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Introduction

This portion of the course notes deals with the problem of rigid body dynamics. To help get you
started simulating rigid body motion, we’ve provided code fragments that implement most of the
concepts discussed in these notes. This segment of the course notes is divided into two parts. The first
part covers the motion of rigid bodies that are completely unconstrained in their allowable motion;
that is, simulations that aren’t concerned about collisions between rigid bodies. Given any external
forces acting on a rigid body, we’ll show how to simulate the motion of the body in response to these
forces. The mathematical derivations in these notes are meant to be fairly informal and intuitive.

The second part of the notes tackles the problem of constrained motion that arises when we
regard bodies as solid, and need to disallow inter-penetration. We enforce these non-penetration
constraints by computing appropriate contact forces between contacting bodies. Given values for
these contact forces, simulation proceeds exactly as in the unconstrained case: we simply apply all
the forces to the bodies and let the simulation unfold as though the motions of bodies are completely
unconstrained. If we have computed the contact forces correctly, the resulting motion of the bodies
will be free from inter-penetration. The computation of these contact forces is the most demanding
component of the entire simulation process.1

1Collision detection (i.e. determining the points of contact between bodies) runs a close second though!
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Part I. Unconstrained Rigid Body Dynamics

1 Simulation Basics

This portion of the course notes is geared towards a full implementation of rigid body motion. In this
section, we’ll show the basic structure for simulating the motion of a rigid body. In section 2, we’ll
define the terms, concepts, and equations we need to implement a rigid body simulator. Following
this, we’ll give some code to actually implement the equations we need. Derivations for some of the
concepts and equations we will be using will be left to appendix A.

The only thing you need to be familiar with at this point are the basic concepts (but not the numer-
ical details) of solving ordinary differential equations. If you’re not familiar with this topic, you’re
in luck: just turn back to the beginning of these course notes, and read the section on “Differential
Equation Basics.” You also might want to read the next section on “Particle Dynamics” as well,
although we’re about to repeat some of that material here anyway.

Simulating the motion of a rigid body is almost the same as simulating the motion of a particle,
so let’s start with particle simulation. The way we simulate a particle is as follows. We let a function
x(t) denote the particle’s location in world space (the space all particles or bodies occupy during
simulation) at time t. The function v(t) = ẋ(t) = d

dt x(t) gives the velocity of the particle at time t.
The state of a particle at time t is the particle’s position and velocity. We generalize this concept by
defining a state vector Y(t) for a system: for a single particle,

Y(t) =
(

x(t)
v(t)

)
. (1–1)

When we’re talking about an actual implementation, we have to “flatten” out Y(t) into an array.
For a single particle, Y(t) can be described as an array of six numbers: typically, we’d let the first
three elements of the array represent x(t), and the last three elements represent v(t). Later, when we
talk about state vectors Y(t) that contain matrices as well as vectors, the same sort of operation is
done to flatten Y(t) into an array. Of course, we’ll also have to reverse this process and turn an array
of numbers back into a state vector Y(t). This all comes down to pretty simple bookkeeping though,
so henceforth, we’ll assume that we know how to convert any sort of state vector Y(t) to an array
(of the appropriate length) and vice versa. (For a simple example involving particles, look through
the “Particle System Dynamics” section of these notes.)

For a system with n particles, we enlarge Y(t) to be

Y(t) =


x1(t)
v1(t)

...
xn(t)
vn(t)

 (1–2)
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where xi(t) and vi(t) are the position and velocity of the ith particle. Working with n particles is no
harder than working with one particle, so we’ll let Y(t) be the state vector for a single particle for
now (and when we get to it later, a single rigid body).

To actually simulate the motion of our particle, we need to know one more thing—the force
acting on the particle at time t. We’ll define F(t) as the force acting on our particle at time t. The
function F(t) is the sum of all the forces acting on the particle: gravity, wind, spring forces, etc. If
the particle has mass m, then the change of Y over time is given by

d
dt

Y(t) =
(

x(t)
v(t)

)
=
(

v(t)
F(t)/m

)
. (1–3)

Given any value of Y(t), equation (1–3) describes how Y(t) is instantaneously changing at time t.
A simulation starts with some initial conditions for Y(0), (i.e. values for x(0) and v(0)) and then
uses a numerical equation solver to track the change or “flow” of Y over time, for as long as we’re
interested in. If all we want to know is the particle’s location one second from now, we ask the solver
to compute Y(1), assuming that time units are in seconds. If we’re going to animate the motion of
the particle, we’d want to compute Y( 1

30 ), Y( 2
30 ) and so on.

The numerical method used by the solver is relatively unimportant with respect to our actual
implementation. Let’s look at how we’d actually interact with a numerical solver, in a C++-like
language. Assume we have access to a numerical solver, which we’ll generically write as a function
named ode. Typically, ode has the following specification:

typedef void (*dydt_func)(double t, double y[], double ydot[]);

void ode(double y0[], double yend[], int len, double t0,

double t1, dydt_func dydt);

We pass an initial state vector to ode as an array y0. The solver ode knows nothing about the
inherent structure of y0. Since solvers can handle problems of arbitrary dimension, we also have to
pass the length len of y0. (For a system of n particles, we’d obviously have len = 6n.) We also
pass the solver the starting and ending times of the simulation, t0 and t1. The solver’s goal is to
compute the state vector at time t1 and return it in the array yend.

