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Abstract. In multiclass semi-supervised learning (SSL), it is sometimes the case
that the number of classes present in the data is not known, and hence no la-
beled examples are provided for some classes. In this paper we present variants
of well-known semi-supervised multiclass learning methods that are robust when
the data contains an unknown number of classes. In particular, we present an “ex-
ploratory” extension of expectation-maximization (EM) that explores different
numbers of classes while learning. “Exploratory” SSL greatly improves perfor-
mance on three datasets in terms of F1 on the classes with seed examples—i.e.,
the classes which are expected to be in the data. Our Exploratory EM algorithm
also outperforms a SSL method based non-parametric Bayesian clustering.

1 Introduction
In multiclass semi-supervised learning (SSL), it is sometimes the case that the number
of classes present in the data is not known. For example, consider the task of classify-
ing noun phrases into a large hierarchical set of categories such as “person”, “organi-
zation”, “sports team”, etc., as is done in broad-domain information extraction systems
(e.g., [5]). A sufficiently large corpus will certainly contain some unanticipated natural
clusters—e.g., kinds of musical scales, or types of dental procedures. Hence, it is un-
realistic to assume some examples have been provided for each class: a more plausible
assumption is that an unknown number of classes exist in the data, and that labeled
examples have been provided for some subset of these classes.

This raises the natural question: how robust are existing SSL methods to unantici-
pated classes? As we will show experimentally below, SSL methods can perform quite
poorly in this setting: the instances of the unanticipated classes might be forced into
one or more of the expected classes, leading to a cascade of errors in class parameters,
and then to class assignments to other unlabeled examples. To address this problem, we
present an “exploratory” extension of expectation-maximization (EM) which explores
different numbers of classes while learning.

More precisely, in a traditional SSL task, the learner assumes a fixed set of classes
C1, C2, . . . Ck, and the task is to construct a k-class classifier using labeled datapoints
X l and unlabeled datapoints Xu, where X l contains a (usually small) set of “seed”
examples of each class. In exploratory SSL, we assume the same inputs, but allow the
classifier to predict labels from the set C1, . . . , Cm, where m ≥ k: in other words,
every example x may be predicted to be in either a known class Ci ∈ C1 . . . Ck, or an
unknown class Ci ∈ Ck+1 . . . Cm.



We will show that exploratory SSL can greatly improve performance on noun-
phrase classification tasks and document classification tasks, for several well-known
SSL methods. E.g. Figure 1 (b) top row shows, the confusion matrices for a traditional
SSL method on a 20-class problem at the end of iteration 1 and 15, when the algorithm
is presented with seeds for 6 of the classes. Here, red indicates overlap between classes,
and dark blue indicates no overlap. So we see that many of the seed classes are getting
confused with the unknown classes at the end of 15 iterations of SSL showing semantic
drift. With the same inputs, our novel “exploratory” EM algorithm performs quite well
(Figure 1 (b) bottom row); i.e. it introduces additional clusters and at the end of 15 iter-
ations improves F1 on classes for which seed examples were provided.

Contributions. We focus on the novel problem of dealing with learning when only
fraction of classes are known upfront, and there are unknown classes hidden in the data.
We propose a variant of the EM algorithm where new classes can be introduced in each
EM iteration. We discuss the connections of this algorithm to the structural EM algo-
rithm. Next we propose two heuristic criteria for predicting when to create new class
during an EM iteration, and show that these two criteria work well on three publicly
available datasets. Further we evaluate third criterion, that introduces classes uniformly
at random and show that our proposed heuristics are more effective than this base-
line. Experimentally, Exploratory EM outperforms a semi-supervised variant of non-
parametric Bayesian clustering (Gibbs sampling with Chinese Restaurant Process)—a
technique which also “explores” different numbers of classes while learning. We also
compare our method against a semi-supervised EM method withm extra classes (trying
different values of m).

In this paper, Exploratory EM is instantiated to produce exploratory versions of
three well-known SSL methods: semi-supervised Naive Bayes, seeded K-Means, and a
seeded version of EM using a von Mises-Fisher distribution [1]. Our experiments fo-
cus on improving accuracy on the classes that do have seed examples—i.e., the classes
which are expected to be in the data.

Outline. In Section 2, we first introduce an exploratory version of EM, and then dis-
cuss several instantiations of it, based on different models for the classifiers (mixtures
of multinomials, K-Means, and mixtures of von Mises-Fisher distributions) and differ-
ent approaches to introducing new classes. We then compare against an alternative ex-
ploratory SSL approach, namely Gibbs sampling with Chinese restaurant process [14].
Section 3 presents experimental results, followed by related work and conclusions.

