignment for each
datapoint. In the M step, centroids are recomputed per view based on the label assignments
done in the E step. For simplicity of understanding, the algorithm is presented for two data
views. However our techniques are easily applicable to datasets with more than two views,
as discussed later in Section 2.4

Next, we will see various ways in which the cluster assignment step (line 8) and the
centroid computation step (line 10) in this algorithm can be done, leading to new multi-view
SSL algorithms. Recall that instead of probabilistically assigning a datapoint to a number of
clusters, we choose hard assignments, i.e., we restrict Y;*(x) (in Line 8) as binary integers,
hence this is the hard-EM algorithm (or classification EM) [9]. Even though finding an opti-
mal set of hard assignments using mixed integer programs is relatively more expensive than
soft assignments, we are solving it per datapoint, instead of collectively optimizing labels for
all datapoints. Hence we can divide the datapoints into multiple shards and parallelize the
computation in Line 8 of Algorithm|I] Since we are using the spherical K-Means algorithm
in a semi-supervised setting, henceforth we will use “cluster” and class” interchangeably.

2.3 Cluster Assignment using Scores from Two Data Views

In this section, we go through various ways in which the cluster assignment and centroid
computations steps (lines 8, 10) in Algorithm[T|can be done. We will start with an assump-
tion that each datapoint belongs to exactly one cluster. (In case of classification, this can
be viewed as a class constraint that says “all classes C ...C} are mutually exclusive”.)
We also assume that the cluster assignment for a datapoint remains same in all data views.
Later we will relax these assumptions one by one and present a way to solve these problem
variants. Note that alternatives to these score combination methods are trivial methods like
picking the best of available views, or concatenating feature vectors from different views.
Later in Section [4] we will compare the performance of our proposed techniques against
these baselines, and show the effectiveness of a carefully chosen score combination strategy.

SUMSCORE Method: Here we define the effective score as an addition of scores in differ-
ent views: s;; = SZ(;_) + 5532')~ Let us say S%) = (x§1), ugl)) and sg—) = (x;Q),u£2)>.

N K

K
max | 33y« (@00l + @) | st Y i = 195, vy € (0,1} Vi
1

Yijs x 4
@ \j=1i=

; ‘s
ISR, i
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Algorithm 1 Semi-supervised Multi-View K-Means Algorithm

1: function Multi-view-K-Means (X1, x1(2) y1 xu() xu(®) fy. @) ,2) yu

2: Input: X', x!(2) Jabeled data points in view 1 and view 2 resp. with La norm = 1; Y labels(or
cluster assignments) for datapoints X; X u(1) | xu(2) ynlabeled datapoints in view 1 and view 2 resp.
with Lo norm = 1 (same feature space as X !); k number of clusters to which the datapoints belong.

3: Output: ,u,(”, u(z) cluster centroids in view 1 and view 2 resp. with Lo norm = 1, M(l) =

{,u(l) . ,u,(cl)} ; YU labels(or cluster assignments) for unlabeled data points X
{Imtlallze model parameters using labeled data}

4:t=0, ;Lél) = argmax,, LX) vl ),

S = argmax,, L(X"®),Y!|u), here L refers to the likelihood.

{here, ué ), ug ) are cluster centroids at iteration 0 in view 1,2 resp. }

5: while cluster assignments not converged, t =t + 1 do
{E step: (Iteration ¢) Make cluster predictions for the unlabeled data-points}

6: forx € X" do
1 1
7 s = @),
sg. ) = = (M) ,u(2) 1), foralllabels 1 < j <k
8: Compute cluster assignments Y;*(z) given scores sg ) k,s?) e
9:  end for

{M step : Recompute model parameters using current assignments for X *}

) ()

10:  Compute cluster centroids f1;
11: end while
12: end function

given Y ().

In this setting the optimization objective can be written as follows:

ax <Zyz'*x 7,u11)> <Zyj*ac<2), §2>> 4)

OO

For the E step, keeping u;’s fixed, the closed form solution to compute the y;;’s is as
follows: y;; = 1 for ¢ = argmax; ((= ( ),ugl)) + (x§-2) (2) )) and O otherwise. In the M
step, once y;;’s are fixed, the optimal /M ’s are those for Wthh this objective function is max-
imized i.e. the two terms being summed are individually maximized. Each term is identical

) (2)

to Equatlon and hence will have same solution. Given y;;, we can compute p,;"” and p,

as follows: pgl) =Dy * x§ ), and Hz@) = Zj Yij * :c§ ). Henceforth, we will refer to
this method as ‘SUMSCORE’ method. '

PRODSCORE Method: Here we define the effective score as a product of scores in differ-
1) 4 s(]Q) Keeping p;’s fixed, we can compute y;;’s as follows: y;; = 1

for i = argmax; ((yc(l), ,u§1)> * (x (2)71‘1(2))) and 0 otherwise. Given y;;, u (1) (2)

be computed as follows

e Zy”* (< (,1>,M§1)> < <2>,u§2)>) )

Note that in Equation |5} unlike Equation El ,uEl and ,u( ) cannot be independently opti-

mized. However we can still follow an iterative procedure, that in the E step assigns y;; = 1

), 2 @
K ) * <xj s Mg )

ent views: Sij = S;

and p;~’ can

for i = argmax; ((x( and O otherwise; and in the M step, recom-
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putes the centroids in different views as u( ) = =>. j Yij * J;§ ) and M( ) = Zj Yij * x§-2).
Henceforth, we will refer to this method as the ‘PRODSCORE’ method.

Next we propose yet another variant of the multi-view K-Means algorithm, which dif-
fers from the PRODSCORE and SUMSCORE methods in terms of their label assignment
strategy in the E step of the EM algorithm.

K 2 K
Z 1) @ (M) (2) Z (1) (2) ZZ (v)
(@ W @ <2)< ( Yig »Yij > %ij > 5ij (Penahyfor(, lyij vy #1) )
J 1= v=

1i=1

ij *Jig i P

)

subject to, yZ(J) e {0,1}, yZ(Q) € {0,1}

(6)

maximize (al * <Zyi(1) *Si(l) +yi(2) *81(2)) — o (Zdi> — g % (41 L2yt +52)>

vy @ 4, 12,51 ,52

subject to, d; = |y§

i

Sy z1-¢, SyPr1-¢2 vi=1...

¢t ¢2 5062 >0, yMefo1},

Do y@vi=1...
® Sy <ivst, SyP <1482 vi=1...

k
k

k

y? e (0,1} Vi
a

maximize <a1 % (Zy(n (1) Jryi(z) *51(2) eri(3) *51(3)>

v 5@ @ D) 433 O3 1 2 02 51 52 43

—ay *Z <d§12) Jrdz(.23) Jr612(113)) ag * (C +C + 6t +62)

() i

subject to, d{'*) = |yt —yP|, d*) = yP —y |, a1 =y -y,

STy <1+, Sy >1-¢0, vi=1...k,

¢1,¢2,¢3,60,6%,8% >0, ¥ €{0,1} i,

Fig. 3 (a) Optimization formulation for multi-view learning (b) Mixed integer program for MAXAGREE
method with two views and (c) Mixed integer program for MAXAGREE method with three views.

MAXAGREE Method: The SUMSCORE and PRODSCORE methods assign the same
label vector for each datapoint in both views and selects only one of the available labels
(hard mutual exclusion constraint). However for some datapoints, view 1 and view 2 might
not agree on labels in the initial EM iterations; here we relax this constraint. Further, mutual
exclusion constraints between labels are also softened. Equation@(FigureE](a)) shows a new
objective function that is being optimized for the entire dataset. f(y ij yZ(JQ), E r ), s( )) isa
function of label vectors, and score vectors in the two views. Note that in this case multlple
bits in y; can be 1, and finding the best possible bit vector of y;’s can lead to evaluating ok
possible assignments.

Equation (FigureE] (b)) shows an instantiation of Equation@; the mixed integer linear
program (MIP) that is solved per datapoint. This new method, called MAXAGREE (max-
imize agreement) allows different views to assign a datapoint to different clusters, with a
penalty on cluster assignments being different. In particular, label predictions are done by

Vi =
Yv

Yo=1..

") -

.3
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solving a MIP on scores produced in the two views and choosing a label vector per data-
point per data view, with a penalty for assigning different labels across views and a penalty
for not following the mutual exclusion constrains. Further, Equation[6]can be independently
optimized for each datapoint.

For each datapoint s and 552) are scores of x belonging to cluster ¢ according to data

7
(1) (2)

view 1 and view 2 resp. y; ’ and y,”’ represent cluster assignments in view 1 and view 2

resp. d; is the penalty on yil) and yf) being different. ¢! and ¢2 are the penalty terms for
the constraint that each datapoint should be assigned to at least one cluster in each view.
Similarly, 8! and 62 are the penalty terms for the constraint that each datapoint should be
assigned to at most one cluster in each view. a1, aa and 3 are constants that define relative
importance of terms in the objective function.

COTRAIN Method: We also experiment with a well-studied co-training based method
‘COTRAIN’ as one of the baselines. This method is a multi-view spherical K-Means algo-
rithm that is proposed by Bickel and Scheffer [1]. In particular, it is a co-training variant of
the spherical K-Means algorithm, in which predictions made for view 1 in the E step are
used to recompute centroids of view 2 in the M step and visa versa.

2.4 Incorporating more than two views

Note that the optimization based methods discussed in this section are presented for two
views. However, all methods instantiated using our optimization framework are easily ex-
tensible to additional number of views. Say, a datapoint x; in the third view is represented as
x§-3); and the cluster centroid y; in the third view is represented as ,ul(-S). Let us see example
adaptations for two of the proposed methods: SUMSCORE and MAXAGREE.

SUMSCORE method with three views: SUMSCORE method will add scores from all
three views. In the E step, keeping p;’s fixed, the closed form solution to compute the y;;’s
is as follows: y;; = 1 for i = argmax; ((mé-”,uﬁ”) + (még),ugz) + (méB),pgg)ﬂ and 0
otherwise. In the M step, once y;;’s are fixed, the optimal p;’s are computed as follows:
Mgl) = Zj Yij * :E';-l), NEQ) = Zj Yij * m§-2), and MES) = Zj Yij * CC§3)
MAXAGREE method with three views: Equation [8| (Figure |3| (c)) shows the modified
optimization problem for the MAXAGREE method. It tries to maximize pairwise agreement
between all three views indicated by variables dglz), d1(23) and d1(13) . Two new penalty
terms ¢2 and 62 are introduced. ¢ constrains each datapoint should be assigned to at least
one cluster in each view. Similarly, 62 are the penalty terms for the constraint that each
datapoint should be assigned to at most one cluster in each view.

