Investigating The Utility of MM X/SSE Instruction Sets Now And In The Future

CS 15-740 Computer Architecture Final Project Report
Computer Science Department
Carnegie Méllon University

Jerng Barbic
Brian Potetz
Matt Rosencrantz

Abstract:

In this report we examine several multimedia applicationswith and without MMX/SSE enhancements
and examine the impact on execution time and cache performance of these enhancements. We implement
several versions of the programs to isolate their memory and processing requirements.One criticism of
SMD technology isthat it may be doomed to obsolesence as processors gain speed with respect to
memory. We discover that the multimedia applications we looked at are not memory bound. Enhancing
applications with MMX does make them more memory bound, but not so much as to nullify the gain given
by the enhancement. We show that prefetching instructions can be used to hide memory latency, and that
MMX style enhancement will still be useful aslong as the latency is predictable, the memory bandwidth
scales sufficiently, and the total runtime of the programis large compared to the latency of memory.

1 Introduction and Previous Work

Our first goal isto test the ability of MM X and SSE to improve the performance of multimedia
applications. In this paper, we compare enhanced and unenhanced versions of a wide variety of
applications, representative of important multimedia workloads both today and in the future. There has
been some work in this area, but there are still many unexplored avenues. In particular, Bhargava et. al
investigated performance enhancements gained by MMX instructions on a suite of multimedia applications
[2], but relied on the use of Intel MM X enhanced image processing libraries to gain performance. This
introduces waste due to operand arrangement and function call overhead. Worse till, the libraries
implement generalized algorithms that cannot take advantage of simplifications allowed when targeting a
specific application. For example, JPEG only requires 8x8 inverse discrete cosine transform (IDCT)
operations and a general implementation of IDCT would not be able to take advantage of that fact. This
may have been why they observed a negative performance gain in their JPEG implementation.
Additionally, SSE and prefetching were not explored.

We are also interested in investigating the continued utility of these multimediainstruction sets. One
criticism of SIMD instructions has been that processor speeds have been increasing faster than memory
access times, and that multimedia workloads are known to process large quantities of data. It would
therefore seem possible that the utility of SIMD may be decreasing as multimedia applications become
more memory-bound, and that eventually it may no longer be worth supporting. In this paper we use a
variety of methods to test the veracity of this claim.

Slingerland et. al conducted a detailed analysis of the cache performance of multimedia applications
and concluded that they actually exhibit lower instruction miss ratios and comparabl e data miss ratios when
contrasted with other widely studied workloads [4]. In [6], the authors studied the effect of using Sun’s VIS
instruction set. After adding VIS instructions, some applications that had been compute bound became
memory bound. After inserting software prefetching, however, the applications became process bound
again. One shortcoming of this experiment was that the simulator used the RSIM superscalar processor
simulator. We seek to establish similar results on a real world processor that is in common use, instead of
using a simulator for a non-existent CPU.

2 Methodology

All our results were collected on Pentium 111 1GHz computers running Windows 2000 with 512MB
or RAM, 512K L2 cache, and 16K instruction and data L1 caches. The cache line size is 32 bytes for both
L2 and L1, and all caches are write-back.

2.1 No-Memory Mode

Thefirst quantity we wish to measure isthe amount of time wasted by programs due to cache misses.
This gtatistic is somewhat difficult to obtain, however, becauseit is difficult to judge when an out-of-order
superscalar processor iswasting time, and more difficult ill to give a precise reason for the waste when it
occurs. A crucial observation, however, isthat a computer with an infinite pre-loaded cache would give us
the performance of the program without any waste due to bad cache performance, and we would then be
able to compute the wasted time by a simple subtraction. Unfortunately, it is not feasible to build such a
device, and no simulator was available that we could alter to achieve this behavior. This same functionality
can be simulated, though, by simply altering all loads and stores in the program to always read from a
single small static buffer instead of traversing the enormous sea of data usually processed by the algorithm.