2 Exploratory SSL Methods
2.1 A Generic Exploratory Learner

Many common approaches to SSL are based on EM. In a typical EM setting, the M-
step finds the best parameters θ to fit the data,X l∪Xu, and the E-step probabilistically
labels the unknown points with a distribution over the known classes C1, C2, . . . Ck. In
some variants of EM, including the ones we consider here, a “hard” assignment is made
to classes instead, an approach named classification EM [6]. Our exploratory version of
EM differs in that it can introduce new classes Ck+1 . . . Cm during the E-step.



Algorithm 1 EM algorithm for exploratory learning with model selection
1: function Exploratory EM (Xl, Y l, Xu, {C1 . . . Ck}): {Ck+1 . . . Cm}, θm, Y u

2: Input: Xl labeled data points; Y l labels for datapoints Xl; Xu unlabeled datapoints (same
feature space as Xl); {C1 . . . Ck} set of known classes to which x’s belong.

3: Output: {Ck+1 . . . Cm} newly-discovered classes; {θ1, . . . , θm} parameters for all m
classes; Y u labels for unlabeled data points Xu

{Initialize model parameters using labeled data}
4: θ10, . . . , θk0 = argmaxθL(X

l, Y l|θk)
5: i is # new classes ; i = 0; CanAddClasses = true
6: while data likelihood not converged AND #classes not converged do

{E step: (Iteration t) Make predictions for the unlabeled data-points}
7: iold = i; Compute baseline log-likelihood BaselineLL = logP (X|θ1t , . . . , θk+ioldt )
8: for x ∈ Xu do
9: Predict P (Cj |x, θ1t , . . . , θk+it ) for all labels 1 ≤ j ≤ k + i

10: if nearlyUniform(P (C1|x), . . . , P (Ck+i|x)) AND CanAddClasses then
11: Increment i; Let Ck+i be the new class.
12: Label x with Ck+i in Y u, and compute parameters θk+it for the new class.
13: else
14: Assign x to (argmaxCjP (Cj |x)) in Y u where 1 ≤ j ≤ k + i
15: end if
16: end for
17: inew = i; Compute ExploreEM loglikelihood ExploreLL = logP (X|θ1t , . . . , θk+inew

t )
{M step : Recompute model parameters using current assignments for Xu}

18: if Penalized data likelihood is better for exploratory model than baseline model then
{Adopt the new model with k + inew classes}

19: θk+inew
t+1 = argmaxθL(X

l, Y l, Xu, Y ut |θk+inew )
20: else

{Keep the old model with k + iold classes}
21: θ

k+iold
t+1 = argmaxθL(X

l, Y l, Xu, Y ut |θk+iold)
22: CanAddClasses = false
23: end if
24: end while
25: end function

Algorithm 1 presents a generic Exploratory EM algorithm (without specifying the
model being used). There are two main differences between the algorithm and standard
classification-EM approaches to SSL. First, in the E step, each of the unlabeled dat-
apoint x is either assigned to one of the existing classes, or to a newly-created class.
We will discuss the “nearUniform” routine below, but the intuition we use is that a
new class should be introduced to hold x when the probability of x belonging to ex-
isting classes is close to uniform. This suggests that x is not a good fit to any existing
classes, and that adding x to any existing class will lower the total data likelihood sub-
stantially. Second, in the M-step of iteration t, we choose either the model proposed by
Exploratory EM method that might have more number of classes than previous iteration
t− 1 or the baseline version with same number of classes as iteration t− 1. This choice
is based on whether exploratory model satisfies a model selection criterion in terms of
increased data likelihood and model complexity. If the algorithm decides that baseline



model is better than exploratory model in iteration t, then from iteration t+ 1 onwards
the algorithm won’t introduce any new classes.

2.2 Discussion
Friedman [13] proposed the Structural EM algorithm that combines the standard EM
algorithm, which optimizes parameters, with structure search for model selection. This
algorithm learns networks based on penalized likelihood scores, in the presence of miss-
ing data. In each iteration it evaluates multiple models based on the expected scores of
models with missing data, and selects the model with best expected score. This algo-
rithm converges at local maxima for penalized log likelihood (the score includes penalty
for increased model complexity).

Similar to Structural EM, in each iteration of Algorithm 1, we evaluate two models,
one with and one without adding extra classes. These two models are scored using
a model selection criterion like AIC or BIC, and the model with best penalized data
likelihood score is selected in each iteration. Further when the model selection criterion
fails, the algorithm reverts to standard semi-supervised EM algorithm. Say this model
switch happens at iteration tswitch, then from iteration 1 to tswitch, Algorithm 1 acts
like the structural EM algorithm [13]. From iteration tswitch + 1 till the data likelihood
converges, the algorithm acts as semi-supervised EM algorithm.

Next let us discuss the applicability of this algorithm for clustering as well as clas-
sification tasks. Notice that Algorithm 1 reverts to an unsupervised clustering method
if Xl is empty, and reverts to a supervised generative learner if Xu is empty. Likewise,
if no new classes are generated, then it behaves as a multiclass SSL method; for in-
stance, if the classes are well-separated and Xl contains enough labels for every class
to approximate these classes, then it is unlikely that the criterion of nearly-uniform class
probabilities will be met, and the algorithm reverts to SSL. Henceforth we will use the
terms “class” and “cluster” interchangeably.

2.3 Model Selection
For model penalties we tried multiple well known criteria like BIC, AIC and AICc.
Burnham and Anderson [4] have experimented with AIC criteria and proposed AICc
for datasets where, the number of datapoints is less than 40 times number of features.
The formulae for scoring a model using each of the three criteria that we tried are:

BIC(g) = −2 ∗ L(g) + v ∗ ln(n) (1)
AIC(g) = −2 ∗ L(g) + 2 ∗ v (2)
AICc(g) = AIC(g) + 2 ∗ v ∗ (v + 1)/(n− v − 1) (3)

where g is the model being evaluated, L(g) is the log-likelihood of the data given g, v
is the number of free parameters of the model and n is the number of data-points.
While comparing two models, a lower value is preferred. The extended Akaike infor-
mation criterion (AICc) suited best for our experiments since our datasets have large
number of features and small number of data points. With AICc criterion, the objective
function that Algorithm 1 optimizes is:

max
m,{θ1...θm},m≥k

{Log Data Likelihood−Model penalty}

i.e., max
m,{θ1...θm},m≥k

{logP (X|θ1, . . . , θm)} − {v + (v ∗ (v + 1)/(n− v − 1))} (4)



Here, k is the number of seed classes given as input to the algorithm and m is the
number of classes in the resultant model (m ≥ k).

2.4 Exploratory versions of well-known SSL methods

In this section we will consider various SSL techniques, and propose exploratory ex-
tensions of these algorithms.

Semi-Supervised Naive Bayes Nigam et al. [21] proposed an EM-based semi-supervised
version of multinomial Naive Bayes. In this model P (Cj |x) ∝ P (x|Cj) ∗ P (Cj), for
each unlabeled point x. The probability P (x|Cj) is estimated by treating each feature
in x as an independent draw from a class-specific multinomial. In document classifica-
tion, the features are word occurrences, and the number of outcomes of the multinomial
is the vocabulary size.

This method can be naturally used as an instance of Exploratory EM, using the
multinomial model to compute P (Cj |x) in Line 1. The M step is also trivial, requiring
only estimates of P (w|Cj) for each word/feature w.

Seeded K-Means It has often been observed that K-Means and EM are algorithmically
similar. Basu and Mooney [2] proposed a seeded version of K-Means, which is very
analogous to Nigam et al’s semi-supervised Naive Bayes, as another technique for semi-
supervised learning. Seeded K-Means takes as input a number of clusters, and seed
examples for each cluster. The seeds are used to define an initial set of cluster centroids,
and then the algorithm iterates between an “E step” (assigning unlabeled points to the
closest centroid) and an “M step” (recomputing the centroids).

In the seeded K-Means instance of Exploratory EM, we again define P (Cj |x) ∝
P (x|Cj) ∗ P (Cj), but define P (x|Cj) = x · Cj , i.e., the inner product of a vector
representing x and a vector representing the centroid of cluster j. Specifically, x and Cj
both are represented as L1 normalized TFIDF feature vectors. The centroid of a new
cluster is initialized with smoothed counts from x. In the “M step”, we recompute the
centroids of clusters in the usual way.

Seeded Von-Mises Fisher The connection between K-Means and EM is explicated by
Banerjee et al. [1], who described an EM algorithm that is directly inspired by K-Means
and TFIDF-based representations. In particular, they describe generative cluster models
based on the von Mises-Fisher (vMF) distribution, which describes data distributed on
the unit hypersphere. Here we consider the “hard-EM” algorithm proposed by Banerjee
et al, and use it in the seeded (semi-supervised) setting proposed by Basu et al. [2]. This
natural extension of Banerjee et al[1]’s work can be easily extended to our exploratory
setting.

As in seeded K-Means, the parameters of vMF distribution are initialized using the
seed examples for each known cluster. In each iteration, we compute the probability
of Cj given data point x, using vMF distribution, and then assign x to the cluster for
which this probability is maximized. The parameters of the vMF distribution for each
cluster are then recomputed in the M step. For this method, we use a TFIDF-based L2

normalized vectors, which lie on the unit hypersphere.



Algorithm 2 JS criterion for new class creation
1: function JSCriterion([P (C1|x) . . . P (Ck|x)]):
2: Input: [P (C1|x) . . . P (Ck|x)] probability distribution of existing classes for a data point x
3: Output: decision : true iff new class needs to be created
4: u = [1/k . . . 1/k] {i.e., the uniform distribution with current number of classes = k}
5: decision = false
6: if Jensen-Shannon-Divergence(u, P (Cj |x)) < 1

k
then

7: decision = true
8: end if
9: end function

Algorithm 3 MinMax criterion for new class creation
1: function MinMaxCriterion([P (C1|x) . . . P (Ck|x)]):
2: Input: [P (C1|x) . . . P (Ck|x)] probability distribution of existing classes for a data point x
3: Output: decision : true iff new class needs to be created
4: k is the current number of classes
5: maxProb = max(P (Cj |x)); minProb = min(P (Cj |x))
6: if maxProb

minProb
< 2 then

7: decision = true
8: end if
9: end function

Seeded vMF and seeded K-Means are closely related—in particular, seeded vMF
can be viewed as a more probabilistically principled version of seeded K-Means. Both
methods allow use of TFIDF-based representations, which are often preferable to uni-
gram representations for text: for instance, it is well-known that unigram representations
often produce very inaccurate probability estimates.

2.5 Strategies for inducing new clusters/classes
In this section we will formally describe some possible strategies for introducing

new classes in the E step of the algorithm. They are presented in detail in Algorithms 2
and 3, and each of these is a possible implementation of the “nearUniform” subroutine
of Algorithm 1. As noted above, the intuition is that new classes should be introduced
to hold x when the probabilities of x belonging to existing classes are close to uniform.
In the JS criterion, we require that Jensen-Shanon divergence1 between the posterior
class distribution for x to the uniform distribution be less than 1

k . The MinMax criterion
is a somewhat simpler approximation to this intuition: a new cluster is introduced if the
maximum probability is no more than twice the minimum probability.

2.6 Baseline Methods
Next, we will take a look at various baseline methods that we implemented to measure
the effectiveness of our proposed approach.

1 The Jensen-Shannon divergence between p and q is the average Kullback-Leiber divergence
of p and q to a, the average of p and q, i.e., 1

2
(KL(p||a+KL(q||a)).



Algorithm 4 Exploratory Gibbs Sampling with Chinese Restaurant Process
1: function GibbsCRP (Xl, Y l, Xu, {C1 . . . Ck}) : Ck+1 . . . Cm, Y u

2: Input: Xl labeled data points; Y l labels of Xl; Xu unlabeled data points;
{C1 . . . Ck} set of known classes x’s belong to; Pnew probability of creating a new class.

3: Output: Ck+1 . . . Cm newly-discovered classes; Y u labels for Xu

4: for x in Xu do
5: Save a random class from {C1 . . . Ck} for x in Y u

6: end for
7: Set m = k
8: for t : 1 to numEpochs do
9: for xi in Xu do

10: Let yi’s be xi’s label in epoch t− 1
11: predict P (Cj |xi, Y l ∪ Y u − {yi}) for all labels 1 ≤ j ≤ m
12: y′i,m

′ = CRPPick(Pnew, P (C1|xi), . . . , P (Cm+1|xi))
13: Save y′i as xi’s label in epoch t
14: m = m′

15: end for
16: end for
17: end function

Random new class creation criterion: To measure the effectiveness of criteria pro-
posed in Algorithms 2 and 3, we experimented with a random baseline criterion, that
returns “true” uniformly at random with probability equal to that of MinMax or JS cri-
terion returning true for the same dataset. This is referred to as Random criterion below.

Semi-supervised EM with m extra classes: One might argue that the goal of the
Exploratory EM algorithm can also be achieved by adding a random number of empty
classes to the semi-supervised EM algorithm. We compare our method against the best
possible value of this baseline, i.e. by choosing the number of classes that maximizes
F1 on the seed classes. Note that in practice, the test labels are not available, so this
is the upper bound on performance of this baseline. We compare our method with this
upper bound in Section 3. Our method is different from this baseline in two ways. First,
it does not need the number of extra clusters as input. Second, it seeds the extra clusters
with those datapoints that are unlikely to belong to existing classes, as compared to
initializing them randomly.

A seeded Gibbs sampler with CRP: The Exploratory EM method is broadly similar
to non-parametric Bayesian methods, such as the Chinese Restaurant process (CRP)
[14]. CRP is often used in non-parametric models (e.g., topic models) that are based
on Gibbs sampling, and indeed, since it is straightforward to replace EM with Gibbs-
sampling, one can use this approach to estimate the parameters of any of the models
considered here (i.e., multinomial Naive Bayes, K-Means, and the von Mises-Fisher
distribution). Algorithm 4 presents a seeded version of a Gibbs sampler based on this
idea. In brief, Algorithm 4, starts with a classifier trained on the labeled data. Collapsed
Gibbs sampling is then performed over the latent labels of unlabeled data, incorporat-



Algorithm 5 Modified CRP criterion for new class creation
1: function ModCRPPick (Pnew, P (C1|x), . . . , P (Ck+i|x)) : y, i′

2: Input: Pnew probability of creating new class;
P (C1|x), . . . , P (Ck+i|x) probability of existing classes given x

3: Output: y class for x; i′ new number of classes
4: u = [1/k + i . . . 1/k + i] {uniform distribution with k + i classes}
5: d = Jensen-Shannon-Divergence(u, P (Cj |x))
6: q = Pnew

((k+i)∗d)
7: if a coin with bias q is heads then

{create a new class and assign to that}
8: y = k + i+ 1 and i′ = i+ 1
9: else

{assign to an existing class}
10: i′ = i and y = sample from distribution [P (C1|x) . . . P (Ck|x)]
11: end if
12: end function

ing the CRP into the Gibbs sampling to introduce new classes. (In fact, we use block
sampling for these variables, to make the method more similar to the EM variants.)

Note that this algorithm is naturally “exploratory”, in our sense, as it can produce a
number of classes larger than the number of classes for which seed labels exist. How-
ever, unlike our exploratory EM variants, the introduction of new classes is not driven
by examples that are “hard to classify”—i.e., have nearly-uniform posterior probabil-
ity of membership in existing classes. In CRP method, the probability of creating a new
class depends on the data point, but it does not explicitly favor cases where the posterior
over existing classes is nearly uniform.

To address this issue, we also implemented a variant of the seeded Gibbs sampler
with CRP, in which the examples with nearly-uniform distributions are more likely to
be assigned to new classes. This variant is shown in Algorithm 5, which replaces the
routine CRPPick in the Gibbs sampler—in brief, we simply scale down the probability
of creating a new class by the Jensen-Shannon divergence of the posterior class dis-
tribution for x to the uniform distribution. Hence the probability of creating new class
explicitly depends on how well the given data point fits in one of the existing classes.
An experimental comparison of our proposed method with Gibbs sampling and CRP
based baselines is shown in Section 3.2.

3 Experimental Results
We now seek to experimentally answer the questions raised in the introduction. How
robust are existing SSL methods, if they are given incorrect information about the num-
ber of classes present in the data, and seeds for only some of these classes? Do the
exploratory versions of the SSL methods perform better? How does Exploratory EM
compare with the existing “exploratory” method of Gibbs sampling with CRP?

We used three publicly available datasets for our experiments. The first is the widely-
used 20-Newsgroups dataset [23]. We used the “bydate” dataset, which contains total of
18,774 text documents, with vocabulary size of 61,188. There are 20 non-overlapping



Dataset Algorithm SemisupEM Exploratory EM Best m extra classes
(#seed / #total classes) MinMax JS Random SemisupEM
Delicious Sports KM 60.9 89.5 (30) N 90.6 (46) N 84.8 (55) N 69.4 (10) N
(5/26) NB 46.3 45.4 (06) 88.4 (51) N 67.8 (38) N 65.8 (10) N

VMF 64.3 72.8 (06) M 63.0 (06) 66.7 (06) 78.2 (09) N
20-Newsgroups KM 44.9 57.4 (22) N 39.4 (99) H 53.0 (22) N 49.8 (11) N
(6/20) NB 34.0 34.6 (07) 34.0 (06) 34.0 (06) 35.0 (07)

VMF 18.2 09.5 (09) H 19.8 (06) 18.2 (06) 20.3 (10) N
Reuters KM 8.9 12.0 (16) M 27.4 (100) N 13.7 (19) N 16.3 (14) N
(10/65) NB 6.4 10.4 (10) 18.5 (77) N 10.6 (10) 16.1 (15)

VMF 10.5 20.7 (11) N 30.4 (62) N 10.5 (10) 20.6 (16) M
Table 1. Comparison of Exploratory EM w.r.t. SemisupEM for different datasets and class cre-
ation criteria. For each exploratory method we report the macro avg. F1 over seed classes followed
by avg number of clusters generated. e.g. For 20-Newsgroups dataset, Exploratory EM with K-
Means and MinMax results in 57.4 F1 and generates 22 clusters on avg. N (and M) indicates that
improvements are statistically significant w.r.t SemisupEM with 0.05 (and 0.1) significance level.

classes and the entire dataset is labeled. The second dataset is the Delicious Sports
dataset, published by [9]. This is an entity classification dataset, which contains items
extracted from 57K HTML tables in the sports domain (from pages that had been tagged
by the social bookmarking system del.icio.us). The features of an entity are ids for the
HTML table columns in which it appears. This dataset contains 282 labeled entities
described by 721 features and 26 non-overlapping classes (e.g., “NFL teams”, “Cricket
teams”). The third dataset is the Reuters-21578 dataset published by Cai et al. [10]. This
corpus originally contained 21,578 documents from 135 overlapping categories. Cai et
al. discarded documents with multiple category labels, resulting in 8,293 documents
(vocabulary size=18,933) in 65 non-overlapping categories.

3.1 Exploratory EM vs. SemisupEM with few seed classes

Table 1 shows the performance of seeded K-Means, seeded Naive Bayes, and seeded
vMF using 5 different algorithms. For each dataset only a few of the classes present
in the data (5 for Delicious Sports, and 6 for 20-Newsgroups and 10 for Reuters),
are given as seed classes to all the algorithms. Five percent datapoints were given as
training data for each “seeded” class. The first method, shown in the column labeled
SemisupEM, uses these methods as conventional SSL learners. The second method
is Exploratory EM with the simple MinMax new-class introduction criterion, and the
third is Exploratory EM with the JS criterion. Forth method is Exploratory EM with the
Random criterion. The last one is upper bound on SemisupEM with m extra classes.

ExploreEM performs hard clustering of the dataset i.e. each datapoint belongs to
only one cluster. For all methods, for each cluster we assign a label that maximizes
accuracy (i.e. majority label for the cluster). Thus using complete set of labels we can
generate a single label per datapoint. Reported Avg. F1 value is computed by macro
averaging F1 values of seed classes only. Note that, for a given dataset, number of seed
classes and training percentage per seed class there are many ways to generate a train-
test partition. We report results using 10 random train-test partitions of each dataset.
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Fig. 1. (a) Confusion matrices, varying number of seed classes, for the Delicious Sports dataset.
(b) Confusion matrices, varying the number of EM iterations for the 20-Newsgroups dataset.
Each is using Explore-KMeans with the MinMax criterion.

The same partitions are used to run all the algorithms being compared and to compute
the statistical significance of results.

We first consider the value of exploratory learning. With the JS criterion, the ex-
ploratory extension gives comparable or improved performance on 8 out of 9 cases. In
5 out of 8 cases the gains are statistically significant. With the simpler MinMax crite-
rion, the exploratory extension results in performance improvements in 6 out of 8 cases,
and significantly reduces performance only in one case. The number of classes finally
introduced by the MinMax criterion is generally smaller than those introduced by JS
criterion.

For both SSL and exploratory systems, the seeded K-Means method gives good
results on all 3 datasets. In our MATLAB implementation, the running time of Ex-
ploratory EM is longer, but not unreasonably so: on average for 20-Newsgroups dataset
Semisup-KMeans took 95 sec. while Explore-KMeans took 195 sec. and for Reuters
dataset, Semisup-KMeans took 7 sec. while Explore-KMeans took 28 sec.

We can also see that Random criterion shows significant improvements over the
baseline SemisupEM method in 4 out of 9 cases. While Exploratory EM method with
MinMax and JS criterion shows significant improvements in 5 out of 9 cases. In terms
of magnitude of improvements, JS is superior to Random criterion.

Next we compare Exploratory EM with baseline named “SemisupEM with m extra
classes”. The last column of Table 1 shows the best performance of this baseline by
varying m = {0, 1, 2, 5, 10, 20, 40}, and choosing that value of m for which seed class
F1 is maximum. Since the “bestm extra classes” baseline is making use of the test labels
to pick right number of classes, it cannot be used in practice; however Exploratory EM
methods produce comparable or better performance with this strong baseline.

To better understand the qualitative behavior of our methods, we conducted some
further experiments with Semisup-KMeans with the MinMax criterion (which appears
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Fig. 2. 20-Newsgroups dataset : Comparison of MinMax vs. JS criterion for ExploreEM

to be a reasonable baseline method.) We constructed confusion matrices for the clas-
sification task, to check how different methods perform on each dataset.2 Figure 1 (a)
shows the confusion matrices for SemisupEM (top row) and Exploratory EM (bottom
row) with five and fifteen seeded classes. We can see that SemisupEM with only five
seed classes clearly confuses the unexpected classes with the seed classes, while Ex-
ploratory EM gives better quality results. Having seeds for more classes helps both
SemisupEM and Exploratory EM, but SemisupEM still tends to confuse the unexpected
classes with the seed classes. Figure 1 (b) shows similar results on the 20-Newsgroups
dataset, but shows the confusion matrix after 1 iteration and after 15 iterations of EM.
It shows that SemisupEM after 15 iterations has made limited progress in improving its
classifier when compared to Exploratory EM.

Finally, we compare the two class creation criteria, and show a somewhat larger
range of seeded classes, ranging from 5 to 15 (out of 20 actual classes). In Figure 2
each of the confusion-matrices is annotated with the strategy, the number of seed classes
and the number of classes produced. (E.g., plot “MinMax-C5(23)” describes Explore-
KMeans with MinMax criterion and 5 seed classes which produces 23 clusters.) We
can see that MinMax criterion usually produces a more reasonable number of clusters,
closer to the ideal value of 20; however, performance of the JS method in terms of seed
class accuracy is comparable to the MinMax method.

These trends are also shown quantitatively in Figure 3, which shows the result of
varying the number of seeded classes (with five seeds per class) for Explore-KMeans
and Semisup-KMeans; the top shows the effect on F1, and the bottom shows the ef-
fect on the number of classes produced (for Explore-KMeans only). Figure 4 shows
a similar effect on the Delicious Sports dataset: here we systematically vary the num-
ber of seeded classes (using 5 seeds per seeded class, on the top), and also vary the
number of seeds per class (using 10 seeded classes, on the bottom.) The left-hand side
compares the F1 for Semisup-KMeans and Explore-KMeans, and the right-hand side
shows the number of classes produced by Explore-KMeans. For all parameter settings,
Explore-KMeans is better than or comparable to Semisup-KMeans in terms of F1 on
seed classes.

3.2 Comparison with the Chinese Restaurant Process
As discussed in Section 2.6, a seeded version of the Chinese Restaurant Process with
Gibbs sampling (CRPGibbs) is an alternative exploratory learning algorithm. In this

2 For purposes of visualization, introduced classes were aligned optimally with the true classes.
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Fig. 3. 20-Newsgroups dataset: varying the
number of seed classes (using the MinMax
criterion).
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Fig. 4. Delicious Sports dataset: Top, vary-
ing the number of seed classes (with five
seeds per class). Bottom, varying the num-
ber of seeds per class (with 10 seed classes).
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Fig. 5. Delicious Sports dataset: Varying the concentration parameter, with five seed classes.

section we compare the performance of CRPGibbs with Explore-KMeans and Semisup-
KMeans. We consider two versions of CRP-Gibbs, one using the standard CRP and one
using our proposed modified CRP criterion for new class creation that is sensitive to
the near-uniformity of instance’s posterior class distribution. CRP-Gibbs uses the same
instance representation as our K-Means variants i.e. L1 normalized TFIDF features.

It is well-known that CRP is sensitive to the concentration parameter Pnew . Figures
5 and 6 show the performance of all the exploratory methods, as well as Semisup-
KMeans, as the concentration parameter is varied from 10−8 to 10−2. (For Explore-
KMeans and Semisup-KMeans methods, this parameter is irrelevant). We show F1, the
number of classes produced, and run-time (which is closely related to the number of
classes produced.) The results show that a well-tuned seeded CRP-Gibbs can obtain
good F1-performance, but at the cost of introducing many unnecessary clusters. The
modified Explore-CRP-Gibbs performs consistently better, but not better than Explore-
KMeans, and Semisup-KMeans performs the worst.
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Fig. 6. 20-Newsgroups dataset: Varying concentration parameter, with six seed classes.

4 Related Work

In this paper we describe and evaluate a novel multiclass SSL method that is more robust
when there are unanticipated classes in the data—or equivalently, when the algorithm
is given seeds from only some of the classes present in the data. To the best of our
knowledge this specific problem has not been explored in detail before, even though
in real-world settings, there can be unanticipated (and hence unseeded) classes in any
sufficiently large-scale multiclass SSL task.

More generally, however, it has been noted before that SSL may suffer due to the
presence of unexpected structure in the data. For instance, Nigam et al’s early work on
SSL based EM with multinomial Naive Bayes [21] noted that adding too much unla-
beled data sometimes hurt performance on SSL tasks, and discusses several reasons this
might occur, including the possibility that there might not be a one-to-one correspon-
dence between the natural mixture components (clusters) and the classes. To address
this problem, they considered modeling the positive class with one component, and the
negative class with a mixture of components. They propose to choose the number of
such components by cross-validation; however, this approach is relatively expensive,
and inappropriate when there are only a small number of labeled examples (which is
a typical case in SSL). More recently, McIntosh [18] described heuristics for intro-
ducing new “negative categories” in lexicon bootstrapping, based on a domain-specific
heuristic for detecting semantic drift with distributional similarity metrics. Our setting is
broadly similar to these works, except that we consider this task in a general multiclass-
learning setting, and do not assume seeds from an explicitly-labeled “negative” class,
which is a mixture; instead, we assume seeds from known classes only. Thus we assume
that data fits a mixture model with a one-to-one correspondence with the classes, but
only after the learner introduces new classes hidden in the data. We also explore this
issue in much more depth experimentally, by systematically considering the impact of
having too few seed classes, and propose and evaluate a solution to the problem. There
has also been substantial work in the past to automatically decide the right “number
of clusters” in unsupervised learning [11,22,15,7,19,27]. Many of these techniques are
built around K-Means and involve running it multiple times for different values of K.
Exploratory learning differs in that we focus on a SSL setting, and evaluate specifi-
cally the performance difference on the seeded classes, rather than overall performance
differences.



There is also a substantial body of work on constrained clustering; for instance,
Wagstaff et al [26] describe a constrained clustering variant of K-Means “must-link”
and “cannot-link” constraints between pairs. This technique changes the cluster assign-
ment phase of K-Means algorithm by assigning each example to the closest cluster such
that none of the constraints are violated. SSL in general can be viewed as a special case
of constrained clustering, as seed labels can be viewed as constraints on the clusters;
hence exploratory learning can be viewed as a subtype of constrained clustering, as well
as a generalization of SSL. However, our approach is different in the sense that there
are more efficient methods for dealing with seeds than arbitrary constraints.

In this paper we focused on EM-like SSL methods. Another widely-used approach
to SSL is label propagation. In the modified adsorption algorithm [25], one such graph-
based label propagation method, each datapoint can be marked with one or more known
labels, or a special dummy label meaning “none of the above”. Exploratory learning is
an extension that applies to a different class of SSL methods, and has some advantages
over label propagation: for instance, it can be used for inductive tasks, not only trans-
ductive tasks. Exploratory EM also provides more information by introducing multiple
“dummy labels” which describe multiple new classes in the data.

A third approach to SSL involves unsupervised dimensionality reduction followed
by supervised learning (e.g., [8]). Although we have not explored their combination,
these techniques are potentially complementary with exploratory learning, as one could
also apply EM-like methods, in a lower-dimensional space (as is typically done in spec-
tral clustering). If this approach were followed then an exploratory learning method like
Exploratory EM could be used to introduce new classes, and potentially gain better per-
formance, in a semi-supervised setting.

One of our benchmark tasks, entity classification, is inspired by the NELL (Never
Ending Language Learning) system [5]. NELL performs broad-scale multiclass SSL.
One subproject within NELL [20] uses a clustering technique for discovering new re-
lations between existing noun categories—relations not defined by the existing hand-
defined ontology. Exploratory learning addresses the same problem, but integrates the
introduction of new classes into the SSL process. Another line of research considers
the problem of “open information extraction”, in which no classes or seeds are used at
all [28,12,9]. Exploratory learning, in contrast, can exploit existing information about
classes of interest and seed labels to improve performance.

Another related area of research is novelty detection. Topic detection and tracking
task aims to detect novel documents at time t by comparing them to all documents till
time t − 1 and detects novel topics. Kasiviswanathan et al. [16] assumes the number
of novel topics is given as input to the algorithm. Masud et al. [17] develop techniques
on streaming data to predict whether next data chunk is novel or not. Our focus is on
improving performance of semi-supervised learning when the number of new classes is
unknown. Bouveyron [3] worked on the EM approach to model unknown classes, but
the entire EM algorithm is run for multiple numbers of classes. Our algorithm jointly
learns labels as well as new classes. Schölkopf et al. [24] defines a problem of learning
a function over the data space that isolates outliers from class instances. Our approach
is different in the sense we do not focus on detecting outliers for each class.



5 Conclusion
In this paper, we investigate and improve the robustness of SSL methods in a setting
in which seeds are available for only a subset of the classes—the subset of most inter-
est to the end user. We performed systematic experiments on fully-labeled multiclass
problems, in which the number of classes is known. We showed that if a user provides
seeds for only some, but not all, classes, then SSL performance is degraded for sev-
eral popular EM-like SSL methods (semi-supervised multinomial Naive Bayes, seeded
K-Means, and a seeded version of mixtures of von Mises-Fisher distributions). We
then described a novel extension of the EM framework called Exploratory EM, which
makes these methods much more robust to unseeded classes. Exploratory EM intro-
duces new classes on-the-fly during learning based on the intuition that hard-to-classify
examples—specifically, examples with a nearly-uniform posterior class distribution—
should be assigned to new classes. The exploratory versions of these SSL methods often
obtained dramatically better performance—e.g., on Delicious Sports dataset up to 90%
improvements in F1, on 20-Newsgroups dataset up to 27% improvements in F1, and
on Reuters dataset up to 200% improvements in F1. In comparative experiments, one
exploratory SSL method, Explore-KMeans, emerged as a strong baseline approach.

Because Exploratory EM is broadly similar to non-parametric Bayesian approaches,
we also compared Explore-KMeans to a seeded version of an unsupervised mixture
learner that explores differing numbers of mixture components with the Chinese Restau-
rant process (CRP). Explore-KMeans is faster than this approach, and more accurate as
well, unless the parameters of the CRP are very carefully tuned. Explore-KMeans also
generates a model that is more compact, having close to the true number of clusters.
The seeded CRP process can be improved, moreover, by adapting some of the intu-
itions of Explore-KMeans, in particular by introducing new clusters most frequently
for hard-to-classify examples (those with nearly-uniform posteriors).

The exploratory learning techniques we described here are limited to problems
where each data point belongs to only one class. An interesting direction for future
research can be to develop such techniques for multi-label classification, and hierar-
chical classification. Another direction can be create more scalable parallel versions of
Explore-KMeans for much larger datasets, e.g., large-scale entity-clustering task.
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