Although our methods are easily extensible to additional number of views, it is not the
focus of this paper; hence we limit all experiments in this paper to two data views.

3 Extensions to Hierarchical Multi-view Learning

The methods we discussed in the previous section assume the flat classification scenario, i.e.
all classes are mutually exclusive, hence there is a penalty on assigning multiple labels to a
single datapoint. However, in real world datasets it is often the case that classes are arranged
in a hierarchy. They have subset and mutual exclusion constraints among them i.e. pairs of
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classes might be constrained to be disjoint (C; N C; = ¢) or in a subset relation (C; C
C;). E.g., in an information extraction task to populate a KB, the KB ontology might pose
constraints that if an noun-phrase is classified as “Mammal” then it should also be classified
as “Animal” (i.e., Mammal C Animal), and further the same noun-phrase should not be
classified as “Reptile” (i.e. Mammal N Reptile = ¢). Further, our proposed optimization
method is not limited to tree-structured class hierarchies. It can also deal with non-tree class
hierarchies defined by sets of subset and mutual exclusion constraints.

maximize (Z Vi * (1) + si<2)) - Z Gij — Z 5ij>

Yi:Cij,0ij

() i (i,j) ESubset (i,j) EMutex )
subject to,y; > y; — Cij, V(i,j) € Subser
Yi +y; <1+ 65, V(i 5) € Mutex, (5,0 >0, y; € {0, 1} i, j
(1) 1) (2)
maximize * + * — * d;
Yi i3 245 Tig
(1) (2) 1) (2)
—ag * Z (G +6;)+ Z (6;;7 +6;57)
(,5) €Subset (4,5) EMutex
®) ! o (10)
subjecttod~ = |yi -y, Vi=1l...k
y M > y® =Dy >y (B v ) € Subser

ytM +y(l> <1 +6(1> y? +y<.2) <1462, V(i.j) € Mutex

¢D,80.¢2 62 > 0,4: € {0,1} Vi, j

Fig. 4 Mixed integer program for (a) Hier-SUMSCORE method and (b) Hier-MAXAGREE method.

In this section we will discuss natural extensions of our proposed multi-view approaches
for hierarchical multi-view learning. The only change that needs to be made is that each
datapoint can be assigned multiple labels, so that they satisfy the class constraints. Fur-
ther, instead of making the constraints hard, we relax them using slack variables. These
slack variables add a penalty to the objective function upon violating any of the class con-
straints. Let Subset be the set of all subset or inclusion constraints, and Mutex be the set of
all mutual exclusion constraints. In other words, Subset = {(i,j) : C; C C;} and Mutex =
{(¢,7) : C;NC; = ¢}. Note that our only assumption is that we know the subset and mutual
exclusion constraints between classes under consideration. However, we do not assume that
the classes are necessarily arranged in a tree structured hierarchy. Next, we will discuss three
methods that do multi-view learning in the presence of such class constraints.

Hier-SUMSCORE Method: This method is an extension of the SUMSCORE method dis-
cussed in Section@] For each datapoint, this method tries to maximize the sum of scores
of selected labels, after penalizing for violation of class constraints. The scores from two
views are combined through addition. There is a unique label assignment vector for each
datapoint across two views computed by solving the mixed integer program given Equation

[l (Figure [ (a)).

Hier-PRODSCORE Method: This method is an extension of the PRODSCORE method.
The mixed integer program for this method is very similar to that of the Hier-SUMSCORE
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method except that in the objective function, scores from two views are combined using
product instead of addition of scores. There is a unique label assignment vector for each
datapoint across two views.

Hier-MAXAGREE Method: This is an immediate extension of the MAXAGREE method
described in Section to incorporate class hierarchy. Different views can assign a data-
point to different sets of clusters. There is a penalty on cluster assignments being different
across views, and any violation of the class constraints. Equation[I0](Figure[d] (b)) shows the
mixed integer linear program to be solved for each datapoint. For each datapoint s§1)’ s§2)
(CO )

i Y

z in view 1 and view 2 respectively. d; is the penalty on ygl) and yZ@) being different. (Z.(jl)

represent scores of = belonging to cluster ¢; and y represent cluster assignment of

and ¢ ff) are the penalty terms for Subset constraints. Similarly, 55? and § 1(32) are the penalty
terms for Mutex constraints. a1, ag and a3 are constants that define relative importance of
terms in the objective function.

Note that the hierarchical methods discussed here can work with any class ontology and
are not limited to tree structured ontologies.

4 Datasets and Experimental Methodology

Here, we first describe the datasets used in this paper. We then explain the experimental
setup and evaluation criteria used.

4.1 Datasets

We present experiments with 9 multi-view datasets, summarized in Table[I} The first six of
them are publicly available, and the last three are created by us for exploring the multi-view
learning task. First three datasets Cora, WebKB and CiteSeer; [25] consists of 2 data views
for scientific publications. First view consists of 0/1-valued word vector derived from the
document text, and the other view is citation links between these documents. Each document
in the Cora, WebKB and CiteSeer; datasets has been classified into one of the seven, five
and six classes respectively. Next two datasets, Wikipedia_lings and Pubmed_lings [25]] also
contain bag of words and the links between documents as the two views, but they are differ-
ent from the earlier datasets in the sense that words features are TF/IDF-weighted instead
of being 0/1-valued. Wikipedia_lings has 19 distinct categories, whereas the Pubmed_lings
dataset has 3 categories.

The UCI Leaves image dataset [32] contains sixteen samples of leaves of each of the
one-hundred plant species. For each sample, a shape descriptor, and texture histogram (fea-
ture vectors of size 64 each) are given. The Citeseers dataset contains text and author views
for around 6K scientific articles, classified into 17 categories. The NELL_mv dataset was
created using around 1800 entities in the NELL KB and the data views being occurrences
of those entities in ClueWeb09 text and HTML table data [7.[13]]. The NELL_mv dataset
contains hierarchical labels that can be arranged in an ontology shown in Figure 5] For flat
multi-view learning purposes, we use labels at each level of hierarchy, while for hierarchical
multi-view learning experiments we make use of the ontology to create class constraints.
The NELL ontology considered here is tree-structured, however our proposed hierarchical
methods are not limited to tree-structured ontologies.

General statistics like the number of datapoints, features, classes etc. about these datasets
are summarized in Table[T} We can see that our datasets have varying number of datapoints
and classes. They also cover different kinds of features like: binary text features, tfidf text
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Fig. 5 Class ontology used in the NELL_mv dataset.

View statistics
Dataset #Datapoints ~ #Classes View 1 View 2
#Features  #(Datapoint,feature) | #Features #(Datapoint,feature)
pairs pairs
Cora 2708 7 1433 49.2K 2222 5,429
WebKB 877 5 1703 79.4K 735 1608
Citeseery 3312 6 3703 105.1K 2312 4722
Wikipedia_lings 3363 19 4973 2.1IM 2851 45.0K
Pubmed_lings 19.7K 3 500 988.0K 19.7K 443K
UCI Leaves 1600 100 64 102.0K 64 102.4K
Citeseerz 6601 17 26.7K 392.0K 10.8K 16.0K
NELL_mv 1855 7 3.4M 8.8M 1.1IM 2.4M

Table 1 Statistics of all datasets used. (Please refer to Section )

features, link features, semi-structured data features and image features. We have made the
hierarchical multi-view NELL_mv dataset available [*| for the research community to help
future research in this field.

4.2 Experimental Setting

In addition to SUMSCORE and PRODSCORE baselines, we experimented with three other
single view baselines. Methods ‘V1’ and ‘V2’ are single-view spherical K-Means methods
that use only view 1 and view 2 of the data respectively. For the experiments in this paper we
order the views for each dataset such that view 1 is on average better than view 2 in terms
of F1 scores. Using the concatenation of two views as feature vectors yields Method ‘V12’.
Method ‘COTRAIN’ is the co-training based multi-view spherical K-Means algorithm pro-
posed by Bickel and Scheffer [1]. We compared these baseline methods with multi-view
based on our proposed optimization formulation: These methods include ‘SUMSCORE’,
‘PRODSCORE’, and ‘MAXAGREE’ (Section .

Further, we evaluate extensions of some of these flat multi-view methods to the hierar-

chical learning scenarios: ‘Hier-SUMSCORE’, ‘Hier-PRODSCORE’, and ‘Hier-MAXAGREE’

(Section[3). For experiments in this paper we set a1 = 0.5, a2 = 0.1, and a3 = 1 for both
the ‘MAXAGREE’ and ‘Hier-MAXAGREE’ methods.

4.3 Evaluation Criteria

To evaluate the performance of various methods, we use macro and micro averaged F1
scores. The ‘Macro averaged F1 score’ gives equal weight to performance on all classes,
hence is better in cases where class distribution is skewed. On the other hand, the ‘Micro
averaged F1 score’ gives equal weight to performance on all datapoints, hence it is biased

2 The dataset can be downloaded from http://rtw.ml.cmu.edu/wk/WebSets/multivView_|
2015_online/index.html
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towards the majority class. For each dataset we experimented with different values of the
training percentage. For each value of training percentage, we average the scores across 10
random train/test partitions. Note that we are running these experiments in the transductive
setting i.e. our semi-supervised learning algorithm will get as input training examples with
ideal labels as well as unlabeled test examples; and the task is to learn a model from labeled
training and unlabeled test data to in turn label the test datapoints.

For the flat multi-view experiments presented in Section[5.1} we run experiments on all
8 datasets, with 2 values of training percentage {10, 30}, with 10 random train-test partitions
for each combination. For the NELL_mv dataset we do separate evaluation at the second and
third levels of the class hierarchy. Hence for each method we get 18 values of average F1
scores for each of the ‘Macro’ and ‘Micro’ averaging methods.

Next, we compute the ‘Average rank’ of methods for these 18 test-cases. While comput-
ing average rank, we first compute a method’s average rank according to macro-averaged F1
scores, and micro-averaged F1 scores, and take the average of these 2 ranks. The lower the
average rank, the better the method’s performance. Further we visualize these results using
‘scatter plots’ that show the F1 score of each of the proposed method vs. baseline method.
Proposed methods are shown on the x axis compared to baselines on the y axis, hence points
below the ‘x=y’ dotted line mean that proposed methods performed better. Both average rank
and scatter plots help us measure the effectiveness of methods over a number of datasets.

Finally, we also present correlation analysis of performance improvements produced
by our techniques w.r.t dataset characteristics like view agreement, and view imbalance.
‘View agreement’ is defined as the fraction of datapoints for which methods V1 and V2
produce same labels; its value varies between 0 to 1. We define ‘view imbalance’ as the
difference between the performances of the two views; its value can vary between 0 to 100.
Consider an example where on a particular dataset, V1 and V2 gave F1 score of 55.0 and
42.7 respectively, then view imbalance is |55.0—42.7| = 12.3. If final labels produced by V1
and V2 agree on 500 out of 1000 datapoints, then the view agreement is 500/1000 = 0.5.

5 Experimental Results

In this section we go over our experimental findings in terms of evaluation of flat and hier-
archical multi-view methods.

5.1 Results: Flat Multi-view Learning

Table 2] compares the macro-averaged F1 scores of proposed optimization based methods
with baseline methods on all 8 multi-view datasets with 10% and 30% training data. V12
method came out as a strong baseline. We can see that our proposed methods SUMSCORE,
and MAXAGREE give comparable or better performance w.r.t all baseline methods, and
clearly outperform the COTRAIN and V1(best of two views) methods on most datasets.
We can also see that MAXAGREE method performs as well as and sometimes better than
the SUMSCORE method. MAXAGREE allows different label vectors to be assigned in
different views and hence is the most expressive out of the proposed method.

Figure [6] shows the scatter plot of the Macro and Micro averaged F1 scores of our pro-
posed methods (PRODSCORE, SUMSCORE, and MAXAGREE) vs. baselines (V1, V2,
V12, and COTRAIN). Points being below x=y line denotes that our proposed method (plot-
ted on x axis) performed better that the baseline method (plotted on y axis). These plots
reinforce the fact that SUMSCORE and MAXAGREE methods are performing comparable
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Fig. 6 Scatter plots of F1 scores of Flat Multi-view methods on all datasets. Proposed methods (PROD-
SCORE, SUMSCORE, MAXAGREE) are on the x axis compared to baselines (Max(V1,V2), V12, CO-
TRAIN) on the y axis, hence points below the ‘x=y’ dotted line mean that the proposed method performed
better. (Please refer to Section[3.1])

Dataset Train View Baseline methods Proposed methods
percen-  Agree- | V1 V2 V12  CO- PROD- SUM- MAX-
tage ment TRAIN | SCORE SCORE AGREE
Cora 10 030 | 55.0 427 562 488 45.0 67.8+ 67.8+
30 050 | 692 62.1 706 643 63.1 77.6+ 77.6+
WebKB 10 032 | 551 290 561 368 29.1 49.6 49.6
30 050 | 689 50.0 698 57.6 50.6 62.8 62.8
Citeseery 10 035 | 644 333 644 494 34.3 65.9+ 65.9+
30 052 | 732 549 733 633 55.7 75.0+ 75.0+
Wikipedia_lings 10 044 | 574 420 568 499 53.1 54.6 53.5
30 0.60 | 68.0 557 668 62.0 66.6 66.5 65.7
Pubmed_lings 10 0.67 | 69.8 37.0 708 35.6 37.0 72.7+ 72.7+
30 077 | 68.7 377 69.6 36.6 371 71.9+ 71.9+
UCI Leaves 10 042 | 716 568 787 563 22.0 79.4+ 78.7+
30 059 | 812 70.6 863 76.1 47.1 86.6+ 86.3+
Citeseera 10 0.13 | 174 141 141 144 17.5+ 16.0+ 16.0+
30 033 | 375 30.0 300 309 37.7+ 32.1 32.1
NELL_mv level=2 10 066 | 783 532 533 593 78.1 56.9 56.5
30 079 | 694 551 554 59.1 69.4+ 571 58.0
NELL_mv level=3 10 045 | 48.8 427 425 446 50.8+ 46.8 45.6
30 0.57 | 60.0 502 50.7 53.0 61.9+ 54.0 533
Avg. Rank 3.6 5.8 33 5.1 4.6 2.7 2.9

Table 2 Comparison of proposed optimization based multi-view methods w.r.t baselines on all 8 datasets
in terms of macro-averaged F1 scores. Best F1 scores in each row are bold-faced. (+) in front of scores for
proposed methods indicate that for that dataset the proposed method performed better than or equal to the
best baseline score for the dataset. Last row of the table shows average rank of each method in terms of both
macro averaged F1 and micro averaged F1 scores. Top 3 method ranks are bold-faced. (Refer to Section[5.1])

to or better than all baseline methods whereas PRODSCORE method does not consistently
outperform the baselines. Further, we also compare these methods in terms of their average
rank according to both macro averaged and micro averaged F1 scores. According to this
metric, the top 3 methods are SUMSCORE, MAXAGREE and V12.
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Correlation with % relative improvement | correlation  pVal
View imbalance PRODSCORE over V12 -0.50  0.03
MAXAGREE over V12 -0.39  0.11

MAXAGREE over PRODSCORE 036 0.14

Table 3 Flat Classification: Pearson Correlation coefficient between the view imbalance and performance
improvements produced by multi-view methods over the baselines. (Please refer to Section[5.2])

Thus we observed that our optimization based label assignment strategies (SUMSCORE
and MAXAGREE) give state-of-the-art or comparable performance when compared to ex-
isting flat multi-view techniques, including the well studied co-training based baseline CO-
TRAIN. In terms of average rank of baselines V12 performed best.

