An Introduction to Physically Based M odeling:

Rigid Body Simulation | |—Nonpenetration
Constraints

David Baraff
Roboatics Institute
Carnegie Méellon University

Please note: Thisdocument is[11997 by David Baraff. Thischapter may befreely
duplicated and distributed so long asno considerationisreceived inreturn, and this
copyright notice remains intact.

Part I1. Nonpenetration Constraints

6 Problemsof Nonpenetration Constraints

Now that we know how to write and implement the equations of motion for arigid body, let’s consider
the problem of preventing bodies from inter-penetrating as they move about an environment. For
simplicity, suppose we simulate dropping apoint mass(i.e. asingle particle) onto afixed floor. There
are several issues involved here.

Because wearedealing with rigid bodies, that aretotally non-flexible, wedon’t want to alow any
inter-penetration at all when the particle strikes the floor. (If we considered our floor to be flexible,
we might allow the particle to inter-penetrate some small distance, and view that asthe floor actually
deforming near where the particle impacted. But we don’'t consider the floor to be flexible, so we
don’t want any inter-penetration at all.) Thismeansthat at the instant that the particle actually comes
into contact with the floor, what we would likeis to abruptly change the vel ocity of the particle. This
is quite different from the approach taken for flexible bodies. For aflexible body, say arubber ball,
we might consider the collision as occurring gradually. That is, over some fairly small, but non-zero
span of time, aforce would act between the ball and the floor and change the ball’s velocity. During
this time span, the ball would deform, due to the force. The morerigid we madethe ball, the lessthe
ball would deform, and the faster this collision would occur. Inthe limiting case, the ball isinfinitely
rigid, and can’'t deform at all. Unless the ball’s downward velocity is halted instantaneously, the
ball will inter-penetrate the floor somewhat. In rigid body dynamics then, we consider collisions as
occurring instantaneously.

This means we have two types of contact we need to deal with. When two bodies are in contact
at some point p, and they have avelocity towards each other (asin the particle striking the floor), we
call thiscolliding contact. Calliding contact requires an instantaneous change in vel ocity. Whenever
a collision occurs, the state of a body, which describes both position, and velocity, undergoes a
discontinuity in the velocity. The numerical routines that solve ODE’s do so under the assumption
that the state Y (t) always varies smoothly. Clearly, requiring Y (t) to change discontinuously when
acollision occurs violates that assumption.

We get around this problem asfollows. If acollision occurs at timet, wetell the ODE solver to
stop. We then take the state at thistime, Y (t.), and compute how the velocities of bodies involved
in the collision must change. We'll call the state reflecting these new velocities Y(¢)*. Note that
Y(tc) and Y(t.)™ agree for all spatial variables (position and orientation), but will be different for
the velocity variables of bodies involved in the collision at time t. We then restart the numerical
solver, with the new state Y (t.), and instruct it to simulate forward from time t.

Whenever bodies are resting on one another at some point p (e.g. imagine the particle in contact
with the floor with zero velocity), we say that the bodies are in resting contact. In this case, we
compute aforce that prevents the particle from accel erating downwards; essentiadly, thisforceisthe
weight of the particle due to gravity (or whatever other external forces push on the particle). We call
the force between the particle and the floor a contact force Resting contact clearly doesn’'t require
us to stop and restart the ODE solve at every instant; from the ODE solver’s point of view, contact
forces are just a part of the force returned by Compute_Force_and_Torque.

SIGGRAPH '97 COURSE NOTES D32 PHYSICALLY BASED MODELING

tc

\' t, + At

(inter-penetration detected)

Figure 13: At time tp + At, the particle is found to lie below the floor. Thus, the actual time of
collision t; lies between the time of the last known legal position, ¢, and tg + At.

So far then, we have two problems we'll need to deal with: computing velocity changes for
colliding contact, and computing the contact forcesthat prevent inter-penetration. But beforewe can
tackle these problems we have to deal with the geometric issue of actually detecting contact between
bodies. Let's go back to dropping the particle to the floor. Aswe run our simulation, we compute
the position of the particle asit drops towards the floor at specific time values (figure 13). Suppose
we consider the particle at times t, tg + At, tg + 2At etc.> and suppose the time of collision, t, at
which the particle actually strikes the floor, lies betweent and tg + At. Then at timetg, we find that
the particle lies above the floor, but at the next time step, § + At, we find the particle is beneath the
floor, which means that inter-penetration has occurred.

If we're going to stop and restart the simulator at time t, we' [l need to compute t.. All we know
so far isthat t; lies between ty and tg + At. In genera, solving for t. exactly is difficult, so we
solve for t. numerically, to within a certain tolerance. A simple way of determining t isto use a
numerical method called bisection[14]. If at timet + At we detect inter-penetration, weinform the
ODE solver that we wish to restart back at time t, and simulate forward to time tp + At/2. If the
simulator reaches ty + At/2 without encountering inter-penetration, we know the collision time ¢
liesbetweenty + At/2and tg + At. Otherwise, t; islessthan tg + At/2, and wetry to simulate from
to to tg + At/4. Eventualy, the time of collision t. is computed to within some suitable numerical
tolerance. The accuracy with which t; is found depends on the collision detection routines. The
collision detection routines have some parameter €. We decide that our computation of ¢ is “good
enough” when the particle inter-penetrates the floor by no more than ¢, and is less than ¢ above the
floor. At this point we declare that the particle is in contact with the floor (figure 14).

The method of bisection is a little slow, but its easy to implement and quite robust. A faster
method involves actually predicting the time t of the collision, based on examining Y () and
Y (tg + At). Baraff[1, 2] describes how to make such predictions. How to actually implement all of

5The ODE solver doesn’t have to proceed with equal size time steps though.

SIGGRAPH '97 COURSE NOTES D33 PHYSICALLY BASED MODELING

t. found (within tolerance)

(inter-penetration detected)

Figure 14: When the particle is found to be within some tolerance e of contacting the floor, then ¢
is considered to have been computed to within sufficient accuracy.

this depends on how you interact with your ODE routines. One might use exception handling code
to signa the ODE of various events (collisions, inter-penetration), or pass some sort of messages to
the ODE solver. We'll just assume that you have some way of getting your ODE solver to progress
just up to the point t..

Once you actually reach the time of a collision, or whenever you're in a state Y(t) where no
inter-penetration has occurred, a geometric determination has to be made to find al the points of
contact. (Just because you may be looking for the time of collision between two bodies A and B
doesn’t mean you get to neglect resting contact forces between other bodies C and D. Whenever
you're trying to move the ssmulation forward, you' Il need to compute the point of contact between
bodies and the contact forces at those points.) Thereis avast amount of literature dealing with the
collision detection problem. For instance, some recent SIGGRAPH papers dealing with the subject
are Von Herzen, Barr and Zatz[17] and Maore and Wilhelmg[12]; in robotics, anumber of papers of
interest are Canny[4], Gilbert and Hong[6], Meyer[11] and Cundall[5]. Preparata and Shamog[13]
describes many approaches in computational geometry to the problem. In the next section, we'll
briefly describe acollision detection “philosophy” that leadsto very efficient algorithms, for the sorts
of simulation these course notes are concerned with. Actual code for the algorithms isfairly easy to
write, but alittle too lengthy to fit in these notes. Following this, we'll move on to consider colliding
and resting contact.

7 Collision Detection

The collision detection algorithm begins with apreprocessing step, in which abounding box for each
rigid body is computed (a box with sides parallel to the coordinate axes). Given n such bounding
boxes, we will want to quickly determine all pairs of bounding boxes that overlap. Any pair of rigid
bodies whose bounding boxes do not overlap need not be considered any further. Pairs of rigid

SIGGRAPH '97 COURSE NOTES D34 PHYSICALLY BASED MODELING

bodies whose bounding boxes do overlap require further consideration. We'll first describe how
to efficiently check for inter-penetration or contact points between rigid bodies defined as convex
polyhedra. Then we'll show how to perform the bounding box check efficiently.

As described in section 1, the simulation process consists of the repeated computation of the
derivative of the state vector, %Y (t), at various times t. The numerical ODE solver is responsible
for choosing the values of t at which the state derivative is to be computed. For any reasonably
complicated simulation, the values of t chosen are such that the state Y does not change greatly be-
tween successive values of t. Asaresult, there isamost always great geometric coherence between
successive time steps. At atime step § + At, the ideaisto take advantage of the collision detection
results computed at the previous time step b.

7.1 Convex Polyhedra

Our primary mechanism for exploiting coherence will be through the use of witnesses. In our context,
given two convex polyhedra A and B, a witness is some piece of information that can be used to
quickly answer the “yes/no” question “are A and B digoint”? We will utilize coherence by caching
witnesses from one time step to the next; hopefully awitness from the previous time step will be a
witness during the current time step.

Since we are considering convex polyhedra, two polyhedra do not inter-penetrate if and only if a
separating plane between them exists. A separating plane between two polyhedraisaplane such that
each polyhedron lies on adifferent side of the plane. A given plane can be verified to be a separating
plane by testing to make sure that all of the vertices of A and B lie on opposite sides of the plane.
Thus, a separating plane is awitness to the fact that two convex polyhedra do not inter-penetrate. If
a separating plane does not exist, then the polyhedra must be inter-penetrating.

The cost of initially finding a witness (for the very first time step of the simulation, or the first
time two bodies become close enough to require more than a bounding box test) is unavoidable.
A simple way to find a separating plane initially is as follows. If a pair of convex polyhedra are
digoint or contacting (but not inter-penetrating), then a separating plane exists with the following
property: either the plane contains aface of one of the polyhedra, or the plane contains an edge from
one of the polyhedra and is parallel to an edge of the other polyhedra. (That is, the separating plane's
normal isthe cross product of the two edge directions, and the planeitself contains one of the edges.)
We will call the face or edges in question the defining face or edges. Initially, we simply check all
possible combinations of faces and edges to see if one such combination forms a separating plane
(figure 15). Although thisisinefficient, it's done so infrequently that the inefficiency isunimportant.
For subsequent time steps, all we need to do isform aseparating plane from the defining face or edges
found during the previous time step, and then verify the plane to see that it is still valid (figure 16).

Onthose (rare) occasions when the cached face or two edgesfailsto form avalid separating plane
(figure 17), faces or edges adjacent to the previously cached face or edges can be examined to seeif
they form a separating plane; however, this happens infrequently enough that it may be simpler to
start from scratch and compute a new separating plane without using any prior knowledge.

Once the separating place has been found, the contact region between the two polyhedra is
determined, assuming the polyhedra are not disjoint. Contact points between the two polyhedra can
only occur on the separating plane. Given the separating plane, the contact points can be quickly and
efficiently determined by comparing only those faces, edges, and vertices of the polyhedra that are
coincident with the separating plane.

However, if no separating plane can be found, then the two polyhedra must be inter-penetrating.
When two polyhedra inter-penetrate, it is almost always the case that either a vertex of one poly-

SIGGRAPH '97 COURSE NOTES D35 PHYSICALLY BASED MODELING

\ 2
Sseparating
plane

Figure 15. Exhaustive search for a separating plane. Only one face of the two polygons forms a
Separating plane.

@ (b)

\
\
\ \
\ \
\ \
defining
44— face
\
\
\
\

Figure 16: (a) At thistime step, the separating plane isdefined by aface of one of the polygons. (b) At
the next time step, the polygons have moved, but the same face still defines a separating plane.

SIGGRAPH '97 COURSE NOTES D36 PHYSICALLY BASED MODELING

(@

. (b)
\ \\
. \i\
\ @
\)

\

\ \

\

Figure 17: Theface that has been defining a separating plane no longer does so, and anew separating
plane must be found.

hedron is inside the other, or an edge of one polyhedron has intersected a face of the othef. In
this case, the inter-penetrating vertex, or intersecting edge and face are cached as a witness to the
inter-penetration. Sincethisindicates acollision at some earlier time, the simulator will back up and
attempt to compute%Y(t) at some earlier time. Until the collision timeisdetermined, thefirst action
taken by the collision/contact determination step will be to check the cached vertex or edge and face
to seeif they indicate inter-penetration. Thus, until the collision time is found, states in which the
inter-penetration still exists are identified as such with a minimum of computational overhead.

7.2 Bounding Boxes

To reduce the number of pairwise collision/contact determinations necessary, abounding box hierar-
chy isimposed on the bodies in the simulation environment. |f two bounding boxes are found not to
overlap, no further comparisons involving the contents of the boxes are needed. Given a collection
of n rectangular bounding boxes, aligned with the coordinate axes, we would like to efficiently
determine all pairs of boxes that overlap. A naive pairwise comparison of all pairs requires O(R)
work and istoo i nefficient, unlessthe number of bodiesissmall. Computational geometry algorithms
exist that can solve this problem in time O(nlogn + k) where k isthe number of pairwise overlaps, a
general resultisthat the problem can be solved intime O(nlod—2n + k) for d-dimensional bounding
boxeq[13]. Using coherence, we can achieve substantially better performance.

6An exception is the following. Stack two cubes of equal size atop one another so that their contacting faces exactly
coincide. Lower the top one. This produces an inter-penetration such that no vertex is inside either cube, and no edge
penetrates through any face.

SIGGRAPH '97 COURSE NOTES D37 PHYSICALLY BASED MODELING

I I I NN N A NN |
| L I

| | |
b3 be bl € €1 b5 bz €3 b4 €5 71 (57}

Figure 18: The sweep/sort algorithm. (a) When by is encountered, the active list contains intervals
3 and 6; interval 1 isreported to overlap with these two intervals. Interval 1 is added to the active
list and the algorithm continues. (b) When g is encountered, the active list contains intervals 2, 3
and 5. Interval 3isremoved from the active list.

7.2.1 Theone-dimensional case

Consider the problem of detecting overlap between one-dimensional bounding boxes, aligned with
the coordinate system. Such a bounding box can be described simply as an interval [b, €] where b
and e arereal numbers. Let us consider alist of n such intervals, with theith interval being [k, g].
The problem is then defined to be the determination of all pairsi and j such that theintervals [b, g]
and [bj, e;] intersect.

The problem can be solved initialy by a sort and sweep algorithm. A sorted list of al the I
and g valuesis created, from lowest to highest. Thelist isthen swept, and alist of activeintervals,
initially empty, ismaintained. Whenever somevalue l is encountered, all intervals on the active list
areoutput asoverlapping withinterval i, and interval i isthen added to thelist (figure 18a). Whenever
some value g isencountered , interval i isremoved from the active list (figure 18b). The cost of this
processis O(nlogn) to create the sorted list, O(n) to sweep through thelist, and O(k) to output each
overlap. Thisgives atota cost of O(nlogn + k), and is an optimal algorithm for initially solving
the problem.

Subsequent comparisons can be improved asfollows. First, thereisno need to usean O(nlogn)
algorithm to form the sorted list of h and g values. It is considerably more efficient to start with
the order found for iy and g values from the previous time step; if coherence is high, this ordering
will be nearly correct for the current time step. A sorting method called aninsertion sort{15] is used
to permute the “nearly sorted” list into a sorted list. The insertion sort algorithm works by moving
items towards the beginning of the list, until a smaller item is encountered. Thus, the second item
isinterchanged with the first if necessary, then the third item is moved towards the beginning of the
list until its proper place is found, and so on; each movement of an item indicates a change in the
ordering of two values. After the last item on the list has been processed, the list isin order. Such

SIGGRAPH '97 COURSE NOTES D38 PHYSICALLY BASED MODELING

I IR I I I I I
1T T 1T 1 [

| | |
by bg bg e € bg by e3 e; by €4 €

Figure 19: A coherence-based method of detecting overlaps. The order produced in figure 18 is
nearly correct for this arrangement of intervals. Only ky and e5 need to be exchanged. When the
exchange occurs, the change in overlap status between interval 4 and 5 is detected.

a sort takes time O(n + ¢) where ¢ is the number of exchanges necessary. For example, the only
difference between figures 19 and 18 is that interval 4 has moved to the right. Starting from the
ordered list of by and g values of figure 18, only a single exchange is necessary to sort the list for
figure 19. Theinsertion sort is not recommendeded as a sorting procedure in general, since it may
require O(?) exchanges; however, it is a good algorithm for sorting a nearly sorted list, which is
what occursin our highly coherent environment. To complete the algorithm, notethat if twointervals
i and j overlap at the previous time step, but not at the current time step, one or more exchanges
involving either aly or e value and abj or e; value must occur. The converse istrue as well when
intervalsi and j change from not overlapping at the previous time step to overlapping at the current
time step.

Thus, if we maintain atable of overlapping intervals at each time step, the table can be updated
at each time step with atotal cost of O(n+ ¢). Assuming coherence, the number of exchanges c
necessary will be close to the actual number k of changes in overlap status, and the extra O(c — k)
work will be negligible. Thus, for the one-dimensional bounding box problem, the coherence view
yields an efficient algorithm of extreme (if not maximal) simplicity that approaches optimality as
coherence increases.

7.2.2 Thethree-dimensional case

Efficient computational geometry algorithms for solving the bounding box intersection problem in
IR® are much more complicated than the sort and sweep method for the one-dimensional case. How-
ever, these algorithmsall havein common astep that isessentially asort along acoordinate axis, asin
the one-dimensional case. Each bounding box isdescribed asthreeindependent intervals [ff‘), e,

[bY, Y], and [b®, e®] which represent the intervals spanned on the three coordinate axes by
the ith bounding box. Thus, our first thought towards improving the efficiency of a computational
geometry algorithm for coherent situations would beto sort alist containing the 5 and & values,

and similarly for the y and zaxes. Again, such astep will involve O(n+ ¢) work, where c isnow the

SIGGRAPH '97 COURSE NOTES D39 PHYSICALLY BASED MODELING

total number of exchanges involved in sorting all three lists. However, if we observe that checking
two bounding boxes for overlap is a constant time operation, it follows that if we simply check
bounding boxesi and j for overlap whenever an exchange is made between valuesindexed by i and
j (on any coordinate axis), we will detect all changesin overlap statusin O(n+ c) time.

Again, we can maintain atable of overlapping bounding boxes, and update it at each time step
in O(n+ c¢) time. The extrawork involved isagain O(c — k). For the three-dimensional case, extra
work can occur if the extents of two bounding boxes change on one coordinate axis without an actual
change of their overlap status. In practice, the extra work done has been found to be completely
negligible, and the algorithm runs essentially in time O(n + k).

8 Calliding Contact

For the remainder of these notes, we're going to be concerned with examining the bodies in our
simulator at a particular instant of time . At this time ty, we assume that no bodies are inter-
penetrating, and that the simulator has already determined which bodies contact, and at which points.
To simplify matters, we'll imaginethat all bodies are polyhedra, and that every contact point between
bodies has been detected. We' |l consider contacts between polyhedra as either vertex/face contacts
or edge/edge contacts. A vertex/face contact occurs when a vertex on one polyhedra is in contact
with aface on another polyhedra. An edge/edge contact occurs when a pair of edges contact; it is
assumed in this case that the two edges are not collinear. (Vertex/vertex and vertex/edge contacts
are degenerate, and are not considered in these notes.) Asexamples, acube resting on a plane would
be described as four vertex/face contacts, one contact at each corner of the cube. A cube resting on
atable, but with its bottom face hanging over the edge of the table would still be described as four
contacts; two vertex/face contacts for the vertices on the table, and two edge/edge contacts, one on
each edge of the cube that crosses over an edge of the table.
Each contact is represented by a structure

struct Contact {

RigidBody *a, /* body containing vertex */
b; / body containing face */
triple P, /* world-space vertex location */
n, /* outwards pointing normal of face */
ea, /* edge direction for A */
eb; /* edge direction for B x/
boolean vf; /* TRUE if vertex/face contact */
s
int Ncontacts;

Contact *Contacts;

If the contact is a vertex/face contact, then the variable a points to the rigid body that the contact
vertex is attached to, while b points to the body the face is attached to. We'll call these two bodies
A and B respectively. For vertex/face contacts, the variablen is set to the outwards pointing unit
normal of the contact face of body B, and the variables ea and eb are unused.

For edge/edge contacts, ea isatriple of unit length, that pointsin the direction of the contacting

SIGGRAPH '97 COURSE NOTES D40 PHYSICALLY BASED MODELING

Pa(t) A
Pa(to)

(1) P (to)

Figure 20: (@) The points p,y(t) and py(t) for avertex/face contact. (b) At timet, the bodies come
into contact at pa(tg) = pp(to).

edge of body A (pointed to by a). Similarly, eb is aunit vector giving the direction that the contact
edge on body B points. For edge/edge contacts, n denotes a unit vector in the ea x eb direction.
We'll adopt the convention that the two contacting bodies are labeled A and B such that the normal
direction ea x eb points outwards from B, towards A, asit does for vertex/face contacts.

For both types of contact, the position of the contact in world space (which is either the contact
vertex, or the point where the two edges intersect) is given by p. The collision detection routines
are responsible for discovering all the contact points, setting Ncontacts to the number of contact
points, and allocating space for and initializing an array of Contact structures.

The first thing we'll need to do is examine the data in each Contact structure to seeif colliding
contact istaking place. For agiven contact point, the two bodies A and B contact at the point p. Let
pa(t) denote the particular the point on body A that satisfies p(tp) = p. (For vertex/face contacts,
this point will be the vertex itself. For edge/edge contacts, it is some particular point on the contact
edge of A.) Similarly, let p,(t) denote the particular point on body B that coincides with p(tg) = p
attimetp (figure 20). Although ps(t) and py(t) arecoincident at timefty, the vel ocity of the two points
at time tp may be quite different. We will examine this velocity to seeif the bodies are colliding or
not.

From section 2.5, we can calculate the velocity of the vertex point, p(tg) by the formula

Pa(to) = va(tg) + wa(to) X (Pa(to) — Xa(to)) (8-1)

where v, (1) and w,(t) are the velocities for body A. Similarly, the velocity of the contact point on
theface of Bis

Po(to) = vp(to) + wp(to) x (Pp(to) — Xp(to)). (8-2)

SIGGRAPH '97 COURSE NOTES D41 PHYSICALLY BASED MODELING

Pa(to) = Po(to)

Figure 21: Thevector pa(tg) — Po(to) pointsinthe samedirection asf(ly); the bodies are separating.

Let’s examine the quantity

vrel = N(tp) + (Palto) — Po(to)), (8-3)

which isascalar. Inthis equation, fi(t) isthe unit surface normal, described by the variable n, for
each contact point. The quantity u¢ gives the component of the relative velocity (o) — Po(to)
in the A(ty) direction. Clearly, if v is positive, then the relative velocity fu(tg) — pp(to) at the
contact point isin the positive fi(t) direction. This meansthat the bodies are moving apart, and that
this contact point will disappear immediately after time (figure 21). We don’t need to worry about
this case. If vy¢ is zero, then the bodies are neither approaching nor receding at p (figure 22). This
is exactly what we mean by resting contact, and we'll deal with it in the next section.

In this section, we're interested in the last possibility, which is yg < 0. This means that the
relative velocity at p isopposite fi(p), and we have colliding contact. |f the velocities of the bodies
don’'t immediately undergo a change, inter-penetration will result (figure 23).

How do we compute the change in velocity? Any force we might imagine acting at p, no matter
how strong, would require at least a small amount of time to completely halt the relative motion
between the bodies. (No matter how strong your car brakes are, you still need to apply them before
you hit the brick wall. If you wait until you’ve contacted the wall, it's too late...) Since we want
bodies to change their velocity instantly though, we postulate a new quantity J called an impulse.
An impulse is a vector quantity, just like a force, but it has the units of momentum. Applying an
impulse produces an instantaneous change in the velocity of a body. To determine the effects of a
given impulse J, weimagine alarge force F that acts for asmall timeinterval At. If welet F goto
infinity and At go to zero in such away that

FAt=J (8-4)

then we can derive the effect of J on abody’s velocity by considering how the vel ocity would change
if welet theforce F act on it for At time.

SIGGRAPH '97 COURSE NOTES D42 PHYSICALLY BASED MODELING

ba(to) - pb(to)

contact force

Figure 22: The vector pa(tg) — pu(to) isperpendicular to A(ty); the bodies are in resting contact. A
contact force may be necessary to prevent bodies from accelerating towards each other.

Pa(to) = Po(to)

Figure 23 Colliding contact. The relative velocity [(tg) — Pp(to) is directed inwards, opposite
N(tg). Unlesstherelative velocity isabruptly changed, inter-penetration will occur immediately after
time to.

SIGGRAPH '97 COURSE NOTES D43 PHYSICALLY BASED MODELING

For example, if we apply an impulse J to arigid body with mass M, then the change in linear
velocity Av issimply

Equivalently, the change in linear momentum AP issimply AP = J. If theimpulse acts at the point
p, then just as aforce produces a torque, J produces an impulsive torgue of

Timpulse = (P — X(1)) x J. (8-6)

Asonewouldimagine, theimpulsivetorque gmpyise SO givesriseto achange in angular momentum
AL of AL = Timpuse Thechangeinangular velocity issimply I (tg) 7 mpul se @SSUMINg theimpulse
was applied at time .

When two bodies collide, we will apply an impulse between them to change their velocity. For
frictionless bodies, the direction of the impulse will be in the normal direction, A(g). Thus, we can
write the impulse J as

J = jA(tp) (8-7)

where j isan (as yet) undetermined scalar that gives the magnitude of the impulse. We'll adopt the
convention that theimpulse J acts positively onbody A, thatis, Aissubject toanimpulseof + jA(),
while body B issubject to an equal but oppositeimpulse — jA(y) (figure 24). We compute j by using
an empirical law for collisions. Let'slet [x (tp) denote the velocity of the contact vertex of A prior
to the impulse being applied, and let [(o) denote the velocity after we apply the impulse J. Let
Py (to) and pg (to) bedefined similarly. Using thisnotation, theinitial relative velocity in the normal
direction is

Urel = N(to) « (P5 (to) — Pp (t0)); (8-8)

after the application of the impulse,

vy = Ato) - (I3 (to) — P (to)). (8-9)

The empirical law for frictionless collisions says simply that

Uiy = —€vrg. (8-10)

The quantity ¢ is called the coefficient of restitution and must satisfy 0 < ¢ < 1. If ¢ = 1, then
vy = —vry, and the callision is perfectly “bouncy”; in particular, no kinetic energy is lost. At the
other end of the spectrum, ¢ = O resultsin vr+el = 0, and amaximum of kinetic energy islost. After
this sort of collision, the two bodies will be in resting contact at the contact point p (figure 25).
Calculating the magnitude j of theimpulse J = ji() isfairly smple, although the equations are
abit tedious to work through. Let’s definethe displacementsr, andry as p — Xa(tg), and p — Xy (tp).
If we let v (tp) and w} (to) be the pre-impulse velocities of body A, and uf (tp) and w (to) be the

post-impul se velocities, we can write

i (to) = vZ (to) + w3 (to) X ra (8-11)

SIGGRAPH '97 COURSE NOTES D44 PHYSICALLY BASED MODELING

Figure 24: Theimpulse between two bodies at acontact point. Animpulse of jA() actson A, while
an impulse of — jA(ty) acts on B.

(@ (b) Pa(to) = 1y (to)

=)

Pa(to) = P> (%)

(©

Ca (d) . .
P (to) = (L) Pa(to)— Py (o)

Figure 25: (a) The relative velocity before application of the impulse. (b) The component of the
relative velocity in the A(fy) direction is reversed for an € = 1 callision. The relative velocity
perpendicular to A(ty) remains the same. (c) A collision with 0 < € < 1. The bodies bounce away
in the A(to) direction with less speed than they approached. (d) A collision with e = 0. The bodies
do not bounce away from each other, but the relative velocity perpendicular to i) is unaffected by

the collision.

SIGGRAPH '97 COURSE NOTES D45 PHYSICALLY BASED MODELING

aong with
jN(to)
Ma

where M, isthe mass of body A, and I5(tg) isitsinertia tensor. Combining the two previous equa
tionsyields

vg (to) = v; (to) + and of(t)) = w5 (to) + 151 (to) (ra x jA(to)) (8-12)

jA(to)
Ma

i (to) = <v;<to> +) + (w37 (to) + 131 (to) (ra x jA(ty))) x ra

jn(to)
Ma

=va<to>+wa<to>xra+<)+(lal<to>(raxm<to>))xra (8-13)

=P; +] (IEAO) + 171 (to) (ra x n(to))) X fa.

It isimportant to note the form of [(t): itisasimplelinear function of j. For body B, an opposite
impulse — jA(ty) acts, yielding

B) = B — (2 + 1600 (1 x ()) o (819

Thisyields

A(to) . N(ty)
Mp

Py (to) — Pt = (P (to) — pb)+J(
(8-15)

(131 (to) (ra x A(to))) x ra+ (151 (to) (rp x A(to))) x rb>.

Tocaculate v
and we obtain

1e» Wedot thisexpression with (). SinceN(tp) isof unitlength, A(t) - N(tp) =1,

vy = A(to) - (PL (to) — Pp)

A~ . 1 1
= N(tp) - (P (to) — pb)+J<—+V+

Ato) - (12 *(to) (ra x A(to))) x Fa+ fAto) « (15 (to) (rp x A(t))) x rb> (8-16)

= Upg +] 1+i+
= Vg T Ma '~ Mg

A(to) - (13 (to) (ra x A(to))) x ra+A(to) - (15 (to) (rp x A(t))) x rb>.

By expressing v, intermsof j and vy, we can compute j according to equation (8-10). If we
substitute equation (8-16) into equation (8-10), we get

1 1
vre|+1< + e+ i) - (17(0) (ra x Alto))) x ract
(8-17)

A(to) - (15 (to) (rp x A(ty))) x fb) = —€Vrq.

SIGGRAPH '97 COURSE NOTES D46 PHYSICALLY BASED MODELING

Finaly, solving for j,

. —(1+e)vy
_ . (8-18
: Mi + Mib +fA(to) « (172(to) (ra x A(t))) x ra+ fA(to) - (151(to) (rp x A(tg))) x Iy (8-18)

Let'sconsider some actual code (written for clarity, not speed). First, we determineif two bodies
arein colliding contact.

/*
Operators: if ‘x’ and ‘y’ are triples,
assume that ‘x @ y’ is their cross product,
and ‘x * y’ is their dot product.

*/

/* Return the velocity of a point on a rigid body */
triple pt_velocity(Body *body, triple p)

{
return body->v + (body->omega @ (p - body->x));
}
/*
Return TRUE if bodies are in colliding contact. The
parameter ‘THRESHOLD’ is a small numerical tolerance
used for deciding if bodies are colliding.
*/
boolean colliding(Contact *c)
{
triple padot = pt_velocity(c->a, p), /* Py (tg) */
pbdot = pt_velocity(c->b, p); /* Py (to) */
double vrel = c->n * (padot - pbdot); /* vy */
if (vrel > THRESHOLD) /* moving away */
return FALSE;
if (vrel > -THRESHOLD) /* resting contact */
return FALSE;
else /* vrel < -THRESHOLD */
return TRUE;
}

Next, we'll loop through al the contact points until all the collisions are resolved, and actually
compute and apply an impulse.

void collision(Contact *c, double epsilon)
{
triple padot = pt_velocity(c->a, c->p), /* pP; (o) */
pbdot = pt_velocity(c->b, c->p), /* P, (o) */
n = c->n, /* N(to) */

SIGGRAPH '97 COURSE NOTES D47 PHYSICALLY BASED MODELING

ra = p - c—>a->x, /* Tgq */

rb = p - c->b->x; /* Ty */
double vrel = n * (padot - pbdot), /* vy */
numerator = -(1 + epsilon) * vrel;

/* We’ll calculate the denominator in four parts */
double terml =1 / c->a->mass,
term2 1 / c¢c->b->mass,
term3 = n * ((c->a->Iinv * (ra ® n)) O ra),
term4 = n * ((c->b->Iinv * (rb ® n)) O rb);

/* Compute the impulse magnitude */

double j = numerator / (terml + term2 + term3 + term4);
triple force = j * n;

/* Apply the impulse to the bodies */
c->a->P += force;

c->b->P -= force;
c->a->L += ra 0 force;
c->b->L -= rb 0 force;

/* recompute auxiliary variables */
c->a->v = c—>a—>P / c->a->mass;
c->b->v = ¢c->b->P / c->b->mass;

c->a->omega = c->a->Iinv * c->a->L;
c->b->omega = c->b->Iinv * c->b->L;

void find_all_collisions(Contact contacts[], int ncontacts)
{

boolean had_collision;

double epsilon = .5;

do {
had_collision = FALSE;

for(int i = 0; i < ncontacts; i++)
if (colliding(&contacts[i]))
{

collision(&contacts[i], epsilon);
had_collision = TRUE;

/* Tell the solver we had a collision */
ode_discontinuous();

SIGGRAPH '97 COURSE NOTES D48 PHYSICALLY BASED MODELING

}

} while(had_collision == TRUE);
}

Note several things. First, e = .5 was chosen arbitrarily. In areal implementation, we'd allow the
user to use different values of € depending on which two bodies were colliding. Also, every timewe
find acollision, we have to rescan thelist of contacts, since bodies that were at rest may no longer be
s0, and new collisions may develop. If there areinitially several collisions to be resolved (such asa
cube dropped flat onto a plane, with all four vertices colliding at once), the order of the contact list
may have an effect on the simulation. Thereisaway to compute impulses at more than one contact
point at atime, but it more complicated, and is based on the concepts used for resting contact in the
next section. For further information, see Baraff[1].

Incidentally, if you want to have certain bodies that are “fixed”, and cannot be moved (such as
floors, or walls), you can use the following trick: for such bodies, IetwlSS be zero; also let the
inverse inertiatensor also be the 3 x 3 zero matrix. You can either special-case the code to check if
abody is supposed to be fixed, or you can recode the definition of RigidBody to have the variable
invmass instead of mass. For ordinary bodies, invmass isthe inverse of the mass, while for fixed
bodies, invmass is zero. The same goes for the inertia tensor. (Note that nowhere in any of the
dynamics computations (including the next section) isthe mass or inertiatensor ever used; only their
inverses are used, so you won't have to worry about dividing by zero.) The sametrick can beusedin
the next section on resting contact to simulate bodies that can support any amount of weight without
moving.

9 Resting Contact

The case of resting contact, when bodies are neither colliding nor separating at a contact point, isthe
last (and hardest) dynamics problem we' Il tackle in these notes. To implement what’sin this section,
you'll haveto obtain afairly sophisticated piece of numerical software, which we'll describe below.

At this point, let’s assume we have a configuration with n contact points. At each contact point,
bodies are in resting contact, that is, the relative velocity v, from section 8, is zero (to within the
numerical tolerance THRESHOLD). We can say that thisis so, because colliding contact is eliminated
by theroutine find_all_collisions, and any contact pointswith y¢ larger than THRESHOLD can
be safely ignored, since the bodies are separating there.

As was the case for colliding contact, at each contact point, we have a contact force that acts
normal to the contact surface. For the case of colliding contact, we had an impulse jA(g) where |
was an unknown scalar. For resting contact, at each contact point there is some force ffi (tg), where
fi isan unknown scalar, and i (tp) is the normal at the ith contact point (figure 26). Our god isto
determine what each f; is. In computing the f;’s, they must all be determined at the sametime, since
the force at the ith contact point may influence one or both of the bodies of the j contact point. In
section 8, we wrote how the velocity of the contact points p(tg) and p,(tg) changed with respect to
j- We'll do the same thing here, but now we'll have to describe how the acceleration of p(tp) and
Po(to) depends on each f;.

For colliding contact, we had an empirical law which related the impul se strength j to therelative
velocity and a coefficient of restitution. For resting contact, we compute the f's subject to not one,
but three conditions. First, the contact forces must prevent inter-penetration; that is, the contact

SIGGRAPH '97 COURSE NOTES D49 PHYSICALLY BASED MODELING

P1 P Ps

Figure 26: Resting contact. This configuration has five contact points; a contact force acts between
pairs of bodies at each contact point.

forces must be strong enough to prevent two bodies in contact from being pushed “towards’ one
another. Second, wewant our contact forces to be repulsive; contact forces can push bodies apart, but
can never act like “glue” and hold bodies together. Last, we require that the force at a contact point
become zero if the bodies begin to separate. For example, if ablock isresting on atable, some force
may act at each of the contact points to prevent the block from accel erating downwards in response
to the pull of gravity. However, if a very strong wind were to blow the brick upwards, the contact
forces on the brick would have to become zero at the instant that the wind accelerated the brick off
the table.

Let's deal with the first condition: preventing inter-penetration. For each contact point i, we
construct an expression d (t) which describes the separation distance between the two bodies near the
contact point at timet. Positive distance indicates the bodies have broken contact, and have separated
at the ith contact point, while negative distance indicates inter-penetration. Since the bodies are in
contact at the present time ty, we will have d; (tp) = 0 (within numerical tolerances) for each contact
point. Our goal isto make sure that the contact forces maintain d(t) > O for each contact point at
futuretimest > tp.

For vertex/face contacts, we can immediately construct avery simplefunction for ¢(t). If pa(t)
and py,(t) arethe contact points of theith contact, between bodies A and B, than the distance between
the vertex and the face at future timest > { is given by

di (1) = Ai(t) -« (Pa(t) — Po(1)). (9-1)

At time t, the function d(t) measures the separation between A and B near p(t). If di(t) is zero,
then the bodies are in contact at the ith contact point. If d(t) > 0, then the bodies have lost contact
at theith contact point. However, if d(t) < 0, then the bodies have inter-penetrated, which iswhat
we need to avoid (figure 27). The same function can also be used for edge/edge contacts; sincefxt)

SIGGRAPH '97 COURSE NOTES D50 PHYSICALLY BASED MODELING

@ (b) ©)

A
Pa(t) A

1L n(t) Pa(t f(t)

(1) (1)

(1)

pa(1)

Figure 27: (a) The displacement py(t) — pp(t), indicated by an arrow, points in the same direction
as Ai(t). Thus, the distance function d(t) would be positive. (b) The distance function d(t) is zero.
(c) The displacement p,(t) — pp(t) points in the opposite direction as A(t). The distance function
d(t) is negative, indicating inter-penetration.

points outwards from B towards A (by convention), fj(t) - (pa(t) — pp(t)) will be positive if the
two contacting edges move so as to separate the bodies.

Since d;(tg) = 0, we have to keep d (tp) from decreasing at time fy; that is, we have to have
di(t) > 0. What is dj (to)? Differentiating,

di(t) = fi(t) - (Pa(t) — Po(t)) +Mi(t) « (Pat) — Po(l)). (9-2)
Since d; (t) describes the separation distance, di (t) will describe the separation velocity at time t.
However, at time tg, pa(to) = Po(to), Which means that di (tg) = fii(tp) - (Palto) — Po(t)). This
should look familiar: its v from the previous section! The functiond; (to) is a measure of how
the bodies are separating, and for resting contact, we know thatd (to) iszero, because the bodies are
neither moving towards nor away from each other at a contact point.
At this point then, we have d (t) = di(tg) = 0. Now we'll look at dj(tg). If we differentiate
equation (9-2), we get

6,0 = (H(®) - (Pa®) = Po(®) +Ai(D) - (Pa(t) = Po(1)) +
(A - (Pa®) = o) + (D) - (PalD) — Bo(D)) (99
= (1) - (Pa(®) = Po() + 204 (1) - (Pa(t) = Po(D)) + (D) - (Pa(t) — Po(t)).
Since pa(to) = Po(to), We can writed (to) as

d(to) = fi(to) - (Palto) — Po(to)) + 2fi(to) - (Palto) — Po(to)). (9-9)

SIGGRAPH '97 COURSE NOTES D51 PHYSICALLY BASED MODELING

The quantity d; (tg) measures how the two bodies are accel erating towards each other at the contact
point p. If di(tg) > 0, the the bodies have an acceleration away from each other, and contact will
break immediately after . If d; (tg) = O, then contact remains. The cased; (t) < 0 must be avoided,
for this indicates the bodies are accelerating towards each other. Note that if fi(ty) is a constant (if
body B isfixed), then fi (to) iszero, leading to further simplifications.

Thus, we satisfy our first condition for contact forces by writing the constraint

di(te) >0 (9-5)

for each contact point. Since the accelerationd; (ty) depends on the contact forces, thisis realy a
constraint on the contact forces.

Let's turn our attention to the second and third constraints. Since contact forces must always
be repulsive, each contact force must act outward. This means that each f must be positive, since
aforce of fifij(tg) acts on body A, and fi (tp) is the outwards pointing normal of B. Thus, we
need

fi>0 (9-6)

for each contact point. The third constraint is expressed simply in terms of f and di(tp). Since the
contact force fif; (tg) must become zero if contact isbreaking at theith contact, thissaysthat f must
be zero if contact is breaking. We can express this constraint by writing

fidi(to) = 0; (9-7)

if contact isbreaking, d; (ty) > 0 and equation (97) is satisfied by requiring f = 0. If contact is not
breaking, thend; (t) = 0, and equation (9-7) is satisfied regardless of f.

In order to actualy find f’swhich satisfy equations (9-5), (9-6), and (9-7), we need to express
each d (tp) asafunction of the unknown f's. It will turn out that wewill be able to write eachd; (to)
in the form

di(to) = a1 fy+ @i fo+ -+ +an fn + bi. (9-8)
In matrix parlance, this means we will be able to write

di (to) f1 bi
dn(to) fr bn

where A isthe n x n matrix of the a; coefficients of equation (9-8). Although the code needed to
calculate the gj's and the by’sis not too complicated, working out the derivations on which the code
is based is somewhat tedious. The derivations are worked out in appendix D, along with code to
compute the matrix of &;’s and by’s.

Appendix D gives an implementation of the routines

void compute_a_matrix(Contact contacts[], int ncontacts,
bigmatrix &a);

SIGGRAPH '97 COURSE NOTES D52 PHYSICALLY BASED MODELING

void compute_b_vector (Contact contacts[], int ncontacts,
vector &b);

where the typesbigmatrix and vector represent matrices and vectors of arbitrary size. The first
routine computes the &;’s, while the second routine computes the y’s.

Once we've computed all this, we can think about solving equations (9-5), (9-6), and (9-7).
Thissystem of equations formswhat iscalled aquadratic program(QP); that is, f sthat satisfy these
three equations are found by an algorithm called quadratic programming. Not all quadratic programs
can be solved efficiently, but because our contact forces are all normal to the contact surfaces (that is,
they do not involvefriction), it turns out that our QP can always be solved efficiently. Oneinteresting
thing to note is that QP codes can easily handle the cased; (t) = 0 instead of dj(ty) > 0. We use
di (ty) = 0 (and also drop the constraint f > 0) if we wish to constrain two bodies to never separate
at a contact point. This enables us to implement hinges, and pin-joints, as well as non-penetration
constraints during simulation.

Quadratic programming codes aren’t terribly common though; certainly, they are not nearly as
common as linear equation codes, and are much harder to implement. The quadratic programming
routines used by the author were obtained from the Department of Operations Research at Stanford
University. See Gill et al.[7, 8, 9] for further details. More recently, we have been using code
described by Baraff[3] to solve the quadratic programs. If you are determined to really implement
this, we suggest athorough study of this paper (excepting for the section on contact with friction).

At any rate, let’s assume that you' ve got a working QP solver at your disposal. We'll assume
that you pass the matrix A, and the vector of h's to the QP solver, and you get back the vector of

fi's. Let's pretend the interface is

void gp_solve(bigmatrix &a, vector &b, vector &f);

Let's see how to compute all the resting contact forces. The following routine is presumably called
from Compute_Force_and_Torque, after find_collisions has been caled.

void compute_contact_forces(Contact contacts[], int ncontacts, double t)
{
/* We assume that every element of contactsl[]
represents a contact in resting contact.

Also, we’ll assume that for each element of Bodies[],
the ‘force’ and ‘torque’ fields have been set to the
net external force and torque acting on the body, due
to gravity, wind, etc., perhaps by a call to

Compute_External_Force_and_Torque_for_all_Bodies(t);

*/

/* Allocate Nx N matrix ‘amat’ and n-vectors ‘fvec’,
and ‘bvec’. x/

SIGGRAPH '97 COURSE NOTES D53 PHYSICALLY BASED MODELING

bigmatrix amat = new bigmatrix(ncontacts, ncontacts);
vector bvec = new vector(ncontacts),
fvec = new vector(ncontacts);

/* Compute @j and bj coefficients */

compute_a_matrix(contacts, ncontacts, amat);
compute_b_vector (contacts, ncontacts, bvec);

/* Solve for fj’s %/
gp_solve(amat, bmat, fvec);

/* Now add the resting contact forces we just computed into
the ‘force’ and ‘torque’ field of each rigid body. */

for(int i = 0; i < ncontacts; i++)

{
double f = fveclil; /* fi */
triple n = contacts[i]->n; /* Nj(tg) */
RigidBody *A = contacts[i]->a, /* body A */

B = contacts[i]->b; / body B */

/* apply the force ‘f n’ positively to A... */
A->force += f * n;
A->torque += (contacts[i].p - A->x) * (f*n);
/* and negatively to B */
B->force —= f * n;
B->torque -= (contacts[i].p - B->x) * (f*n);

}

That's pretty much it! Now that the resting forces have been computed and combined with the
external forces, we return control to the ODE solver, and each body goes merrily along itsway, in a
physically correct manner, without inter-penetration.

SIGGRAPH '97 COURSE NOTES D54 PHYSICALLY BASED MODELING

Appendix A Motion Equation Derivations

In this appendix, we'll fill in some of the missing details from section 2, with regards to the equa-
tions P(t) = F(t), L(t) = z(t), and L(t) = | (t)w(t). The derivation method used here is some-
what nonstandard, and was proposed by Andy Witkin. The derivation in this appendix is (we
feel) much shorter and considerably more elegant than the one found in traditional sources such as
Goldstein[10].

WEe' ve described the external force acting on arigid body in terms of forces IH(t), where F(t)
is the external force acting on the ith particle. However, for arigid body to maintain its shape,
there must be some “internal” constraint forces that act between particles in the same body. We will
make the assumption that these constraint forces act passively on the system and do not perform any
net work. Let F;(t) denote the net internal constraint force acting on the ith particle. The work
performed by F;; on the ith particle fromtimetytot; is

t1
/ Foi (1) - i (D) dit

to

wherer;(t) isthe velocity of theith particle. The net work over all the particlesisthe sum

1 t
Fei(t) - i) dt = Fei (D) - Fi (D) dt,
Z/t - fi (D) /102: ® - Fi()

which must be zero for any interval t to t;. This means that the integrand
> Fe(t) - fi(t) (A-D)
i

isitself always zero for any timet. (Henceforth we' Il just write these expressionsasy | F; - Fj = 0.)

We can use this fact to eliminate any mention of the constraint forces g from our derivations.
First, some quick notes about the “x” operator defined in section 2.3: since &b = a x b, and
axb=-bxa weget

—a*b=bxa=Db*a. (A-2)
Since a* is an antisymmetric matrix,
@)’ =—a*. (A-3)
Finally, since the “x" operator is alinear operator,
@ = (@) = %@) (A-4)
and for a set of vectors g

>a=(2a) (a-5)

SIGGRAPH '97 COURSE NOTES D55 PHYSICALLY BASED MODELING

Recall that we can writethe velocity f; asf; = v+ w x (r;i — X) wherer; isthe particle’slocation,
X isthe position of the center of mass, and v and w are linear and angular velocity. Lettingf =r; — x
and using the “%” notation,

Substituting thisinto) F; - rj, which is always zero, yields

Y Fei- (v—r{"w) =0. (A7)

Note that this equation must hold for arbitrary values of v and w. Since v and w are completely
independent, if we choose w to be zero, then) K - v = 0 for any choice of v, from which we
conclude that in fact) F;; = 0 is aways true. This means that the constraint forces produce no
net force. Similarly, choosing v to be zero we seethat}_ —F - (r{*w) = 0 for any w. Rewriting
Fei + (1*w) as Fg T (r*w) we get that

Y —Fa'rw= (Z —FciTri/*) =0 (A-8)

forany w, s0 > —F¢; "'r/* = 0. Transposing, we have

Y - R =) () Fi=) rixFq=0 (A-9)

which means that the internal forces produce no net torque.

We can use the above to derive therigid body equations of motion. The net force on each particle
isthe sum of theinternal constraint force R and the external force K. The acceleration i; of theith
particleis
d . d 123 . . /% * .
ariza(v—ri w):v—l’i Cl)—ri/ w. (A—lO)
Since each individual particle must obey Newton's law f = ma, or equivalently ma — f = 0, we
have

fi =

mfi— K —Fi=m@-— I‘f*a) — I‘i/*d)) —F—-—F;=0 (A-11)

for each particle.
Toderive P = F = Y_ F, we sum equation (A—11) over all the particles. We obtain

> om@ - —r"e) - F— Fy =0. (A-12)
Breaking the large sum into smaller ones,
> om@—ro—r{"e) - F— Fy =
Zmﬂ) — Zmir'{*w— Zmiri/*d)— Z F— Z Fo =
> mv— (Z mir'i’)*a)— (Z miri’>*d)—2 F—) Fi=
Zmii)— <%Zmir{> w— (Zmiro*cb—z F —Z Fs = 0.

(A-13)

SIGGRAPH '97 COURSE NOTES D56 PHYSICALLY BASED MODELING

Since we are in a center-of-mass coordinate system, equation (2—20) from section 2.6 tells us that
> mir{ = 0, which also meansthat % > mir{ = 0. Removing termswith) mr{, and theterm)_ F;
from the above equation yields

> my—) F=0 (A-14)
or simply My = P =} F, as advertised.

Toobtain L = 7= Y_r/ x F;, we again start with equation (A-11). Multiplying both sides by
r* yields

i mio — 1o —r* o) —ri"F —r{*Fi =r{"0=0. (A-15)
Summing over all the particles, we obtain

dorrmo =) e mi o = Y i mirt o - Y r*R = "Ry =0. (A-16)

Since Y r{*F¢; = 0, we can rearrange this to obtain

(Z mir> b — (Z mir]*r ”‘) (Z mir!r /*) ; Zri’* F=0. (A-17)

Using > mir{ = 0, we are left with

(Z mirlr) w— (Z mirlT) b= 1F-=0 (A-18)

or, recognizing that Y ri*F =>"r{ x f =,

(Z mir!*r ’*) (Z mir!*r ’*) w=r (A-19)

We're almost done now: if we refer back to the matrix defined by the “x” notation, one can easily
verify the relation that the matrix —a‘a* is equivalent to the matrix (a'a)1 — aa’ where 1 is the
3 x 3 identity matrix. (This relation is equivalent to the vector rule a x (b x ¢) = bdc —ca'b.)
Thus

Y —mr =Y mi - = 1), (A-20)

Substituting into equation (A—19), thisyields

(Z —mrlr) o+ o=t (A-21)
The above expression is almost acceptable, as it gives an expression for @ in terms of , ex-
cept that it requires us to evaluate the matrix > myr/*r¥, which is as expensive as computing the

inertia tensor from scratch. We'll use one last trick here to clean things up. Sincef = o x r{ and
r*ow = —w x r{, we can write

Z mit{*r*w = Z mi(w X r)*(—w x 1)) = Z —Mi (@ x 1{) x (& x 7)) = 0. (A-22)

SIGGRAPH '97 COURSE NOTES D57 PHYSICALLY BASED MODELING

Thus, we can add —)" mif{*r{*@ = 0 to equation (A—21) to obtain

(Z —mire mir'{*r{*) o+ (0o =1 (A-23)
Finally, since
: d T Pk 2% L
I(t)=aZ—miri (= —mir{ " — (A-24)
we have
. o d
(O +1 06 = (O = (A—25)

Since L(t) = | (t)w (1), this leaves us with the final result that

Lt) = (A—26)

Appendix B Quaternion Derivations

A formulafor q(t) isderived asfollows. Recall that the angular velocity w(t) indicates that the body
isinstantaneously rotating about the w(t) axis with magnitude |w(t)|. Suppose that a body were to
rotate with a constant angular velocity w(t). Then the rotation of the body after a period of time At
isrepresented by the quaternion

cosl?WIAL oA o)

[2 2 |w(t)|]'

Let us compute ¢(t) at some particular instant of time §. At times ty + At (for small At), the
orientation of the body is (to within first order) the result of first rotating by q(§) and then further
rotating with velocity w(fy) for At time. Combining the two rotations, we get

lw(to)|AL . |w(to)|Al w(to)

to + At) = [cos .sin
q(to)= > 2 Tol)]

19(to). (B-1)

Making the substitution t = fp + At, we can express this as

lw(to)[(t—1to) . |w(to)|(t—1o) w(to)
> ,sin > o (to) |]q(to). (B-2)

q(t) = [cos

Let usdifferentiate q(t) at timety. First, since q(tp) isaconstant, let us differentiate

[cos [0t)[t—1t) o)t —1) w(lo)

1.

2 ' 2 lw(to)]
Attimet = tg,
Qcoslw(to)l(t—to) _ _|o(to)] sn |w(to)|(t — o)
dt 2 2 2 (B-3)
_ _7""(;0)' sn0 =0,

SIGGRAPH '97 COURSE NOTES D58 PHYSICALLY BASED MODELING

Similarly,
d in lo(to)|(t —to) _ |w(to)] CosIw(to)l(t—to)

dt 2 2 2
(B4)
_ o(to)] _ |o(to)]
== cosO = —

Thus, at timet = tg,

. d lo(to)|[(t —to) . |w(to)|(t—1y) w(to)
q = ot <[cos > ,sin > |w(to)|] q(to))
d lo(to)|[(t —to) . |w(to)|(t—1g) w(to))
= — , t
. |([C(OS)| 0 T (B-5)
w(tg)| w(ty
=10, t
[> |w(t0)|] q(to)

= [0, 30(to)] A(to) = 3[0, w(to)] q(to).
The product [0, w(ty)] q(tg) is abbreviated to the form w(iy)q(tp); thus, the general expression for
gt is
4t = 30Mq(). (B-6)
Appendix C Some Miscellaneous For mulas

C.1 Kinetic Energy
Thekinetic energy T of arigid body is defined as

T=YimTs. (C-1)
Letting r{ = r;i — X, we haver; = v(t) + r{*w. Thus

T=> smtl

= Z %mi(v +rl* o) T (v 41" w)

=3 mulvty vimrle+ 3y mw) (1w 7
=57 (Z mi) vto' (Z miri’>*w+ loT (Z mi(ri’*)Tr{*) w.
Using Y mir/ = 0and (r/*)" = —r/*, we have
T=3"Mu+30" (3 -mrir) o =10 Mo+ oTlo) (C-3)

since | =Y —mr{*r{* from appendix A. Thus, the kinetic energy can be decomposed into two
terms: alinear term 2v™Mu, and an angular term 30"l w.

SIGGRAPH '97 COURSE NOTES D59 PHYSICALLY BASED MODELING

C.2 Angular Acceleration

It is often necessary to compute a(t). Since L(t) = | (t)w(t), we know w(t) = I"1(t)L(t). Thus,

o) = 1"TOL®) + 1720 Lw). (C)
Since we know that L(t) = z(t), let us consider I ~1(t). From equation (2-40),

171(t) = RO lpey RO,

I7L(t) = R IpgayR(D T + R(®) lpgqy R T (C-5)
Since R(t) = w(t)*R(t),
ROT = (w®*R)T = RO (@) (C-6)

Since w(t)* is antisymmetric, (i.e. (w(t)*)T = —w(t)*),

Rt =—R®) T o(t)". (C-7)
Thisyields
711 = RO sy RO T + R ek (—RD T (D))
= 0(1)*RO) gy ROT = 1T Do (1) (C-8)
=o®* 1710 — 1T Do®*.
Then

o) =11 OL® + 1 OLo
= (w®*1721) = 1T D ®*) LM + 17O L) (C-9)
=o®*17YOLE) — 1T w@) L) + 171 L(t).

Butsince | ~1(t)L(t) = w(t), thefirstterm, w(t)*1 ~1(t) L(t) isequivalent to w(t)*w(t), or w(t) x w(t),
which is zero. Thisleaves the final result of

o) = =17 1M w®)* L) + 171 L)
= — 1 Vw(t) x L)+ 710 L(t)
(C-10)
= 171 (LO) x o) + 1 7HBLD)

= 1710 (L(t) x (t) + L()).

SIGGRAPH '97 COURSE NOTES D60 PHYSICALLY BASED MODELING

We can seefrom thisthat even if no forces act, so thatL(t) iszero, o (t) can still be non-zero. (Infact,

thiswill happen whenever the angular momentum and angular vel ocities point in different directions,
which in turn occurs when the body has arotational velocity axisthat isnot an axis of symmetry for
the body.)

C.3 Accderation of a Point

Given apoint of arigid body with world space coordinate p(t), it is often necessary to compute p(t).
Let the body space coordinate that transforms at timet to p(t) be p; then

p(t) = R(t) po + X(t)
If weletr(t) = p(t) — x(t), then

P(t) = R(t) po + X(t) = w(t)*R(t) po + v(t)

= w(t) x (R(1) po + X(1) — X(1)) + v (1)

(C-11)
= w(t) x (p(t) — X(1)) + v(t)
= w(t) x r(t) + v(t).
Then
P(t) = w(t) xr(t) +w(t) x rt) +o(t)
(C-12)

= (1) x 1(t) + o(t) x (0(t) x r(t)) + v(t).

We can interpret thisasfollows. Thefirst term, @ (t) x r(t) isthetangential acceleration of the point;
that is, @(t) x r(t) isthe acceleration perpendicular to the displacement r (t) as aresult of the body
being angularly accelerated. The second term, w(t) x (w(t) x r(t)) isthe centripetal acceleration of
the point; this centripetal acceleration arises because the body isrigid, and points on the body must
rotate in acircular orbit about the center of mass. The last term, v(t) isthe linear acceleration of the
point due to the linear acceleration of the center of mass of the body.

Appendix D Resting Contact Derivations

If you' re determined to implement resting contact in your ssmulator, you’ll need the derivations and
the code in this appendix. This is probably not a fun appendix to work through; then again, this
wasn't afun appendix to write! The derivations in here are somewhat terse, but the code at the end
of the appendix will hopefully make things clearer.

D.1 Derivations

We nepd to expr%sd} (to) interms of al the unknown f;’s. It will turn out that we'll be able to write
each d;j(tp) in the form

di(to) = &1 f1 + a2 fo + - - - + a@in fn + by (D-1)

SIGGRAPH '97 COURSE NOTES D61 PHYSICALLY BASED MODELING

Given i and j, we need to know how dj(t) depends on fj, that is, we need to know &;. Also, we
need to compute the constant term b.

Let’s start by determining g; and ignoring the constant part . We'll assume the ith contact
involves two bodies A and B. From equation (9—4), we can writed; (to) as

d(to) = fi(to) - (Palto) — Pn(to)) + 2Ai(to) - (Palto) — Po(to)) (D-2)

where pa(to) = pi = pp(to) isthe contact point for theith contact at timet. Theterm 2 (to) « (Pa(to) — po(to))
is a velocity dependent term (i.e. you can immediately calculate it without knowing the forces
involved), and is part of b, so we'll ignore this for now.

So we only need to know how [3;(tp) and p(to) depend on f;, the magnitude of the jth contact
force. Consider the jth contact. If body A is not one of the bodies involved in the jth contact, then
Pa(to) isindependent of fj, because the jth contact force does not act on body A. Similarly, if Bis
also not one of the two bodiesinvolved inthe jth contact, then [(to) isalso independent of f;. (For
example, in figure 26, the acceleration of the contact points at the first contact is completely unaf-
fected by the contact force acting at the fifth contact. Thusds (tg) would be completely independent
of fs. Conversely, ds(to) is completely independent of f,.)

Suppose though that in the jth contact, body Aisinvolved. For definiteness, suppose that in the
jth contact, aforce of jfj(tp) acts on body A, as opposed to — jfj(tg). Let’s derive how Pa(to) is
affected by the force jN;(to) acting on A.

From equation (C-12), we can write

Pa(t) = va(l) + @a(t) X ra(t) + wa(t) x (wa(t) x ra(t)) (D-3)

whererg(t) = pa(t) — Xa(t), and xa(t), va(t), and wy(t) are al the variables associated with body
A. We know that 1,(t) isthe linear acceleration of body A, and is equal to the total force acting on
A divided by the mass. Thus, aforce of jf;(tp) contributes

fifjto) _ f_ﬁj(to)
My P m,
to va(t) and thus Pa(t). Similarly, consider w,(t), from equation (C-10):

(b4)

wa(t) = 1710 Ta(t) + 1711 (La(t) X wa(t))

where t4(t) is the total torque acting on body A. If the jth contact occurs at the point g, then the
force jf;(tp) exerts atorque of

(Pj — Xa(to)) x fjN;(to).

Thus, the angular contribution to [y (to) is

fi (131 (to) ((pj — Xa(to)) x Aj(tp))) X ra. (D-5)

The total dependence of i (tp) on f; istherefore

A (t
f] (w + (17(to) (P} — Xa(to)) x Aj(to))) x ra> .

a

SIGGRAPH '97 COURSE NOTES D62 PHYSICALLY BASED MODELING

Now, if aforce of — fjA(tp) had acted on Ainstead, we'd get the same dependence, but with aminus
signin front of f;. Clearly, py(tp) depends on f; in the same sort of manner. Once we compute
how Pa(to) and Py(to) depend on fj, we combine the results together and take the dot product with
fi (to), to see how di (to) depends on fj. Thisgives us aj. Confused? See the code below.

We still need to compute b. We know that dj (t) contains the constant term

26 (to) - (Palto) — Pu(to)).

But we also have to take into account the contributions to f(tg) and Pyp(tg) due to known ex-
ternal forces such as gravity, as well as the force-independent terms aa(tg) x (wa(tp) x ra) and
(171 (to) (La(to) x wa(ty))) x ra. If we let the net external force acting on A be Fy(to), and the net
external torque be z; (1), then from equations (D—4) and (D-5), we get that F,(tg) contributes

Fa(to)
My

and that t5(tg) contributes
(121 (to)a(t0)) X Fa.
Thus, the part of Ba(to) that isindependent from all the fj’sis

Fa(to)

a

+ (121 (to)Ta(to)) x ra+ walto) x (wa(to) x ra) + (131 (to) (La(to) x wa(to))) x ra

and similarly for f3,(to). To compute by, we combine the constant parts of fi(to), P (to), dot with
fi (to), and add the term 2; (tp) « (Palto) — Po(to)).

SIGGRAPH '97 COURSE NOTES D63 PHYSICALLY BASED MODELING

D.2 Code

Here' s the code to implement the above derivations. Let’s start by computing the constant bterms.

/* return the derivative of the normal vector */
triple compute_ndot(Contact *c)

{
if (c—>vf) /* vertex/face contact */
{
/* The vector ‘n’ is attached to B, so... %/
return c->b->omega B c->n;
}
else
{
/* This is a little trickier. The unit normal ‘n’ is
A = -eax eb)
lea x eb]
Differentiating N with respect to time is left
as an exercise... but here’s some code */
triple eadot = c->a->omega 0 ea, /* éa */
ebdot = c->b->omega @ eb; /* ep */
nl = ea * eb,
z = eadot * eb + ea * ebdot;
double 1 = length(nl);
nl = nl1 / length; /* normalize */
return (z - ((z * n) * n)) / 1;
}
}
void compute_b_vector(Contact contacts[], int ncontacts, vector &b)
{
for(int i = 0; i < ncontacts; i++)
{
Contact *c = &contacts[i];
Body *A = c—>a,
*B = c->b;
triple n = c¢—>n, /* fi(to) */
ra = c->p - A->x, /* Pp—Xa(tg) */

rb = ¢c->p - B->x;

/* p—Xp(to) */

/* Get the external forces and torques */

triple

SIGGRAPH '97 COURSE NOTES

f_ext_a = A->force,

f_ext_b = B->force,

t_ext_a = A->torque,
D64

PHYSICALLY BASED MODELING

t_ext_b = B->torque;

triple a_ext_part, a_vel_part,
b_ext_part, b_vel_part;

/* Operators: ‘B’ is for cross product, ‘*’, is for
dot products (between two triples), or matrix-vector
multiplication (between a matrix and a triple). */

/* Compute the part of [Pa(fg) due to the external
force and torque, and similarly for py(tp). */

f_ext_a / A->mass +

((A->Iinv * t_ext_a) O ra),
f_ext_b / B->mass +

((B->Iinv * t_ext_b) O rb);

a_ext_part

b_ext_part

/* Compute the part of Pa(tp) due to velocity,
and similarly for Pp(tg). */

a_vel_part = (A->omega 8 (A->omega 0 ra)) +

((A->Iinv * (A->L * A->omega)) 0 ra);

b_vel_part = (B->omega @ (B->omega 0 rb)) +

((B->Iinv * (B->L * B->omega)) O rb);

/* Combine the above results, and dot with fj(tg) */
double k1 =n * ((a_ext_part + a_vel_part) -

(b_ext_part + b_vel_part));
triple ndot = compute_ndot(c);

/* See section 8 for ‘pt_velocity’ definition */
double k2 = 2 * ndot * (pt_velocity(A, c->p) -
pt_velocity(B, c->p));

bl[il = k1 + k2;

Computing the g terms is a little more tricky, because we have to keep track of how the jth
contact force affects the ith contact point. The following routine is not the most efficient way to do
things, because with a good data structure, you can tell in advance which of the g's are going to
be zero. Still unless you' re working with really huge numbers of contacts, not too much extra work
will be done.

SIGGRAPH '97 COURSE NOTES D65 PHYSICALLY BASED MODELING

void compute_a_matrix(Contact contacts[], int ncontacts, bigmatrix &a)

{
for(int i = 0; i1 < ncontacts; i++)
for(int j = 0; j < ncontacts; j++)
ali,j] = compute_aij(contacts[i], contacts[j]);

double compute_aij(Contact ci, Contact cj)

{
/* If the bodies involved in the ith and jth contact are
distinct, then ajj is zero. */

if((ci.a !'= cj.a) && (ci.b != cj.b) &&
(ci.a != cj.b) && (ci.b != cj.a))

return 0.0;

Body *A = ci.a,

*B = ci.b;
triple ni = ci.n, /* Nj(tg) */
nj = cj.n, /* fj(tg) */
pi = ci.p, /* ith contact point location */
Pj = cj.p, /* jth contact point location */

ra = pi - A->x,
rb = pi - B->x;

/* What force and torque does contact | exert on body A? */
triple force_on_a = 0,
torque_on_a = 0;

if(cj.a == ci.a)

/* force direction of jth contact force on A */
force_on_a = nj;

/* torque direction */
torque_on_a = (pj - A->x) 0@ nj;

}
else if(cj.b == ci.a)
{
force_on_a = - nj;
torque_on_a = (pj - A->x) 0 nj;
}

/* What force and torque does contact | exert on body B? */
triple force_on_b =0,
torque_on_b = 0;

SIGGRAPH '97 COURSE NOTES D66 PHYSICALLY BASED MODELING

if(cj.a == ci.b)

{
/* force direction of jth contact force on B */
force_on_b = nj;
/* torque direction */
torque_on_b = (pj - B->x) 0 nj;
}
else if(cj.b == ci.b)
{
force_on_b = - nj;
torque_on_b = (pj - B->x) 0 nj;
}

/* Now compute how the jth contact force affects the linear
and angular acceleration of the contact point on body A */

triple a_linear = force_on_a / A->mass,
a_angular = (A->Iinv * torque_on_a) * ra;

/* Same for B */

triple b_linear = force_on_b / B->mass,
b_angular = (B->Iinv * torque_on_b) * rb;

return ni * ((a_linear + a_angular) - (b_linear + b_angular));

SIGGRAPH '97 COURSE NOTES D67 PHYSICALLY BASED MODELING

References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]
[16]

[17]

D. Baraff. Analytical methods for dynamic simulation of non-penetrating rigid bodies. In
Computer Graphics (Proc. S GGRAPH), volume 23, pages 223-232. ACM, July 1989.

D. Baraff. Curved surfaces and coherence for non-penetrating rigid body simulation. In
Computer Graphics (Proc. SSGGRAPH), volume 24, pages 19-28. ACM, August 1990.

D. Baraff. Fast contact force computation for nonpenetrating rigid bodies. Computer Graphics
(Proc. SGGRAPH), 28:23-34, 1994.

J. Canny. Coallision detection for moving polyhedra. |EEE Transactions on Pattern Analysis
and Machine Intelligence 8(2), 1986.

PA. Cundall. Formulation of athree-dimensional distinct element model—Part I. A scheme
to represent contacts in a system composed of many polyhedral blocks. International Journal
of Rock Mechanics, Mineral Science and Geomechanics 25, 1988.

E.G. Gilbert and S.M. Hong. A new agorithm for detecting the collision of moving objects.
In International Conference on Raobotics and Automation pages 8-13. |EEE, 1989.

P. Gill, S. Hammarling, W. Murray, M. Saunders, and M. Wright. User’s guide for LSSOL: A
Fortran package for constrained linear least-squares and convex quadratic programming. Tech-
nical Report Sol 86-1, Systems Optimization Laboratory, Department of Operations Research,
Stanford University, 1986.

P. Gill, W. Murray, M. Saunders, and M. Wright. User’s guide for QPSOL : A Fortran package
for quadratic programming. Technical Report Sol 84-6, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, 1984.

P. Gill, W. Murray, M. Saunders, and M. Wright. User’s guide for NPSOL: A Fortran package
for nonlinear programming. Technical Report Sol 86-2, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, 1986.

H. Goldstein. Classical Mechanics Addison-Wesley, Reading, 1983.

W. Meyer. Distance between boxes. Applications to collision detection and clipping. In
International Conference on Robotics and Automation pages 597-602. | EEE, 1986.

PM. Moore and J. Wilhelms. Collision detection and reponse for computer animation. In
Computer Graphics (Proc. SSGGRAPH), volume 22, pages 289-298. ACM, August 1988.

F.P. Preparata and M.1. Shamos. Computational Geometry. Springer-Verlag, New York, 1985.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes Cambridge
University Press, 1986.

R. Sedgewick. Algorithms. Addison-Wesley, 1983.

K. Shoemake. Animating rotation with quaternion curves. In Computer Graphics (Proc.
S GGRAPH), volume 19, pages 245-254. ACM, July 1985.

B. Von Herzen, A. Barr, and H. Zatz. Geometric collisions for time-dependent parametric
surfaces. In Computer Graphics (Proc. S GGRAPH), volume 24, pages 39-48. ACM, August
1990.

SIGGRAPH '97 COURSE NOTES D68 PHYSICALLY BASED MODELING