We also pass a function dydt to ode. Given an array y that encodes a state vector Y(t) and a
time t, dydt must compute and return d

dt Y(t) in the array ydot. (The reason we must pass t to dydt
is that we may have time-varying forces acting in our system. In that case, dydt would have to know
“what time it is” to determine the value of those forces.) In tracing the flow of Y(t) from t0 to t1,
the solver ode is allowed to call dydt as often as it likes. Given that we have such a routine ode,
the only work we need to do is to code up the routine dydt which we’ll give as a parameter to ode.

Simulating rigid bodies follows exactly the same mold as simulating particles. The only differ-
ence is that the state vector Y(t) for a rigid body holds more information, and the derivative d

dt Y(t) is
a little more complicated. However, we’ll use exactly the same paradigm of tracking the movement
of a rigid body using a solver ode, which we’ll supply with a function dydt.

2 Rigid Body Concepts

The goal of this section is to develop an analogue to equation (1–3), for rigid bodies. The final
differential equation we develop is given in section 2.11. In order to do this though, we need to define
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a lot of concepts first and relations first. Some of the longer derivations are found in appendix A. In
the next section, we’ll show how to write the function dydt needed by the numerical solver ode to
compute the derivative d

dt Y(t) developed in this section.

2.1 Position and Orientation

The location of a particle in space at time t can be described as a vector x(t), which describes the
translation of the particle from the origin. Rigid bodies are more complicated, in that in addition to
translating them, we can also rotate them. To locate a rigid body in world space, we’ll use a vector
x(t), which describes the translation of the body. We must also describe the rotation of the body,
which we’ll do (for now) in terms of a 3× 3 rotation matrix R(t). We will call x(t) and R(t) the
spatial variables of a rigid body.

A rigid body, unlike a particle, occupies a volume of space and has a particular shape. Because a
rigid body can undergo only rotation and translation, we define the shape of a rigid body in terms of
a fixed and unchanging space called body space. Given a geometric description of the body in body
space, we use x(t) and R(t) to transform the body-space description into world space (figure 1). In
order to simplify some equations we’ll be using, we’ll require that our description of the rigid body
in body space be such that the center of mass of the body lies at the origin, (0, 0, 0). We’ll define the
center of mass more precisely later, but for now, the center of mass can be thought of as a point in the
rigid body that lies at the geometric center of the body. In describing the body’s shape, we require
that this geometric center lie at (0, 0, 0) in body space. If we agree that R(t) specifies a rotation of
the body about the center of mass, then a fixed vector r in body space will be rotated to the world-
space vector R(t)r at time t. Likewise, if p0 is an arbitrary point on the rigid body, in body space,
then the world-space location p(t) of p0 is the result of first rotating p0 about the origin and then
translating it:

p(t) = R(t)p0 + x(t). (2–1)

Since the center of mass of the body lies at the origin, the world-space location of the center of
mass is always given directly by x(t). This lets us attach a very physical meaning to x(t) by saying
that x(t) is the location of the center of mass in world space at time t. We can also attach a physical
meaning to R(t). Consider the x axis in body space i.e. the vector (1, 0, 0). At time t, this vector
has direction

R(t)

 1
0
0


in world space. If we write out the components of R(t) as

R(t)=
 rxx ryx rzx

rxy ryy rzy

rxz ryz rzz

 , (2–2)

then

R(t)

 1
0
0

 =
 rxx

rxy

rxz

 (2–3)
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Figure 1: The center of mass is transformed to the point x(t) in world space, at time t. The fixed x, y,
and z axes of the body in body space transform to the vectors x′ = R(t)x, y′ = R(t)y and z′ = R(t)z.
The fixed point p0 in body space is transformed to the point p(t) = R(t)p0 + x(t).

which is the first column of R(t). The physical meaning of R(t) is that R(t)’s first column gives the
direction that the rigid body’s x axis points in, when transformed to world space at time t. Similarly,
the second and third columns of R(t), ryx

ryy

ryz

 and

 rzx

rzy

rzz


are the directions of the y and z axes of the rigid body in world space at time t (figure 2).

2.2 Linear Velocity

For simplicity, we’ll call x(t) and R(t) the position and orientation of the body at time t. The next
thing we need to do is define how the position and orientation change over time. This means we
need expressions for ẋ(t) and Ṙ(t). Since x(t) is the position of the center of mass in world space,
ẋ(t) is the velocity of the center of mass in world space. We’ll define the linear velocity v(t) as this
velocity:

v(t) = ẋ(t). (2–4)

If we imagine that the orientation of the body is fixed, then the only movement the body can undergo
is a pure translation. The quantity v(t) gives the velocity of this translation.

2.3 Angular Velocity

In addition to translating, a rigid body can also spin. Imagine however that we freeze the position of
the center of mass in space. Any movement of the points of the body must therefore be due to the
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Figure 2: Physical interpretation of the orientation matrix R(t). At time t, the columns of R(t) are
the world-space directions that the body-space x, y, and z axes transform to.

body spinning about some axis that passes through the center of mass. (Otherwise the center of mass
would itself be moving). We can describe that spin as a vector ω(t). The direction of ω(t) gives the
direction of the axis about which the body is spinning (figure 3). The magnitude of ω(t), |ω(t)|, tells
how fast the body is spinning. |ω(t)| has the dimensions of revolutions/time; thus, |ω(t)| relates the
angle through which the body will rotate over a given period of time, if the angular velocity remains
constant. The quantity ω(t) is called the angular velocity.

For linear velocity, x(t) and v(t) are related by v(t) = d
dt x(t). How are R(t) and ω(t) related?

(Clearly, Ṙ(t) cannot be ω(t), since R(t) is a matrix, and ω(t) is a vector.) To answer this question,
let’s remind ourselves of the physical meaning of R(t). We know that the columns of R(t) tell us
the directions of the transformed x, y and z body axes at time t. That means that the columns of Ṙ(t)
must describe the velocity with which the x, y, and z axes are being transformed. To discover the
relationship between ω(t) and R(t), let’s examine how the change of an arbitrary vector in a rigid
body is related to the angular velocity ω(t).

Figure 4 shows a rigid body with angular velocity ω(t). Consider a vector r(t) at time t specified
in world space. Suppose that we consider this vector fixed to the body; that is, r(t)moves along with
the rigid body through world space. Since r(t) is a direction, it is independent of any translational
effects; in particular, ṙ(t) is independent of v(t). To study ṙ(t), we decompose r(t) into vectors a
and b, where a is parallel to ω(t) and b is perpendicular to ω(t). Suppose the rigid body were to
maintain a constant angular velocity, so that the tip of r(t) traces out a circle centered on the ω(t) axis
(figure 4). The radius of this circle is |b|. Since the tip of the vector r(t) is instantaneously moving
along this circle, the instantaneous change of r(t) is perpendicular to both b and ω(t). Since the tip
of r(t) is moving in a circle of radius b, the instantaneous velocity of r(t) has magnitude |b||ω(t)|.
Since b and ω(t) are perpendicular, their cross product has magnitude

|ω(t)× b| = |ω(t)| |b|. (2–5)

An Introduction to Physically-Based Modeling G6 Witkin/Baraff/Kass



y

x

z

x(t)

ω(t)

v(t)

Figure 3: Linear velocity v(t) and angular velocity ω(t) of a rigid body.

Putting this together, we can write ṙ(t) = ω(t)× (b). However, since r(t) = a+ b and a is parallel
to ω(t), we have ω(t)× a = 0 and thus

ṙ(t) = ω(t)× b = ω(t)× b+ω(t)× a = ω(t)× (b+ a). (2–6)

Thus, we can simply express the rate of change of a vector as

ṙ(t) = ω(t)× r(t). (2–7)

Let’s put all this together now. At time t, we know that the direction of the x axis of the rigid
body in world space is the first column of R(t), which is rxx

rxy

rxz

 .
At time t, the derivative of the first column of R(t) is just the rate of change of this vector: using the
cross product rule we just discovered, this change is

ω(t)×
 rxx

rxy

rxz

 .
The same obviously holds for the other two columns of R(t). This means that we can write

Ṙ =
ω(t)×

 rxx

rxy

rxz

 ω(t)×
 ryx

ryy

ryz

 ω(t)×
 rzx

rzy

rzz

 . (2–8)
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Figure 4: The rate of change of a rotating vector. As the tip of r(t) spins about the ω(t) axis, it traces
out a circle of diameter |b|. The speed of the tip of r(t) is |ω(t)||b|.

This is too cumbersome an expression to tote around though. To simplify things, we’ll use the
following trick. If a and b are 3-vectors, then a× b is the vector aybz − byaz

−axbz + bxaz

axby − bxay

 .
Given the vector a, let us define a∗ to be the matrix 0 −az ay

az 0 −ax

−ay ax 0

 .
Then2

a∗b =
 0 −az ay

az 0 −ax

−ay ax 0

 bx

by

bz

 =
 aybz − byaz

−axbz + bxaz

axby − bxay

 = a× b. (2–9)

Using the “∗” notation, we can rewrite Ṙ(t) more simply as

Ṙ(t) =
ω(t)∗

 rxx

rxy

rxz

 ω(t)∗

 ryx

ryy

ryz

 ω(t)∗

 rzx

rzy

rzz

 . (2–10)

2This looks a little too “magical” at first. Did someone discover this identity accidentally? Is it a relation that just
happens to work? This construct can be derived by considering what’s known as infinitesimal rotations. The interested
reader might wish to read chapter 4.8 of Goldstein[10] for a more complete derivation of the a∗ matrix.
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By the rules of matrix multiplication, we can factor this into

Ṙ(t) = ω(t)∗
 rxx

rxy

rxz

  ryx

ryy

ryz

  rzx

rzy

rzz

 (2–11)

which is a matrix-matrix multiplication. But since the matrix on the right is R(t) itself, we get simply
that

Ṙ(t) = ω(t)∗R(t). (2–12)

This, at last, gives us the relation we wanted between Ṙ(t) and ω(t). Note the correspondence
between ṙ(t) = ω(t)× r(t) for a vector, and Ṙ(t) = ω(t)∗R(t) for the rotation matrix.

2.4 Mass of a Body

In order to work out some derivations, we’ll need to (conceptually) perform some integrations over
the volume of our rigid body. To make these derivations simpler, we’re going to temporarily imagine
that a rigid body is made up of a large number of small particles. The particles are indexed from
1 to N . The mass of the ith particle is mi, and each particle has a (constant) location r0i in body
space. The location of the ith particle in world space at time t, denoted ri(t), is therefore given by
the formula

ri(t) = R(t)r0i + x(t). (2–13)

The total mass of the body, M, is the sum

M =
N∑

i=1

mi. (2–14)

(Henceforth, summations are assumed to be summed from 1 to N with index variable i.)

2.5 Velocity of a Particle

The velocity ṙi(t) of the ith particle is obtained by differentiating equation (2–13): using the relation
Ṙ(t) = ω∗R(t), we obtain

ṙi(t) = ω∗R(t)r0i + v(t). (2–15)

We can rewrite this as

ṙi(t) = ω(t)∗R(t)r0i + v(t)
= ω(t)∗ (R(t)r0i + x(t)− x(t))+ v(t)
= ω(t)∗ (ri(t)− x(t))+ v(t)

(2–16)

using the definition of ri(t) from equation (2–13). Recall from the definition of the “∗” operator that
ω(t)∗a = ω(t)× a for any vector a. Using this, we can simply write

ṙi(t) = ω(t)× (ri(t)− x(t))+ v(t). (2–17)

Note that this separates the velocity of a point on a rigid body into two components (figure 5): a
linear component v(t), and an angular component ω× (ri(t)− x(t)).
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Figure 5: The velocity of the ith point of a rigid body in world space. The velocity of ri(t) can be
decomposed into a linear term v(t) and an angular term ω(t)× (ri(t)− x(t)).

2.6 Center of Mass

Our definition of the center of mass is going to enable us to likewise separate the dynamics of bodies
into linear and angular components. The center of mass of a body in world space is defined to be∑

miri(t)
M

(2–18)

where M is the mass of the body (i.e. the sum of the individual masses mi). When we say that we
are using a center of mass coordinate system, we mean that in body space,

∑
mir0 i

M
= 0 =

 0
0
0

 . (2–19)

Note that this implies that
∑

mir0 i = 0 as well.
We have spoken of x(t) as being the location of the center of mass at time t. Is this true? Yes:

since the ith particle has position ri(t)= R(t)r0i+ x(t) at time t, the center of mass at time t is∑
miri(t)
M

=
∑

mi(R(t)r0i + x(t))
M

= R(t)
∑

mir0 i +
∑

mix(t)
M

= x(t)

∑
mi

M
= x(t).

Additionally, the relation∑
mi(ri(t)− x(t)) =

∑
mi(R(t)r0i + x(t)− x(t)) = R(t)

∑
mir0 i = 0 (2–20)

is also very useful.
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Figure 6: The torque τi(t) due to a force Fi(t) acting at ri(t) on a rigid body.

2.7 Force and Torque

When we imagine a force acting on a rigid body due to some external influence (e.g. gravity, wind,
contact forces), we imagine that the force acts on a particular particle of the body. (Remember that
our particle model is conceptual only. We can have a force act at any geometrical location on or inside
the body, because we can always imagine that there happens to be a particle at that exact location.)
The location of the particle the force acts on defines the location at which the force acts. We will let
Fi(t) denote the total force from external forces acting on the ith particle at time t. Also, we define
the external torque τi(t) acting on the ith particle as

τi(t) = (ri(t)− x(t))× Fi(t). (2–21)

Torque differs from force in that the torque on a particle depends on the location ri(t) of the
particle, relative to the center of mass x(t). We can intuitively think of the direction of τi(t) as
being the axis the body would spin about due to Fi(t), if the center of mass were held firmly in place
(figure 6).

The total external force F(t) acting on the body is the sum of the Fi(t):

F(t) =
∑

Fi(t) (2–22)

while the total external torque is defined similarly as

τ(t) =
∑

τi(t) =
∑

(ri(t)− x(t))× Fi(t). (2–23)

Note that F(t) conveys no information about where the various forces acted on the body; however,
τ(t) does tell us something about the distribution of the forces Fi(t) over the body.
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2.8 Linear Momentum

The linear momentum p of a particle with mass m and velocity v is defined as

p = mv. (2–24)

The total linear momentum P(t) of a rigid body is the sum of the products of the mass and velocity
of each particle:

P(t)=
∑

miṙi(t). (2–25)

From equation (2–17), the velocity ṙi(t) of the ith particle is ṙi(t) = v(t)+ ω(t)× (ri(t)− x(t)).
Thus, the total linear momentum of the body is

P(t)=
∑

miṙi(t)

=
∑(

miv(t)+ω(t)× (ri(t)− x(t))
)

=
∑

miv(t)+ ω(t)×
∑

mi (ri(t)− x(t)) .

(2–26)

Because we are using a center of mass coordinate system, we can apply equation (2–20) and ob-
tain

P(t)=
∑

miv(t) =
(∑

mi

)
v(t) = Mv(t). (2–27)

This gives us the nice result that the total linear momentum of our rigid body is the same as if the
body was simply a particle with mass M and velocity v(t). Because of this, we have a simple trans-
formation between P(t) and v(t): P(t)= Mv(t) and v(t)= P(t)/M. Since M is a constant,

v̇(t) = Ṗ(t)
M

. (2–28)

The concept of linear momentum lets us express the effect of the total force F(t) on a rigid body
quite simply. Appendix A derives the relation

Ṗ(t) = F(t) (2–29)

which says that the change in linear momentum is equivalent to the total force acting on a body. Note
that P(t) tells us nothing about the rotational velocity of a body, which is good, because F(t) also
conveys nothing about the change of rotational velocity of a body!