In general, this method of measurement is not practical. In particular, it cannot be performed if the
flow control of a program is dependent on the data you are trying to isolate it from. Fortunately, thereisa
large class of multimedia applications whose control flow isindependent of the data: decoding applications.
Decoding applications often do not make decisions based on their data, they smply churn through it
passing data from input through a series of stepsto the output. The procedure applied isindependent of the
data, which meansthat it will take aslong to process a simple repeating pattern of bytes asit would to
process actual image data.

A final implementation detail that can arise when using this strategy isthat artificial instruction
dependencies can be introduced by altering the loads and stores, making the code run artificially slow. To
avoid this problem, separate buffers can be used for reading and for writing, minimizing fal se dependencies
and forcing all dependenciesto be either read after read or write after write, which are more palatable than
other dependency typesin practice.

We implemented this modification on several applications of our multimedia suite and successfully
used it to isolate the time wasted by bad cache performance from the time required to perform the
processing alone. We call these modified versions no-memory mode versions. We made use of another
simplifying idea: you need not implement no-memory mode everywhere, but only in "hot spots” that
exhibit alarge number of cache misses. In thisway alarge percentage of the cache missesin a program can
be eliminated with relative ease.

2.2 No-Processor Mode

Using the no-memory mode versions of our applications, we are able to compute the portion of
program execution spent processing data and differentiate this from time lost due to cache misses.
However, we would like to make a further distinction. We would like to know the portion of the execution
spent performing any memory access. In effect, the running time of a program can be visualized asaVenn
diagram where the two circles are the time required for computation and the time required purely for
memory operations. The overlap signifies the time that the CPU is able to schedule computation while a
memory operation is being serviced.

We know the total time, and from our no-memory-mode, we know the time spent only processing. In
order to determine the overlap timein the diagram, we need to measure the time required to execute just the
memory operations of our program. To achieve this we created a special version where we essentially
removed all theinstructions that were not memory instructions, thereby making the program compl etely
memory-bound. We call this modification no-processor mode.

Again, this technique is not universally applicable. The validity of this approach assumesthat no
prefetching is taking place in normal operation of the program. Furthermore, some amount of processing is
clearly required to execute no-processor mode, including loop overhead and pointer arithmetic. We can
only expect that the time required to execute these few processing instructions will be hidden by the
Memory access Costs.

It should be noted here that these concepts are only approximations of the behavior of the processor
during multimedia processing. Running the program in no-memory modewill change the burden somewhat
on processor resources. |f we are in no-memory mode then dependancies that might have worked
themselves out durring a cache miss will now be seen by the processor, thus decreasing efficiency. If,
however, we are not running no-memory mode the cache misses will cause long latency dependancies that
will likely force many instructions to queue up, filling the reorder buffer. Thiswill not be seen in no-
memory mode. In any case the effects of these changes will be small aslong as there are very few cache
misses rel etive to the dynamic instruction count. We fed that the no-memory mode abstraction provides an

excellent way to gain insight into the relative extent to which a multimedia application is processor-bound
or memory-bound.

2.3 Application Suite

2.3.1JPEG

Thefirst application that we study is the JPEG decoder algorithm. As mentioned above, the JPEG
algorithm isimportant to study because it is a real-world multimedia application that is ubiquitousto awide
population of computer users, and yet previous attempts to improve its performance using MM X have
failed [2]. Although JPEG decompression is not usually a noticably slow application, it is still important to
improve its performance to help support multimedia applications that display large numbers of images
concurrently with other processes, the ahility to pan smoothly across large images, or real-time
decompression of high-resolution MJPEG movies.

To investigate the utility of MMX for JPEG decompression, we chose to enhance the open-source
JPEG library provided by the Independent JPEG Group (1JG). The advantage of selecting thislibrary isthat
itisin wide use, and has been optimized for efficient JPEG decoding. This ensures that we have aredlistic
base to compare our MM X enhanced algorithm to. Using a profiler, we identified three processing-
intensive “hot-spots” of the decoder: the inverse discrete cosine transform (IDCT), the color conversion
routine, and the linear interpolation upsampling routine. We were able to find existing enhanced versions of
two of these routines (the IDCT and the upsampler) as a part of an open-source project to implement a fast
MJPEG encoder/player. We completed their implementation and then modified the code for no-memory
and no-processing mode by hand in the hot-spots mentioned above. The results reported for the unenhanced
version of JPEG are from the original C++ source compiled on Microsoft Visual C++ 6.0 with
optimizations.