From Table[2]and scatter plots in Figure[6] we can see that different methods gave best
performance on different datasets. To help understand the reasons for this, we studied the
correlation of performance improvements of proposed methods (over baseline V12) w.r.t the
view imbalance. As described in Section[4.3] ‘view imbalance’ is defined as the difference
between the performances of V1 and V2. From Figure[7]and Table[3] we can see that the per-
formance improvements of both PRODSCORE and MAXAGREE over V12 are negatively
correlated with the difference between the two views, i.e., there is less improvement over
the baseline when there is larger view imbalance (as the performance of two views differ by
larger amount). This seems natural as simpler score combination methods(like best view or
concatenation of views) should work well when most information about an example is in
only one view. However from the pVals and Figure[7] we can also see that MAXAGREE is
more robust to the view imbalance as its negative correlation is not statistically significant.
Further we can see that the improvement of MAXAGREE over PRODSCORE is higher with
larger view imbalance; we found a weak positive correlation of 0.36 with pVal = 0.14.

Prior work [12] has also studied correlation between the performance of multi-view
methods and view agreement. The third column of Table [2] gives the value of agreement
between methods V1 and V2. We could not find any significant correlation between the
view agreement and the improvements of proposed methods w.r.t. baselines. This might be
due to the fact that the datapoints for this correlation analysis are coming from different
kinds of datasets. When we did similar analysis in the subsequent hierarchical experiments
on the single NELL_mv dataset, we found a significant correlation between agreement rate
and performance improvement of proposed methods w.r.t. baselines (refer to Figure|[g).

In the next section we will see extensions of our flat multi-view approaches for hierar-
chical multi-view learning problems.

5.2 Results: Hierarchical Multi-view Learning

Note that, out of the eight multi-view datasets we have experimented with only NELL_mv
dataset is hierarchical. To test hierarchical multi-view methods, we performed experiments
on the NELL_mv dataset with training percentage varying from 5% to 30%. We generated
10 random train/test partitions for each training percentage value. Both flat and hierarchical
methods got exactly the same train and test instances as input. Hierarchical methods had
access to the entire hierarchy of labels and classified each datapoint w.r.t all classes in the
hierarchy following the class constraints. Flat methods on the other hand learnt models only
for leaf classes of the hierarchy. We compared average F1 scores of all methods on the leaf
classes. Further, we also compare these methods in terms of their average rank according
to both macro averaged and micro averaged F1 scores. According to this metric, the top
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Fig. 7 Percentage relative improvement of multi-view methods for datasets with varying view imbalance.
(Please refer to Section[5.1])

Train View Baselines Flat vs. hierarchical multi-view methods
Perce- Agree- | VI2 CO- SUM- Hier- PROD- Hier- MAX- Hier-
ntage ment TRAIN | SCORE SUMSCORE SCORE | PRODSCORE | AGREE MAXAGREE
F1 A Fl A F1 A
5 041 | 41.3 424 435 474 +9.0% 439 444 +1.1% 422 475  +12.6%
10 045 | 425 44.6 46.8 519 +11.0% 50.8 50.8 +0.1% 456 520 +14.0%
15 049 | 459 47.9 49.1 553  +12.8% 543 550 +1.1% 482 554  +15.1%
20 0.51 | 47.8 50.0 51.8 592 +142% 572 59.0 +3.1% 51.0 592  +16.0%
25 0.54 | 49.3 51.3 528 61.0 +15.5% 599 62,6 +44% 520 61.1 +17.4%
30 0.57 | 50.7 53.0 540 638 +182% 619 66.0 +6.6% 53.3 639 +20.0%
Avg. rank 7.8 33 5.0 35 2.6 4.2 6.3 33

Table 4 Comparison of hierarchical vs. flat multi-view methods in terms of % Macro averaged F1 on the
NELL_mv dataset. Column A lists the percentage relative improvement of the hierarchical methods over
their flat counterparts. Last row of the table shows average rank of each method in terms of both macro
averaged F1 and micro averaged F1 scores. Top 3 method ranks are bold-faced. (Please refer to Section@])

3 methods are PRODSCORE, MAXAGREE and COTRAIN. Figure [8| shows the correla-
tion between view agreement and % relative improvement w.r.t. the V12 method. From the
trend and correlation coefficient values we can say that improvements of PRODSCORE and
MAXAGREE w.r.t. V12 are positively correlated with agreement between the views. Fur-
ther, with lower agreement rate MAXAGREE performs best, whereas with high values of
the agreement rate PRODSCORE performs best.
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Fig. 8 Percentage relative improvement of hierarchical multi-view methods for datasets with different view
agreement rates. (Please refer to Section[5.2])
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Fig. 9 Effect of varying the training percentage for various flat and hierarchical multi-view methods on
NELL_mv dataset. (Please refer to Section[5.2})

Table [ shows the macro-averaged F1 results for all methods varying the training per-
centage. We can see that all the proposed hierarchical methods Hier-SUMSCORE, Hier-
PRODSCORE and Hier-MAXAGREE improve over their flat counterparts in terms of macro-
averaged F1 scores for all values of the training percentage. Column marked as A shows the
percentage relative improvement of the hierarchical method over its flat counterpart. We
can see that all methods benefit from hierarchy and the the maximum percentage improve-
ments are 18.3% for SUMSCORE, 6.7% for PRODSCORE and 20.1% for the MAXAGREE
method. Overall, Hier-MAXAGREE method performs best when the amount of training
data is very small, followed by Hier-SUMSCORE and Hier-PRODSCORE methods. Fur-
ther Hier-PRODSCORE works best for higher values of training percentages.

