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Particle StateParticle StateParticle State
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Particle DynamicsParticle DynamicsParticle Dynamics
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State DerivativeState DerivativeState Derivative
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Multiple ParticlesMultiple ParticlesMultiple Particles
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ODE solutionODE solutionODE solution
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ODE solverODE solver

 Y(t0)  Y(t0) 

 t0  t0 

 t1  t1 

dydtdydt

lenlen

void dydt(double t, double y[], 
                    double ydot[])
     

void dydt(double t, double y[], 
                    double ydot[])
     

 Y(t1)  Y(t1) 
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Rigid Body StateRigid Body StateRigid Body State
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Rigid Body Equation of MotionRigid Body Equation of MotionRigid Body Equation of Motion
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Net ForceNet ForceNet Force
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OrientationOrientationOrientation

We represent orientation as a rotation matrix 
R(t).  Points are transformed from body-space to 
world-space as:

We represent orientation as a rotation matrix 
R(t).  Points are transformed from body-space to 
world-space as:

††

††He’s lying.  Actually, we use quaternions.He’s lying.  Actually, we use quaternions.

p(t) = R(t)p0 + x(t)p(t) = R(t)p0 + x(t)
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Angular VelocityAngular VelocityAngular Velocity

We represent angular velocity as a vector ω(t), 
which encodes both the axis of the spin and the 
speed of the spin. 

We represent angular velocity as a vector ω(t), 
which encodes both the axis of the spin and the 
speed of the spin. 
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Angular Velocity DefinitionAngular Velocity DefinitionAngular Velocity Definition

ω(t)ω(t)

x(t)x(t)

How are R(t) and
ω(t) related?
How are R(t) and
ω(t) related?
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Angular VelocityAngular VelocityAngular Velocity

 R(t) and ω(t) are related by  R(t) and ω(t) are related by 
••
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Rigid Body Equation of MotionRigid Body Equation of MotionRigid Body Equation of Motion

Need to relate ω(t) and mass distribution to F(t).Need to relate ω(t) and mass distribution to F(t).••
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Inertia TensorInertia TensorInertia Tensor

†Integrals are precomputed.†Integrals are precomputed.

I(t) =
Ixx Ixy Ix z
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Iz x Iz y Iz z

 

 

 
  

 

 

 
  

I(t) =
Ixx Ixy Ix z

Iyx Iyy Iy z

Iz x Iz y Iz z

 

 

 
  

 

 

 
  

Ixx = M (y2 + z2 )dV
V∫Ixx = M (y2 + z2 )dV
V∫

off-diagonal terms†off-diagonal terms†diagonal terms†diagonal terms†

Ixy = −M xydV
V∫Ixy = −M xydV
V∫
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Net TorqueNet TorqueNet Torque

x(t)x(t)

 f1 f1

 f2  f2 

 f3  f3 

 p1  p1 

 p2  p2 

 p3  p3 

τ (t) = (pi − x(t)) × fi∑
 

 τ (t) = (pi − x(t)) × fi∑
 

 



SD22SIGGRAPH ’97 COURSE NOTES PHYSICALLY BASED MODELING

d
dt

Y =
d
dt

x(t)

R(t)

Mv(t)

I(t)ω(t)

 

 

 
 
  

 

 

 
 
  

=

v(t)

ω(t)* R(t)

F(t)

τ (t)

 

 

 
 
  

 

 

 
 
  

d
dt

Y =
d
dt

x(t)

R(t)

Mv(t)

I(t)ω(t)

 

 

 
 
  

 

 

 
 
  

=

v(t)

ω(t)* R(t)

F(t)

τ (t)

 

 

 
 
  

 

 

 
 
  

Rigid Body Equation of MotionRigid Body Equation of MotionRigid Body Equation of Motion

P(t) – linear momentum

L(t) – angular momentum

P(t) – linear momentum

L(t) – angular momentum
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What’s in the Course NotesWhat’s in the Course NotesWhat’s in the Course Notes

1.  Implementation of 1.  Implementation of dydt dydt for rigid bodiesfor rigid bodies

     (bookkeeping, data structures, computations)     (bookkeeping, data structures, computations)

2.  Quaternions – derivations and code2.  Quaternions – derivations and code

3.  Miscellaneous formulas and examples3.  Miscellaneous formulas and examples

4.  Derivations for force and torque equations,4.  Derivations for force and torque equations,

     center of mass,  inertia tensor, rotation     center of mass,  inertia tensor, rotation

     equations, velocity/acceleration of points     equations, velocity/acceleration of points
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ConstraintsConstraintsConstraints

We want rigid bodies to behave as solid objects, We want rigid bodies to behave as solid objects, 
and not inter-penetrate. By applying and not inter-penetrate. By applying constraintconstraint  
forces between contacting bodies, we prevent forces between contacting bodies, we prevent 
interpenetration from occurring. We need to:interpenetration from occurring. We need to:

a)  Detect interpenetration                 a)  Detect interpenetration                 

b)  Determine contact points              b)  Determine contact points              

c)  Compute constraint forces            c)  Compute constraint forces            
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Simulations with CollisionsSimulations with CollisionsSimulations with Collisions

 Y(t0)  Y(t0) 
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Simulations with CollisionsSimulations with CollisionsSimulations with Collisions

 Y(t0)  Y(t0) 

 Y(t0 + ∆t)  Y(t0 + ∆t) 
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Simulations with CollisionsSimulations with CollisionsSimulations with Collisions

 Y(t0)  Y(t0) 

 Y(t0 + ∆t)  Y(t0 + ∆t) 
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An Illegal State YAn Illegal State YAn Illegal State Y
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Backing up to the Collision TimeBacking up to the Collision TimeBacking up to the Collision Time

 Y(tc)  Y(tc) 
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Colliding ContactColliding ContactColliding Contact
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Resting ContactResting ContactResting Contact
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Collision ProcessCollision ProcessCollision Process
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A Soft CollisionA Soft CollisionA Soft Collision

forceforce velocityvelocity
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A Harder CollisionA Harder CollisionA Harder Collision
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A Very Hard CollisionA Very Hard CollisionA Very Hard Collision

forceforce velocityvelocity

 ∆t  ∆t 



SD36SIGGRAPH ’97 COURSE NOTES PHYSICALLY BASED MODELING

A Rigid Body CollisionA Rigid Body CollisionA Rigid Body Collision

impulsive
 force

impulsive
 force

velocityvelocity

 fimp = ∞ 
 

∆t = 0

 fimp = ∞ 
 

∆t = 0



SD37SIGGRAPH ’97 COURSE NOTES PHYSICALLY BASED MODELING

Colliding ContactColliding ContactColliding Contact
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Resting ContactResting ContactResting Contact
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dydt for Solid Objectsdydtdydt for Solid Objects for Solid Objects

Update
current
state

Update
current
state

Collision
detection
Collision
detection

Contact point
determination
Contact point
determination

Collision
 response 
Collision
 response 

Constraint/
friction force
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Constraint/
friction force
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d
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d
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In the Course Notes – Collision DetectionIn the Course Notes – Collision DetectionIn the Course Notes – Collision Detection

Bounding box check between Bounding box check between nn objects: yes, you  objects: yes, you 
cancan avoid  avoid OO((nn22)) work.   Don’t even settle for   work.   Don’t even settle for  
OO((nn log log n n) ) – insist on an – insist on an OO((nn) ) algorithm!algorithm!

A coherence based collision detection strategy A coherence based collision detection strategy 
for convex polyhedra: it’s simple, efficient and for convex polyhedra: it’s simple, efficient and 
(relatively) easy to program.(relatively) easy to program.
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Computing ImpulsesComputing ImpulsesComputing Impulses
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Coefficient of RestitutionCoefficient of RestitutionCoefficient of Restitution
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Computing  jComputing  Computing  jj
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Computing  jComputing  Computing  jj

 pa  pa 

AA

 n  n 

BB  pb   pb  
 jn  jn 

 n • (pa
+

  – pb
+

 ) = – ( )ε n • (pa
– – pb

–) n • (pa
+

  – pb
+

 ) = – ( )ε n • (pa
– – pb

–)



SD45SIGGRAPH ’97 COURSE NOTES PHYSICALLY BASED MODELING

Computing  jComputing  Computing  jj
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In the Course Notes – Collision ResponseIn the Course Notes – Collision ResponseIn the Course Notes – Collision Response

Data structures to represent contacts (found by Data structures to represent contacts (found by 
the collision detection phase).the collision detection phase).

Derivations and code for computing the impulse Derivations and code for computing the impulse 
between two colliding frictionless bodies for a between two colliding frictionless bodies for a 
particular coefficient of particular coefficient of ε.ε.

Code to detect collisions and apply impulses.Code to detect collisions and apply impulses.