All tests of the JPEG decoder were run on a 10,000x10,000 pixel 24 bit color JPEG image. As a
compressed image, this image consumes 13,302,614 bytes. The large size of the image was chosen to
reduce the effect of overhead on program execution, to decrease the relative error introduced by event
sampling in VTune, and to demonstrate the performance of JPEG decompression on high-resolution
images, which is likely to become more important as consumer-level bandwidth and disk-capacity
increases and large images become more commonplace.

2.3.2 Sobel Edge Detector

The next application in our test suite was a simple computer vision algorithm. Specifically, we chose
a simple edge-detection algorithm, the Vertical Sobel convolution operator. This algorithm works by
applying a small 3x3 convolution to the image. We selected this application for several reasons. First, to
further understand how MMX will be useful both now and in the future, we specifically sought out
algorithms that were pertinent to developing, up and coming applications of computing technology.
Computer vision is an area that we expect to see growth in as processors become faster and more practical
for demanding image understanding applications. Also, we may expect that in the future, computer vision
may become a task that users will want to perform concurrently with other processing tasks. For instance,
users may want to interact with a computer via face and gesture recognition software, without sacrificing a
large portion of their processing capability.

Finally, and most importantly, we chose the Sobel operator because we wanted to analyze an
algorithm that required a very small amount of processing per memory access. The Sobel convolution
operator exemplifies this behavior. For each pixel of output (one byte each), the Sobel algorithm loads six
neighboring pixels, performs three integer adds operations, three subtracts, a multiply and a shift. We can
expect, therefore, that the Sobel convolution operator should be as close to memory-bound as one can find
in a multimedia algorithm.

All versions of the Sobel operator were written from scratch, in either C++, Intel assembly, or
MMX/SSE enhanced Intel assembly. The unenhanced version of the algorithm was originally written in
C++, and compiled with an optimizing compiler (Microsoft Developer Studio 6.0). The C++ code was then
assembled into Intel assembly, so that further modifications to the code could be made without worrying
about complexities introduced by the optimizing compiler. Several attempts were made to modify the
resulting assembly code to improve the unenhanced algorithm, but no performance boost was realized. This
discredits the possibility that some of the gain from MMX was due to more careful fine-tuning at the
assembly level. MMX and MMX/SSE versions of the algorithm were implemented directly in assembly.

No-memory and No-processing modes for both the enhanced and unenhanced versions were also
implemented directly in assembly. Because the algorithm uses only integer arithmetic, the SSE enhanced
version differs from the MM X enhanced version only in its use of software prefetching.

All versions of the Sobel operator application were run a 10,000x10,000 pixel grayscale image. All
results shown reflect the performance of the Sobel operator itself. They do not include the execution of
decompressing the image or reading it from disk.

2.3.3MP3 and MPEG Encoders

To study mp3 compression we used the Gogo No Coda mp3 compression utility. This utility converts
wav filesinto mp3's. The reason for choosing this application isthat it comes with a full source code and
that it enables to turn on/off SSE or MM X features.

To study mpeg compression we used the Flask Video mpeg compressor which converts DVD
uncompressed files (vob) into mpeg-2 format. We performed the tests on a 39.1 Mb vob file to convert it
into a5 Mb mpeg-2 file. Again, the MM X and non-MMX version produce two mpeg-2 file of essentially
the same quality.

All tests were performed on a 20 Mb wav file taken from amusical CD. Resulting mp3 file size was
1.8 Mb. The mp3 files produced by MM X and non-MMX routines were identical, whereas the SSE-
produced version had the same length as MM X and non-MMX version, but dightly different data with the
same sound sampling frequency.