Figure[D|compares the learning curves of hierarchical and flat versions of MAXAGREE
and PRODSCORE methods vs. baselines. We can see all methods are improving with more
training data, however learning curves of Hier-MAXAGREE and Hier- PRODSCORE are
better than baselines V12 and COTRAIN; validating the effectiveness of proposed methods.

Figure[I0|a) shows the scatter plot of hierarchical vs. flat methods (SUMSCORE, PROD-
SCORE and MAXAGREE) in terms of both macro and micro averaged F1 scores. Each
method has 6 datapoints corresponding to the 6 different training percentages as shown in
Table [d] We can see that hierarchical methods always outperform flat methods in terms of
macro-averaged F1, but they might be worse in terms of micro averaged F1 scores. Figure
[IO[b) shows that the histogram of NELL_mv leaf class frequencies is skewed. It has been
observed that skewed category distribution often leads to less reliable micro averaged per-
formance [11] (since it is biased towards the most popular class(es)). This can justify the
surprising trend in Figure [I0a) that for 6 out of 18 datapoints, flat method outperforms
hierarchical method in terms of micro averaged F1 score. We found that all of these 6 data-
points come from PRODSCORE method. Hence Hier-MAXAGREE and Hier-SUMSCORE
outperform their flat counterparts in terms of both macro and micro averaged F1 scores.

Finally we compare the flat and hierarchical multi-view methods in terms of average run-
time of experiments presented in this section. Figure 11| (a) shows the bar-chart of average
run-times of methods. In our MATLAB implementation, the running time of proposed multi-
view methods Hier-PRODSCORE, Hier-SUMSCORE and Hier-MAXAGREE are longer
than traditional PRODSCORE, SUMSCORE methods, but not unreasonably so. However,
flat multi-view method MAXAGREE is relatively more expensive, due to the combinatorial
number of possible label assignments it needs to evaluate while solving mixed integer lin-
ear programs. We believe that adding the hierarchical constraints and ignoring unnecessary
variables(an implementation trick), reduces the number of possible candidate assignments to
evaluate for Hier-MAXAGREE, making it more efficient than MAXAGREE. Further, Fig-
ure[TT](b) shows the convergence trends for some of the methods in terms of number of label

30
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Fig. 10 Results on NELL_mv dataset: (a) Scatter plot of hierarchical vs. corresponding flat multi-view meth-
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Fig. 11 Results on NELL_mv dataset: (a) Average run-times of methods. (b) Convergence trends with 30%
training data. (Please refer to Section[5.2])

bits flipped across EM iterations, the algorithms converge when no bit is flipped. We can see
that hierarchical methods converge quickly compared to the V1 and V12 methods. Also note
that V2 is the worse of two views, even though it converges quickly, its performance in terms
of Macro averaged F1 score is lower.

Results in this section, proved the superiority of hierarchical multi-view techniques
based on our proposed optimization framework. It was also observed that with small amount
of training data, Hier-MAXAGREE method gave state-of-the-art performance on NELL_mv
dataset on the task of hierarchical multi-view learning in terms of both macro and micro av-
eraged F1 scores.

6 Related Work

Multi-view learning as defined by Xu et al. [41]] is a paradigm that introduces a different
function to model each view and jointly optimizes all the functions to exploit the redundant
views of the same input data and improves the learning performance. Blum and Mitchell [2]
proposed the co-training algorithm for problems where the examples are described by two
conditionally independent views. It jointly trains two classifiers such that classifier A adds
examples to the labeled set that classifier B will then be able to use for learning. If the two
views are conditionally independent, then co-training will always improve the results, oth-
erwise it may not be successful. Later, Nigam and Ghani [35] analyzed the performance of
co-training when certain assumptions are violated. More generally, one can define a learning
paradigm that utilizes the agreement among different learners, and the particular assump-
tions of co-training are not required. Instead, multiple hypotheses with different inductive
biases, e.g., decision trees, SVMs, etc. can be trained from the same labeled data set, and are
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required to make similar predictions on any given unlabeled instance. Sindhwani et al. [38]]
and Brefeld et al. [4] proposed multi-view semi-supervised regression techniques.