SD47SIGGRAPH ’97 COURSE NOTES PHYSICALLY BASED MODELING

Resting Contact ForcesResting Contact ForcesResting Contact Forces
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external
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external
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Conditions on the Constraint ForceConditions on the Constraint ForceConditions on the Constraint Force

To avoid inter-penetration, the force strength f 
must prevent the vertex pa from accelerating 
downwards.  If B is fixed, this is written as

To avoid inter-penetration, the force strength f 
must prevent the vertex pa from accelerating 
downwards.  If B is fixed, this is written as

 n • pa ≥ 0 n • pa ≥ 0
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Computing  fComputing  Computing  ff

 pa  pa 

AA

BB

 n  n 

 n • pa ≥ 0 n • pa ≥ 0

 f n  f n 

 a f + b ≥ 0  a f + b ≥ 0 
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Conditions on the Constraint ForceConditions on the Constraint ForceConditions on the Constraint Force

To prevent the constraint force from holding  
bodies together, the force must  be repulsive:

Does the above, along with

sufficiently constrain  f ?

To prevent the constraint force from holding  
bodies together, the force must  be repulsive:

Does the above, along with

sufficiently constrain  f ?

 f  ≥ 0  f  ≥ 0 

 n • pa ≥ 0 n • pa ≥ 0  a f + b ≥ 0  a f + b ≥ 0 
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Workless Constraint ForceWorkless Constraint ForceWorkless Constraint Force
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 f n  f n 

 a f + b = 0  a f + b = 0 

 a f + b > 0  a f + b > 0 
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 f ≥ 0
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Conditions on the Constraint ForceConditions on the Constraint ForceConditions on the Constraint Force

To make  f  be workless, we use the condition

The full set of conditions is

To make  f  be workless, we use the condition

The full set of conditions is

 f  ⋅ (af + b) = 0  f  ⋅ (af + b) = 0 

 f  ⋅ (af + b) = 0  f  ⋅ (af + b) = 0 

 f ≥ 0
  

 f ≥ 0
  

 a f + b ≥ 0  a f + b ≥ 0 
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Multiple Contact PointsMultiple Contact PointsMultiple Contact Points

AA

BB

CC

 f1 n1  f1 n1 

 f2 n2  f2 n2 
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Conditions on  f1Conditions on Conditions on  f f11

Workless:Workless:

Non-penetration:Non-penetration: Repulsive:Repulsive:

a11 f1 + a12 f2 + b1 ≥ 0a11 f1 + a12 f2 + b1 ≥ 0  f1 ≥ 0 f1 ≥ 0

 f1 ⋅ (a11 f1 + a12 f2 + b1) = 0 f1 ⋅ (a11 f1 + a12 f2 + b1) = 0
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Workless:Workless:

Repulsive:Repulsive:

a11 f1 + a12 f2 + b1 ≥ 0

a21 f1 + a22 f2 + b2 ≥ 0

a11 f1 + a12 f2 + b1 ≥ 0

a21 f1 + a22 f2 + b2 ≥ 0
 f1 ≥ 0

 f2 ≥ 0

 f1 ≥ 0

 f2 ≥ 0

 f1 ⋅ (a11 f1 + a12 f2 + b1) = 0

 f2 ⋅ (a21 f1 + a22 f2 + b2) = 0

 f1 ⋅ (a11 f1 + a12 f2 + b1) = 0

 f2 ⋅ (a21 f1 + a22 f2 + b2) = 0

Non-penetration:Non-penetration:

Quadratic Program for  f1 and f2Quadratic Program for Quadratic Program for  f f11 and  and ff22
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In the Course Notes – Constraint ForcesIn the Course Notes – Constraint ForcesIn the Course Notes – Constraint Forces

Derivations of the non-penetration constraints for 
contacting polyhedra.

Derivations and code for computing the aij and bi 
coefficients.

Code for computing and applying the constraint 
forces        . 

Derivations of the non-penetration constraints for 
contacting polyhedra.

Derivations and code for computing the aij and bi 
coefficients.

Code for computing and applying the constraint 
forces        .  fi ni  fi ni 
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Quadratic Programs with Equality ConstraintsQuadratic Programs with Equality ConstraintsQuadratic Programs with Equality Constraints

 f1 ≥ 0

 f2 ≥ 0

 f1 ≥ 0

 f2 ≥ 0

 f1 ⋅ (a11 f1 + a12 f2 + b1) = 0

 f2 ⋅ (a21 f1 + a22 f2 + b2) = 0

 f1 ⋅ (a11 f1 + a12 f2 + b1) = 0

 f2 ⋅ (a21 f1 + a22 f2 + b2) = 0

Non-penetration:Non-penetration: Repulsive:Repulsive:
a11 f1 + a12 f2 + b1    0

a21 f1 + a22 f2 + b2 ≥ 0

a11 f1 + a12 f2 + b1    0

a21 f1 + a22 f2 + b2 ≥ 0

==

(free)(free)

Workless:Workless:


