Particle Dynamics

Andrew Witkin

Carnegie Mellon University

Overview

- One Lousy Particle
- Particle Systems
- Forces: gravity, springs ...
- Implementation and Interaction
- Simple collisions

A Newtonian Particle

- Differential equation: f = ma
- Forces can depend on:
 Position, Velocity, Time

$$\ddot{\mathbf{x}} = \frac{\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{t})}{\mathbf{m}}$$

Second Order Equations

 $\ddot{\mathbf{x}} = \frac{\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, t)}{m}$

 $\begin{cases} \dot{\mathbf{x}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{f}/m \end{cases}$

Not in our standard form because it has 2nd derivatives

Add a new variable, **v**, to get a pair of coupled 1st order equations.

Phase Space

 $\begin{bmatrix} \dot{\mathbf{x}} \\ \mathbf{v} \end{bmatrix}$ $\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ \mathbf{f} \end{pmatrix}$

Concatenate **x** and **v** to make a 6-vector: *Position in Phase Space*.

Velocity in Phase Space: another 6-vector.

A vanilla 1st-order differential equation.

Particle Structure

Solver Interface

Particle Systems

Deriv Eval Loop

- Clear forces
 - Loop over particles, zero force accumulators.
- Calculate forces
 - Sum all forces into accumulators.
- Gather
 - Loop over particles, copying v and f/m into destination array.

Forces

Constant gravity
Position/time dependent force fields
Velocity-Dependent drag
n-ary springs

Force Structures

- Unlike particles, forces are heterogeneous.
- Force Objects:
 - black boxes
 - point to the particles they influence
 - add in their own forces (type dependent)
- Global force calculation:
 - loop, invoking force objects

Particle Systems, with forces

Viscous Drag

Solver Interface

Bouncing off the Walls

• Later: rigid body collision and contact.

- For now, just simple point-plane collisions.
- Add-ons for a particle simulator.

Normal and Tangential Components

 $\mathbf{V}_{\mathrm{N}} = (\mathbf{N} \cdot \mathbf{V})\mathbf{N}$ $\mathbf{V}_{\mathrm{T}} = \mathbf{V} - \mathbf{V}_{\mathrm{N}}$

Collision Detection

$(\mathbf{X} - \mathbf{P}) \cdot \mathbf{N} < \varepsilon$ $\mathbf{N} \cdot \mathbf{V} < 0$

Within ε of the wall.Heading in.

Collision Response

Conditions for Contact $|(\mathbf{X} - \mathbf{P}) \cdot \mathbf{N}| < \varepsilon$ $|\mathbf{N} \cdot \mathbf{V}| < \varepsilon$

- On the wall
- Moving along the wall
- Pushing against the wall

Contact Force

 $\mathbf{F'} = \mathbf{F}_{\mathrm{T}}$

The wall pushes back, cancelling the normal component of F.

(An example of a *constraint force.*)

SIGGRAPH '97 COURSE NOTES

Try this at home!

The notes give you everything you need to build a basic interactive mass/spring simulator—try it.