Another related area of research is multi-task learning. Jin et al. [27] proposed a single
framework to incorporate multiple views and multiple tasks by learning shared predictive
structures. On similar lines, Hu et al. [20] handle the problem of heterogeneous feature
spaces in the context of transfer learning, and show improved performance on the tag rec-
ommendation task. Kang and Choi [42] developed a method based on restricted deep belief
networks for multi-view problems, such that layer of hidden nodes in the belief network
have view-specific shared hidden nodes. Usunier et al. [34] focus on learning to rank multi-
lingual documents, using machine translation of documents in other languages as different
data views. Several boosting approaches like Mumbo [29] and ShareBoost [37] are also pro-
posed for multi-view learning problems. Our techniques are weakly supervised and do not
assume the amount of training data required to train such boosting algorithms.

Recent research on multiple kernel learning has proposed a number of approaches for
combining kernels in the regularized risk minimization framework [3931121]]. Researchers
have also explored dimensionality reduction techniques to create unified low-dimensional
embeddings from multi-view datasets so as to benefit semi-supervised learning and infor-
mation extraction tasks [[17,[14]. Cai et al. [6]] proposed the use of structured sparsity induc-
ing norms to make K-Means algorithm run on large datasets using multi-threaded machines.
Their method is complementary to our techniques because we focus on consistent label
assignment for a single datapoint in the E step of every K-Means iteration, hence can be
incorporated in their multi-threaded setting.

Brefeld et al. [31/5] proposed multi-view learning techniques for more challenging struc-
tured output spaces. Our methods are different in the sense that, we make use of the well-
studied EM framework, pose the label assignment in the E step as an optimization prob-
lem, and propose multiple linear and mixed-integer formulations to solve such optimization
problem. Gilpin et al. [26] have proposed a integer linear programming based method for
hierarchical clustering. Our techniques are different in the sense that Gilpin et al. focus
on unsupervised agglomerative clustering whereas we focus on semi-supervised and multi-
view clustering in the presence of predefined class hierarchy.

Integer linear programming is used by several existing approaches to do constrained in-
ference. Dalvi et. al [[18]] proposed a mixed integer programming based method (GLOFIN)
for hierarchical classification of potential glosses to match them to relevant entities in a
gloss-free knowledge base. Interestingly, another recent work has used mixed integer linear
programming techniques to encode ontological constraints [33]]-they assign multiple plau-
sible KB categories to ‘emerging’ entities, which are not yet represented in the KB, and
consider mutual exclusion constraints as a post-processing step, so as to output a consis-
tent set of category assignments. On the other hand, our method jointly models multi-view,
subset and mutual exclusion constraints, within an iterative semi-supervised EM algorithm.

There has also been some work on modifying EM to incorporate side information such
as multi-view constraints or domain knowledge based constraints on outputs. The posterior
regularization framework [24] modifies the EM algorithm to encode domain constraints
on the expected output, which has also been extended to incorporate soft agreement in a
multi-view setting [23]. Our technique Hier-MAXAGREE is different in the sense that it
maximizes agreement between the labels produced in each view while satisfying ontological
class constraints if available, whereas the method proposed by Ganchev et al. [23]] minimizes
the difference between actual scores produced by the views. Further, we present extensive
experiments on variety of multi-view datasets. Chang et al. [[10] proposed an extension of
EM algorithm for encoding the task specific domain knowledge base constraints on the
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output. Our hierarchical techniques are similar to this in the sense that we also modify the
EM algorithm to do constrained learning. However our techniques are different from [10]
in the sense we are using constraints specific to a dataset, i.e. for the NELL_mv dataset, the
ontological constraints we used are the same as the ones which were used while building
the NELL knowledge base. We don’t need any hand curated constraints for the specific task
that we worked on. Further we take care of the agreement across views and ontological
constraints in a single framework using multiple soft constraints.

Graph based multi-view semisupervised learning techniques have also been proposed
in past few years. Wang et al. [40] proposed a multi-graph based semisupervised learning
technique that can incorporate multiple modalities, and multiple distance functions in the
task of video annotation. Lee et al. [30] proposed a new graph-based multi-label propagation
technique and applied it to large datasets by utilizing a map-reduce framework. Though these
methods can handle multi-view data, they fail to address the scenarios where classes/labels
are arranged in a hierarchy and inference needs to be done following certain constraints
between these classes.

7 Conclusions

In this paper, we investigated the problem of semi-supervised learning in the presence of
multiple-data views. We formulated the problem as an optimization problem, and solved it
using the standard EM framework. We then focused on the sub-problem of assigning labels
to each datapoint (part of E step), and studied various methods for such prediction. Our
proposed method solves a mixed integer linear program to find consistent class assignments
given the scores in each data view. Because our multi-view techniques are broadly similar
to co-training based algorithms, we also compared them to a seeded version of multi-view
spherical K-Means algorithm that is proposed by Bickel and Scheffer [1]. Our methods
produced better performance in terms of macro-averaged F1 score compared to this co-
training baseline.

However, all the multi-view baselines discussed here are limited to problems where
each data point belongs to only one class. We showed that our proposed linear programming
based formulation can be easily extended to multi-label classification and can incorporate
hierarchical class constraints. For a dataset with hierarchy of classes, our extended optimiza-
tion methods produced better results when compared to flat multi-view clustering baselines
in terms of macro-averaged F1 score. An interesting direction for future research can be to
apply these linear programming based techniques for multi-view Exploratory Learning[[16]]
that does semi-supervised learning in the presence of unanticipated classes. Such techniques
can further be used for populating knowledge bases along with discovering new classes from
multi-view unlabeled data.
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