2.4Using VTune
Intel’s VTuneis one of the standard performance analyzersfor the x86 architectures. It uses Pentium

on-chip performance-monitoring hardware counters that keep track of many processor-related events (see
[1], Appendix A). For each event type, VTune can count the total number of events during an execution of
aprogram and locate the spots in the program’s source code where these events took place (with
corresponding frequencies). We used VTune to gather statistics on the following event types:

* Clockticks

» Total instructions retired

* L1 cachelinealocated

L1 misses outstanding (roughly this equals the number of L1 cache misses times the average number

of cyclesto service the miss)

* L2 Cache Read Misses

* L2 Cache Write Misses

» L2 Cache Instruction Fetch Misses

* L2 Cache Request Misses (equals the sum of the previous three categories)

» L2 Cache Reads

* L2 Cache Writes

* L2 Cache Ingtruction Fetches

* L2 Cache Requests (equals the sum of the previous three categories)

VTune performs these measurements by sampling, which isinherently inaccurate. VTune
implements a self-calibration mechanism which allows us to set the desired accuracy (in our case: 5%) of
the results.

Additionally, VTune also permits to perform a dynamic analysis (smulation) of a portion of a code.
The simulation takes alot of time and is therefore useful mainly for short segments of code. We used
dynamic analysis to better understand the program behavior at hot-spots.

3 Reaults

3.1JPEG

Overall, the MM X enhanced version of JPEG achieved a speedup of 1.7x or 41.2%. In order totake a
closer look at cache performance, we implemented a special no-memory-mode version of both the
enhanced and unenhanced programs. In the unenhanced version, despite the fact that L1 weighted
outstanding misses has dropped a precipitous 97%, the decompression time for the JPEG has decreased by
only 0.5%, probably within the margin of error of our measurement. Thisisaclear demonstration that the

program was wasting very little, if any, of itstime on cache misses. In the enhanced version of the code,
one might expect to encounter a much different situation since processing has been sped considerably,
perhaps making memory more of a bottleneck. Again, however, the data show that a 97% decreasein L1
misses outstanding produces a paltry 4.3% performance improvement. Thisis strong evidence that the
MMX version of the application, while more memory constrained than its unenhanced alternative, is still
processor bound. To build some intuition for why so little time is wasted due to cache misses we can
examine the number of L1 weighted outstanding misses. Assuming that all L1 misses were non-
overlapping and that no useful computation could be done while any miss was outstanding we would have
wasted only about 154 million instructions, which is only about 3.1% of the total cycles. Put another way,
we can note that the total number of L2 request missesfor our MM X enhanced program was approximately
2,387,000. Suppose each of these misses incurred a penalty of 100 cycles and that the processor was
completely unable to hide any of it by batching requests or issuing other instructions. Even in these dire
conditions only 238,700,000 cycles would be wasted, this number is a mere 4.8% of the nearly 5 hillion
cycles required to process the entire JPEG image. There simply is not very many cache misses relative to
the amount of computation. Only about one in every thousand memory requests resulted in an L2 miss,
which isonly about one in every three thousand instructions.

Table 1: Overall JPEG Performance

Execution Time
Algorithm Version (cycles)
Unenhanced 10,628,268,688
Unenhanced, No-Memory Mode 10,573,118,081
MMX enhanced 4,922,172,952
MMX enhanced, No-Memory Mode 4,711,002,535

Table 2: L1 Cache Analysis

CyclesL1 Misses
Algorithm Version Outstanding Total Cycles Percent
Unenhanced Version 188,336,797 10,628,268,688 1.77%
MMX Version 154,240,083 4,922,172,952 3.13%
3.1.1IDCT

In order to get a better insight into what makes the JPEG application perform so much faster when
MMX enhanced, we will examine several "hotspot" functions. Perhaps the most important of these
“hotspots” is the inverse discrete cosine transform function. This function represents 41.55% and 35.33%
of the unenhanced and enhanced program execution times respectively. It is also the source of the greatest
speed up, 2.0x or 50.0%. Looking at our special no-memory-mode versions of the MMX and unenhanced
code performance increases of 10.2% and 2.8% respectively are observed. We can see here perhaps more
clearly that the MMX enhanced code has more of a memory bottleneck than the unenhanced program, but
neither is seriously constrained.

Table 3: IDCT Performance

Execution Time
Algorithm Version (cycles)
Unenhanced 5,725,448,342
Unenhanced, No-Memory Mode 5,566,746,670
MMX enhanced 1,739,003,704
MMX enhanced, No-Memory Mode 1,562,639,541

Processing Memory Processing Memory
(88%) (28%) (88%) (32%)

Color Conversion Fancy Upsample
(MMX version) (MMX version)

Figure 1: JPEG Hotspot Execution Time Breakdown

3.1.2 Upsampling

The fancy upsample routine is somewhat shorter and simpler than the IDCT and so we were able to
implement the no-processor-mode. With this information we can construct the full Venn diagram.
We achieved a speedup of 3.29x in this function.

Table 4: Upsampling Perfor mance

Execution Time
Algorithm Version (cycles)
Unenhanced 1,003,308,564
MMX enhanced 412,478,093
MMX enhanced, No-Memory Mode 362,747,195
MMX enhanced, No-Processing Mode 133,062,946

3.1.3 Color Conversion

The speed-up obtained for this JPEG hotspot was 2.14x. As shown in Figure 1, analysis of no-
memory and no-processing modes show that the algorithm is almost entirely processor-bound. Therelative
number of L1 misses, shown in Table 6, supports this conclusion.

Table 5: Color Conver sion Perfor mance

Execution Time
Algorithm Version (cycles)
Color Conversion, Unenhanced 2,312,153,133
Color Conversion, MM X enhanced 1,080,249,951
Color Conversion, MMX enhanced, No-Memory Mode 952,208,118
Color Conversion, MMX enhanced, No-Processing Mode 304,961,077

Table 6: L1 Cache Perfor mance

CyclesL1
Algorithm Version Misses Total Cycles Per cent
Outstanding
Color Conversion, Unenhanced 74,471,228 2,312,153,133 1.43%
Color Conversion, MMX enhanced 69,925,288 1,080,249,951 3.05%
Upsample, Unenhanced 66,369,887 1,003,308,564 6.62%
Upsample, MMX enhanced 58,117,663 412,478,093 14.10%

3.2 Sobel Edge Detector

The most impressive speed-up we observed was in our sSsimple computer vision algorithm. Using
MMX alone, we obtained a speed-up of 2.50x. When the prefetching capahilities of SSE were added, the
speed-up jumped to 4.19x. We can understand these results better by investigating the memory and
processing requirements of our algorithm.

Firgt, it isimportant to understand the effect of MM X on theinner loop of our kernel. As mentioned
above, for each iteration of the inner loop, the unenhanced version of the algorithm performs six memory
loads of one byte each, three integer adds, three subtracts, a multiply and a shift (plus a small amount of
loop overhead and pointer arithmetic), and then stores one byte to memory. The MMX version of the
algorithm performs two loads of eight bytes each, performs six packed adds, six packed subtracts, two
packed multiplies, two packed shifts, and performs two stores of four bytes each. Therefore, the total
number of processing calls have decreased by a factor of four, the total number of memory read
instructions has decreased by a factor of 48, and the total number of memory write instructions has
decreased by afactor of four.

We then ran our no-memory-mode and no-processing-mode versions of the algorithm and compared
them with the originals. For the unenhanced algorithm, the no-processing mode algorithm took 56% as
much time as the complete algorithm. The no-memory mode al gorithm took 72% as much time asthe
complete algorithm. This suggests that both processing and memory access are critical to the execution of
the algorithm, but the processing demands were dightly greater than the memory access demands.

Table 7: Sobel Edge Detector Perfor mance

Execution Time

Algorithm Version (ticks)
Unenhanced 2781
Unenhanced, No-Memory Mode 2000
Unenhanced, No-Processing Mode 1552

MMX enhanced 1110

MMX enhanced, No-Memory Mode 630

MMX enhanced, No-Processing Mode 859

MM X/SSE enhanced (prefetching) 661

MMX/SSE enhanced, No-Memory Mode 630

For the MM X enhanced version of the algorithm, the no-processing mode a gorithm took 77% aslong
as the compl ete enhanced algorithm, while the no-memory mode version took 57% as long. So we can see
that adding MMX to the algorithm made the program more memory-bound, although both computation and
memory are still very critical to algorithm.

From these results, we can also estimate that MM X increased the performance of the processing
portion of the algorithm by a factor of 3.16, and it increased the performance of the memory portion of the
algorithm by afactor of 1.82. The speed-up to the processing portion approached its theoretical maximum

Processing Memory
(72%) (56%)

Processing Memory
(57%) (77%)

Unenhanced MM X Enhanced
(2.50X faster)

Figure 2 Sobel Edge Detector Execution Breakdown

of 4x. The speed-up to the memory portion was most likely due to the great reduction of memory access
instructions (the MM X version has only 2.08% as many load instruction as the unenhanced version).

Because our simple vision algorithm was not entirely processor-bound, it presents an excellent
opportunity to explore the utility of the prefetch instructions provided by SSE. AsMMX decreases the size
of the processing portion of our execution time, the algorithm becomes more memory-bound. We want to
investigate the ability of software prefetching to remedy this problem.

Weimplement avery simple form of prefetching here, prefetching only for image datain the inner
loop of the algorithm. The number of iterations to prefetch datain advance is determined by increasing this
number until no more reduction of cache misses can be obtained, and VTune dynamic analysis reports no
data_pending cache misses.

After prefetching was added, the program ran in 60% of the time required for the MM X enhanced
version. The no-memory-mode version (the same executable as the no-memory version for the MMX
algorithm without prefetching) required a full 95% of this time to complete. Thisisto be expected, since
the prefetching version of the algorithm cannot be expected to run faster than the processing portion of the
non-prefetching MM X version, which took 57%. This self-consistency within the data lends credibility to
itsvalidity.

Table 8: Sobel Edge Detector L1 Cache Performance

CyclesL1 Misses
Algorithm Version Outstanding Total Cycles Per cent
Unenhanced Version 350,577,036 2,648,201,359 13.24%
MMX Version 481,796,621 1,033,714,579 46.61%
MMX/SSE Version 40,326,338 612,531,161 6.58%

Unfortunately, it does not make sense to implement no-processing-mode for the prefetching
MM X/SSE version of the algorithm. By removing the processing instructions from the inner loop, the loop
will become memory-saturated, thereby altering the number of iterations in advance prefetches must be
issued, and clogging the data bus with memory requests. So we cannot complete the Venn diagram for the
prefetching algorithm. However, we can infer from the results above that the memory portion of the
diagram must lie almost entirely within the processing portion of the diagram. This theory is born out by
examining the number of cache missesin the prefetching version. By adding prefetching, the weighted
number of cycleswhilean L1 cache misswas outstanding reduced from 481,796,621 to 40,326,338. Thisis

a 12x reduction. This suggests that the memory portion of our diagram has not only moved inward to
overlap the processing portion, but it has become significantly smaller.

3.3MP3& MPEG Compression

VTune Sampling shows a significant decrease in the total number of clockticks as MM X and SSE
features are added. At the same time, the number of dynamic instructions issued decreases. SSE version
took 7.3 seconds, MM X version took 11.2 seconds and non-MMX version took 12.4 seconds. Cache
characteristics do not differ much between non-MMX, MM X and SSE versions. Thisisnot surprising since
all the three version operate on the same data in the same order. Results for mpeg are similar to those for
mp3. The MMX version took 111 seconds and no-MMX version took 130 seconds. The following three
diagrams summarize these results.

MP3 Encoder

14,000,000,000+
12,000,000,000
10,000,000,000
8,000,000,000-
6,000,000,000+
4,000,000,000
2,000,000,000
0,

O No MMX
OMMX Only
OSSE

Instructions Retired Clockticks

Figure 3: MP3 Compression Performance

MP3 Encoder

3,500,000+
3,000,000+
2,500,000+

2,000,000 T No MMX
1,500,000 O MMX Only

1,000,000 OSsE

500,000+
O,L—

L2 Cache Read Misses L2 Cache Write Misses L2 Cache Instruction
(highly correlated) (highly correlated) Fetch Misses (highly
correlated)

Figure 4: MP3 L2 Cache Performance

MP3 Encoder

800,000,000+
700,000,000+
600,000,000+
500,000,000+

400,000,000 B No MMX
300,000,000 OMMX Only
200,000,000 OSSE

100,000,000+
0

L1 Lines Allocated L1 Misses
outstanding
(weighted)

Figure 5: MP3 L1 Cache Performance

10

We couldn’t use the no-memory mode techniques to analyze compression algorithms since the speed
of compression (detecting motion vectors) depends much more on the input data than does decompression.
We used the following technique, which gives us an upper bound on the relative number of cycles wasted
due to cache misses. If this upper bound is very low, we can then argue that the program is not memory-
bound. Every L2 cache miss takes approximately 100 cycle to serve. With VTune, we can determine the
total number n of L2 cache request misses (data reads + data writes + instruction misses). Under the
pessimistic assumption that the processor stalls while servicing aL2 cache miss (i.e. that thereisno
intersection of memory and processor mode), it follows that in the worst case 100n cycles are wasted
waiting for data from memory. In reality, there is some overlap of memory and processor mode, so the
number of wasted cycleswill be much lower. With VTune, we can measure the total number of cycles
issued in the program (processor frequency * total execution time) and we can therefore determinetheratio
K:

wasted cycles< 100n _
total cycles ~ total cycles

In this equation, wasted cycles refers to the actual number of cycles the program execution is stalled dueto
memory latency. This corresponds to the memory-only part of the Venn diagram.

For the mp3 compression, theratiosk are (10%, 6.4%, 5.7%) for (SSE, MM X, non-MMX)
respectively, and for mpeg compression they are (29.7%, 25.2%) for (MM X, non-MMX), respectively.
Note that the ratios get higher as you add more and more efficient computation, i.e. asyou add MM X and
SSE instructions.

Theratios for mp3 are very small, which impliesthat mp3 compression algorithm is compute-bound
and not memory-bound. Sincethek ratio is only an upper bound on the relative number of cycles wasted,
relatively high numbers for mpeg do not necessarily imply that mpeg computation is memory-bound.
Actualy, MMX version of mpeg experiences a 20% speedup over the non-MM X, supporting the argument
that mpeg compression is not memory bound.

Introducing the two multimedia instruction sets has therefore decreased the compute time for mp3
and mpeg compression, but not to the extent that memory would become a bottleneck.

3.4 Unreal Tour nament
Another important class of multimedia applications is computer games. In order to get some idea of the
impact of MMX on video game performance we ran Unreal Tournament on the Utbench benchmark. We

recorded frames per second valuesin MMX and no-MM X mode at 800X 600 resolution with default quality
settings. We observed significant frame rate increasesin MM X mode.

Table 9: Unreal Tour nament Frame Rates

No-MMX MMX
Min Frame Rate 11.81 15.97
Max Frame Rate 20.88 25.95
Average Frame Rate | 17.08 20.39

4 Conclusions

Our first goal was to demonstrate performance gain using MM X and SSE. In every case we were able
to derive some performance benefit from MM X optimization, often a quite large benefit. By avoiding the
use of prefabricated MM X image processing libraries, we were able to achieve a sizable performance
increase in the JPEG decoder, although previous work had been unable to do this. Our simple computer
vision algorithm demonstrated a performance boost that approached the theoretical maximum for four-data-
element SIMD. These results show that MM X technology is very useful today.

Our second goal was to test the claim that the utility of SIMD technology was doomed to
obsol escence as processors gained in speed with respect to memory. The fact that significant performance

11

increase was observed on MM X enhanced versions of our multimedia suite suggests that if thisistrue, this
event is still along ways away. Even in the case of the Sobel agorithm, which has very little computation
per byte of input data, we saw a large improvement from using MMX. Enhancing applications with MMX
does make them more memory bound, but there is enough processing to be done that even in this case there
is a speed-up. However, we can seethat aslong CPU speed increases at a faster rate than memory speed
thisimprovement will be decreasing.

Our results when using the SSE Prefetching instructions, though, show that thereisaway to
circumvent the problems caused by this widening gap. We can use prefetching instructions to hide memory
latency aslong asthe latency is predictable, the working set of the algorithm is sufficiently small, the
pattern of data accessis predictable, the memory bandwidth scales sufficiently, and the total run-time of the
program is large compared to the latency of memory. The latency of memory must be predictable so we can
accurately determine how far in advanceto prefetch data. Slingerland et. al showed that the working sets of
multimedia applications are generally small (16K-32K) except in the case of 3D-Games [3]. The access
pattern must be predictabl e so we can know which data to prefetch at all. The run-time of the program must
be large so that theinitial latency of memory can be hidden. For example, if memory latency is 1,000,000
cycles and the runtime of the program given a perfect cache is only 100,000 cycles, prefetching will be of
little or no benefit. This problem applies more to applications like JPEG than to MPEG-like applications
which aretied to a notion of time. Finally, the memory bandwidth must be able to scal e because otherwise
even perfect prefetching will not be able to keep up with the processor.

5 Future Work

In the future this work could be extended by looking into a larger variety of multimedia applications.
Computer games might be an interesting avenue to explore since there is some evidence that they exhibit
less memory locality than most other multimedia applications [4].

Another interesting question that remains to be answersisto ask how well prefetching would
continue to hide the memory bottleneck if the application memory access patterns were less spatially local.
Although previous literature has found that multimedia application are primarily of very small working sets
[4], there are several applications that involve complex global interaction between data, such asimage
segmentation or shape from shading computer vision algorithms.

Another possible avenue for exploration istheimpact of I/O on multimedia performance, in the paper
we demonstrated that memory performance will not necessarily lead to the obsolescence of multimedia
instruction sets, a similar study could look at the impact of network performance or disk latency.

Bibliography
[1] 1A-32 Intel Architecture Software Developers Manual (by Intel Corporation)

[2] R. Bhargavaet al.: Evaluating MM X Technology Using DSP and Multimedia Applications, Presented
at the 1998 ACM/IEEE International Symposium on Microarchitecture

[3] N. Slingerland et al.: Multimedia Instruction Sets for General Purpose Microprocessors: A Survey,
Report UCB/CSD-00-1124, University of California at Berkeley, 2000

[4] N. Slingerland et al.: Cache performance for Multimedia Applications, Report UCB/CSD-00-1123,
University of California at Berkeley, 2000

[5] N. Slingerland et al.: Measuring the Performance of Multimedia Instruction Sets, Report UCB/CSD-00-
1125, University of California at Berkeley, 2000

[6] P. Ranganathan et al.: Performance of Image and Video Processing with General -Purpose Processors
and Media ISA Extensions, Proceedings of the 26™ International Symposium on Computer Architecture,
1999

[7] O. Lempd et al.: Inte's MMX Technology - A New Instruction Set Extension, Proceedings of
COMPCON, 1997

12

[8] K. Diefendorff: Pentium 111 = Pentium 11 + SSE, Microprocessor Report, Volume 13, Number 3, 1999

[9] D. Zucker et al.: Hardware and Software Cache Prefetching Techniques for MPEG Benchmarks, |EEE
Transactions on Circuits and Systems for Video Technology, Volume 10, Number 5, 2000

[10] M. Nélson: The Data Compression Book, M&T Publishing, 1991
[11] D. Tallaet al.: Execution Characteristics of Multimedia Applications on a Pentium Il Processor,

Proceedings of 19th IEEE International Performance, Computing, and Communications Conference
(IPCCC), 2000

13