Since the relationship between P(t) and v(t) is simple, we will be using P(t) as a state variable
for our rigid body, instead of v(t). We could of course let v(t) be a state variable, and use the
relation

v̇(t) = F(t)
M

. (2–30)

However, using P(t) instead of v(t) as a state variable will be more consistent with the way we will
be dealing with angular velocity and acceleration.
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2.9 Angular Momentum

While the concept of linear momentum is pretty intuitive (P(t)= Mv(t)), the concept of angular mo-
mentum (for a rigid body) is not. The only reason that one even bothers with the angular momentum
of a rigid body is that it lets you write simpler equations than you would get if you stuck with angular
velocity. With that in mind, it’s probably best not to worry about attaching an intuitive physical
explanation to angular momentum—all in all, it’s a most unintuitive concept. Angular momentum
ends up simplifying equations because it is conserved in nature, while angular velocity is not: if you
have a body floating through space with no torque acting on it, the body’s angular momentum is
constant. This is not true for a body’s angular velocity though: even if the angular momentum of a
body is constant, the body’s angular velocity may not be! Consequently, a body’s angular velocity
can vary even when no force acts on the body. Because of this, it ends up being simpler to choose
angular momentum as a state variable over angular velocity.

For linear momentum, we have the relation P(t)= Mv(t). Similarly, we define the total angular
momentum L(t) of a rigid body by the equation L(t)= I(t)ω(t), where I(t) is a 3× 3 matrix (tech-
nically a rank-two tensor) called the inertia tensor, which we will describe momentarily. The inertia
tensor I(t) describes how the mass in a body is distributed relative to the body’s center of mass. The
tensor I(t) depends on the orientation of a body, but does not depend on the body’s translation. Note
that for both the angular and the linear case, momentum is a linear function of velocity—it’s just that
in the angular case the scaling factor is a matrix, while it’s simply a scalar in the linear case. Note
also that L(t) is independent of any translational effects, while P(t) is independent of any rotational
effects.

The relationship between L(t) and the total torque τ(t) is very simple: appendix A derives

L̇(t) = τ(t), (2–31)

analogous to the relation Ṗ(t) = F(t).

2.10 The Inertia Tensor

The inertia tensor I(t) is the scaling factor between angular momentum L(t) and angular veloc-
ity ω(t). At a given time t, let r′i be the displacement of the ith particle from x(t) by defining
r′i = ri(t)− x(t). The tensor I(t) is expressed in terms of r′i as the symmetric matrix

I(t) =
∑

mi(r′i
2
y + r′i

2
z ) −mir′i xr′i y −mir′i xr′i z

−mir′i yr′i x mi(r′i
2
x + r′i

2
z ) −mir′i yr′i z

−mir′i zr
′
i x −mir′izr

′
i y mi(r′i

2
x + r′i

2
y)

 (2–32)

For an actual implementation, we replace the finite sums with integrals over a body’s volume in
world space. The mass terms mi are replaced by a density function. At first glance, it seems that
we would need to evaluate these integrals to find I(t) whenever the orientation R(t) changes. This
would be prohibitively expensive to do during a simulation unless the body’s shape was so simple
(for example, a sphere or cube) that that the integrals could be evaluated symbolically.

Fortunately, by using body-space coordinates we can cheaply compute the inertia tensor for any
orientation R(t) in terms of a precomputed integral in body-space coordinates. (This integral is typ-
ically computed before the simulation begins and should be regarded as one of the input parameters
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describing a physical property of the body.) Using the fact that r′i
Tr′i = r′i

2
x+ r′i

2
y+ r′i

2
z , we can rewrite

I(t) as the difference

I(t) =
∑

mir
′
i
Tr′i


1 0 0

0 1 0

0 0 1

 −


mir′i
2
x mir′i xr′i y mir′i xr′iz

mir′i yr′i x mir′i
2
y mir′i yr′iz

mir′izr
′
i x mir′i zr

′
i y mir′i

2
z

 (2–33)

Taking the outer product multiplication of r′i with itself, that is

r′ir
′
i
T =

 r′i x
r′i y

r′iz


(

r′i x r′i y r′i z

)
=


r′i

2
x r′i xr′i y r′i xr′i z

r′i yr′i x r′i
2
y r′i xr′i z

r′izr
′
i x r′izr

′
i y r′i

2
z

 (2–34)

and letting 1 denote the 3× 3 identity matrix, we can express I(t) simply as

I(t) =
∑

mi((r
′
i
Tr′i)1− r′ir

′
i
T
) (2–35)

How does this help?
Since ri(t) = R(t)r0i + x(t) where r0 i is a constant, r′i = R(t)r0i. Then, since R(t)R(t)T = 1,

I(t) =
∑

mi((r
′
i
Tr′i)1− r′ir

′
i
T
)

=
∑

mi((R(t)r0i)
T (R(t)r0i)1− (R(t)r0i)(R(t)r0i)

T )

=
∑

mi(r0
T
i R(t)T R(t)r0i1− R(t)r0ir0

T
i R(t)T )

=
∑

mi((r0
T
i r0 i)1− R(t)r0ir0

T
i R(t)T ).

(2–36)

Since r0
T
i r0 i is a scalar, we can rearrange things by writing

I(t) =
∑

mi((r0
T
i r0 i)1− R(t)r0ir0

T
i R(t)T )

=
∑

mi(R(t)(r0
T
i r0 i)R(t)

T1− R(t)r0ir0
T
i R(t)T )

= R(t)
(∑

mi((r0
T
i r0 i)1− r0ir0

T
i )
)

R(t)T .

(2–37)

If we define Ibody as the matrix

Ibody =
∑

mi((r0
T
i r0 i)1− r0 ir0

T
i ) (2–38)

then from the previous equation we have

I(t) = R(t)Ibody R(t)T . (2–39)

Since Ibody is specified in body-space, it is constant over the simulation. Thus, by precomputing Ibody

for a body before the simulation begins, we can easily compute I(t) from Ibody and the orientation
matrix R(t). Section 5.1 derives the body-space inertia tensor for a rectangular object in terms of an
integral over the body’s volume in body space.
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Also, the inverse of I(t) is given by the formula

I−1(t) = (R(t)Ibody R(t)T
)−1

= (R(t)T)−1
I−1
body R(t)−1

= R(t)I−1
body R(t)T

(2–40)

since, for rotation matrices, R(t)T = R(t)−1 and
(

R(t)T
)T = R(t). Clearly, I−1

body is also a constant
during the simulation.

2.11 Rigid Body Equations of Motion

Finally, we have covered all the concepts we need to define the state vector Y(t)! For a rigid body,
we will define Y(t) as

Y(t) =


x(t)
R(t)
P(t)
L(t)

 . (2–41)

Thus, the state of a rigid body is its position and orientation (describing spatial information), and its
linear and angular momentum (describing velocity information). The mass M of the body and body-
space inertia tensor Ibody are constants, which we assume we know when the simulation begins. At
any given time, the auxiliary quantities I(t), ω(t) and v(t) are computed by

v(t) = P(t)
M

, I(t) = R(t)Ibody R(t)T and ω(t)= I(t)L(t). (2–42)

The derivative d
dt Y(t) is

d
dt

Y(t) = d
dt


x(t)
R(t)
P(t)
L(t)

 =


v(t)
ω(t)∗R(t)

F(t)
τ(t)

 . (2–43)

The next section gives an implementation for the function dydt that computes d
dt Y(t).

One final note: rather than represent the orientation of the body as a matrix R(t) in Y(t), it is
better to use quaternions. Section 4 discusses using quaternions in place of rotation matrices. Briefly,
a quaternion is a type of four element vector that can be used to represent a rotation. If we replace
R(t) in Y(t) with a quaternion q(t), we can treat R(t) as an auxiliary variable that is computed
directly from q(t), just as ω(t) is computed from L(t). Section 4 derives a formula analogous to
Ṙ(t) = ω(t)∗R(t), that expresses q̇(t) in terms of q(t) and ω(t).

3 Computing d
dtY(t)

Lets consider an implementation of the function dydt for rigid bodies. The code is written in C++,
and we’ll assume that we have datatypes (classes) called matrix and triple which implement,
respectively, 3× 3 matrices and points in 3-space. Using these datatypes, we’ll represent a rigid
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body by the structure

struct RigidBody {

/* Constant quantities */

double mass; /* mass M */

matrix Ibody, /* Ibody */

Ibodyinv; /* I−1
body (inverse of Ibody) */

/* State variables */

triple x; /* x(t) */

matrix R; /* R(t) */

triple P, /* P(t) */

L; /* L(t) */

/* Derived quantities (auxiliary variables) */

matrix Iinv; /* I−1(t) */

triple v, /* v(t) */

omega; /* ω(t) */

/* Computed quantities */

triple force, /* F(t) */

torque; /* τ(t) */

};

and assume a global array of bodies

RigidBody Bodies[NBODIES];

The constant quantities mass, Ibody and Ibodyinv are assumed to have been calculated for
each member of the array Bodies, before simulation begins. Also, the initial conditions for each
rigid body are specified by assigning values to the state variables x, R, P and L of each member of
Bodies. The implementation in this section represents orientation with a rotation matrix; section 4
describes the changes necessary to represent orientation by a quaternion.

We communicate with the differential equation solver ode by passing arrays of real numbers.
Several bookkeeping routines are required:

/* Copy the state information into an array */

void State_to_Array(RigidBody *rb, double *y)

{

*y++ = rb->x[0]; /* x component of position */

*y++ = rb->x[1]; /* etc. */

*y++ = rb->x[2];

for(int i = 0; i < 3; i++) /* copy rotation matrix */

for(int j = 0; j < 3; j++)

*y++ = rb->R[i,j];
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*y++ = rb->P[0];

*y++ = rb->P[1];

*y++ = rb->P[2];

*y++ = rb->L[0];

*y++ = rb->L[1];

*y++ = rb->L[2];

}

and

/* Copy information from an array into the state variables */

void Array_to_State(RigidBody *rb, double *y)

{

rb->x[0] = *y++;

rb->x[1] = *y++;

rb->x[2] = *y++;

for(int i = 0; i < 3; i++)

for(int j = 0; j < 3; j++)

rb->R[i,j] = *y++;

rb->P[0] = *y++;

rb->P[1] = *y++;

rb->P[2] = *y++;

rb->L[0] = *y++;

rb->L[1] = *y++;

rb->L[2] = *y++;

/* Compute auxiliary variables... */

/* v(t) = P(t)
M */

rb->v = rb->P / mass;

/* I−1(t) = R(t)I−1
body R(t)T*/

rb->Iinv = R * Ibodyinv * Transpose(R);

/* ω(t) = I−1(t)L(t) */

rb->omega = rb->Iinv * rb->L;

}

Note that Array_to_State is responsible for computing values for the auxiliary variables Iinv, v
and omega. We’ll assume that the appropriate arithmetic operations have been defined between real
numbers, triple’s and matrix’s, and that Transpose returns the transpose of a matrix.
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Examining these routines, we see that each rigid body’s state is represented by 3+9+3+3= 18
numbers. Transfers between all the members of Bodies and an array y of size 18 · NBODIES are
implemented as

#define STATE_SIZE 18

void Array_to_Bodies(double y[])

{

for(int i = 0; i < NBODIES; i++)

Array_to_State(&Bodies[i], &y[i * STATE_SIZE]);

}

and

void Bodies_to_Array(double y[])

{

for(int i = 0; i < NBODIES; i++)

State_to_Array(&Bodies[i], &y[i * STATE_SIZE]);

}

Now we can implement dydt. Let’s assume that the routine

void Compute_Force_and_Torque(double t, RigidBody *rb);

computes the force F(t) and torque τ(t) acting on the rigid body *rb at time t, and stores F(t)
and τ(t) in rb->force and rb->torque respectively. Compute_Force_and_Torque takes into
account all forces and torques: gravity, wind, interaction with other bodies etc. Using this routine,
we’ll define dydt as

void dydt(double t, double y[], double ydot[])

{

/* put data in y[] into Bodies[] */

Array_to_Bodies(y);

for(int i = 0; i < NBODIES; i++)

{

Compute_Force_and_Torque(t, &Bodies[i]);

ddt_State_to_Array(&Bodies[i],

&ydot[i * STATE_SIZE]);

}

}

The numerical solver ode calls calls dydt and is responsible for allocating enough space for the
arrays y, and ydot (STATE_SIZE · NBODIES worth for each). The function which does the real work
of computing d

dt Y(t) and storing it in the array ydot is ddt_State_to_Array:
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void ddt_State_to_Array(RigidBody *rb, double *ydot)

{

/* copy d
dt x(t) = v(t) into ydot */

*ydot++ = rb->v[0];

*ydot++ = rb->v[1];

*ydot++ = rb->v[2];

/* Compute Ṙ(t) = ω(t)∗R(t) */

matrix Rdot = Star(rb->omega) * rb->R;

/* copy Ṙ(t) into array */

for(int i = 0; i < 3; i++)

for(int j = 0; j < 3; j++)

*ydot++ = Rdot[i,j];

*ydot++ = rb->force[0]; /* d
dt P(t)= F(t) */

*ydot++ = rb->force[1];

*ydot++ = rb->force[2];

*ydot++ = rb->torque[0]; /* d
dt L(t) = τ(t) */

*ydot++ = rb->torque[1];

*ydot++ = rb->torque[2];

}

The routine Star, used to calculate Ṙ(t) is defined as

matrix Star(triple a);

and returns the matrix  0 −a[2] a[1]

a[2] 0 −a[0]
−a[1] a[0] 0

 .
Given all of the above, actually performing a simulation is simple. Assume that the state vari-

ables of all NBODIES rigid bodies are initialized by a routine InitStates. We’ll have our simulation
run for 10 seconds, calling a routine DisplayBodies every 1

30 th of a second to display the bodies:

void RunSimulation()

{

double y0[STATE_SIZE * NBODIES],

yfinal[STATE_SIZE * NBODIES];

InitStates();

Bodies_to_Array(yfinal);
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for(double t = 0; t < 10.0; t += 1./30.)

{

/* copy yfinal back to y0 */

for(int i = 0; i < STATE_SIZE * NBODIES; i++)

y0[i] = yfinal[i];

ode(y0, yfinal, STATE_SIZE * NBODIES,

t, t+1./30., dydt);

/* copy d
dt Y(t+ 1

30 ) into state variables */

Array_to_Bodies(yfinal);

DisplayBodies();

}

}

4 Quaternions vs. Rotation Matrices

There is a better way to represent the orientation of a rigid body than using a 3× 3 rotation matrix.
For a number of reasons, unit quaternions, a type of four element vector normalized to unit length,
are a better choice than for rotation matrices[16].

For rigid body simulation, the most important reason to avoid using rotation matrices is because
of numerical drift. Suppose that we keep track of the orientation of a rigid body according to the
formula

Ṙ(t) = ω(t)∗R(t).
As we update R(t) using this formula (that is, as we integrate this equation), we will inevitably
encounter drift. Numerical error will build up in the coefficients of R(t) so that R(t) will no longer
be precisely a rotation matrix. Graphically, the effect would be that applying R(t) to a body would
cause a skewing effect.

This problem can be alleviated by representing rotations with unit quaternions. Since quater-
nions have only four parameters, there is only one extra variable being used to describe the three
freedoms of the rotation. In contrast, a rotation matrix uses nine parameters to describe three degrees
of freedom; therefore, the degree of redundancy is noticeably lower for quaternions than rotation
matrices. As a result, quaternions experience far less drift than rotation matrices. If it does become
necessary to account for drift in a quaternion, it is because the quaternion has lost its unit magnitude.3

This is easily correctable by renormalizing the quaternion to unit length. Because of these two
properties, it is desirable to represent the orientation of a body directly as a unit quaternion q(t).
We will still express angular velocity as a vector ω(t). The orientation matrix R(t), which is needed
to compute I−1(t), will be computed as an auxiliary variable from q(t).

We will write a quaternion s+ vxi+ vyj+ vzk as the pair

[s, v].

3Any quaternion of unit length corresponds to a rotation, so quaternions deviate from representing rotations only if
they lose their unit length. These notes will deal with that problem in a very simplistic way.
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Using this notation, quaternion multiplication is

[s2, v2] = [s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2]. (4–1)

A rotation of θ radians about a unit axis u is represented by the unit quaternion

[cos(θ/2), sin(θ/2)u].

In using quaternions to represent rotations, if q1 and q2 indicate rotations, then q2q1 represents the
composite rotation of q1 followed by q2.4 In a moment, we’ll show how to change the routines of
section 3 to handle the quaternion representation for orientation. Before we can make these changes
though, we’ll need a formula for q̇(t). Appendix B derives the formula

q̇(t) = 1
2ω(t)q(t). (4–2)

where the multiplication ω(t)q(t) is a shorthand for multiplication between the quaternions [0, ω(t)]
and q(t). Note the similarity between equation (4–2) and

Ṙ(t) = ω(t)∗R(t).

To actually use a quaternion representation, we’ll need to redefine the type RigidBody:

struct RigidBody {

/* Constant quantities */

double mass; /* mass M */

matrix Ibody, /* Ibody */

Ibodyinv; /* I−1
body (inverse of Ibody) */

/* State variables */

triple x; /* x(t) */

quaternion q; /* q(t) */

triple P, /* P(t) */

L; /* L(t) */

/* Derived quantities (auxiliary variables) */

matrix Iinv, /* I−1(t) */

R; /* R(t) */

triple v, /* v(t) */

omega; /* ω(t) */

/* Computed quantities */

triple force, /* F(t) */

torque; /* τ(t) */

};

4This is according to the convention that the rotation of a point p by a quaternion q is qpq−1. Be warned! This is
opposite the convention for rotation in the original paper Shoemake[16], but it is in correspondence with some more recent
versions of Shoemake’s article. Writing a composite rotation as q2q1 parallels our matrix notation for composition of
rotations.
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Next, in the routine State_to_Array, we’ll replace the double loop

for(int i = 0; i < 3; i++) /* copy rotation matrix */

for(int j = 0; j < 3; j++)

*y++ = rb->R[i,j];

with

/*

Assume that a quaternion is represented in

terms of elements `r' for the real part,

and `i', `j', and `k' for the vector part.

*/

*y++ = rb->q.r;

*y++ = rb->q.i;

*y++ = rb->q.j;

*y++ = rb->q.k;

A similar change is made in Array_to_State. Also, since Array_to_State is responsible for
computing the auxiliary variable I−1(t), which depends on R(t), Array_to_State must also com-
pute R(t) as an auxiliary variable: in the section

/* Compute auxiliary variables... */

/* v(t) = P(t)
M */

rb->v = rb->P / mass;

/* I−1(t) = R(t)I−1
body R(t)T*/

rb->Iinv = R * Ibodyinv * Transpose(R);

/* ω(t) = I−1(t)L(t) */

rb->omega = rb->Iinv * rb->L;

we add the line

rb->R = quaternion_to_matrix(normalize(rb->q));

prior to computing rb->Iinv. The routine normalize returns q divided by its length; this unit
length quaternion returned by normalize is then passed to quaternion_to_matrixwhich returns
a 3× 3 rotation matrix. Given a quaternion q = [s, v], quaternion_to_matrix returns the ma-
trix  1− 2v2

y − 2v2
z 2vxvy − 2svz 2vxvz + 2svy

2vxvy + 2svz 1− 2v2
x − 2v2

z 2vyvz − 2svx

2vxvz − 2svy 2vyvz + 2svx 1− 2v2
x − 2v2

y

 .
In case you need to convert from a rotation matrix to a quaternion,
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quaternion matrix_to_quaternion(const matrix &m)

{

quaternion q;

double tr, s;

tr = m[0,0] + m[1,1] + m[2,2];

if(tr >= 0)

{

s = sqrt(tr + 1);

q.r = 0.5 * s;

s = 0.5 / s;

q.i = (m[2,1] - m[1,2]) * s;

q.j = (m[0,2] - m[2,0]) * s;

q.k = (m[1,0] - m[0,1]) * s;

}

else

{

int i = 0;

if(m[1,1] > m[0,0])

i = 1;

if(m[2,2] > m[i,i))

i = 2;

switch (i)

{

case 0:

s = sqrt((m[0,0] - (m[1,1] + m[2,2])) + 1);

q.i = 0.5 * s;

s = 0.5 / s;

q.j = (m[0,1] + m[1,0]) * s;

q.k = (m[2,0] + m[0,2]) * s;

q.r = (m[2,1] - m[1,2]) * s;

break;

case 1:

s = sqrt((m[1,1] - (m[2,2] + m[0,0])) + 1);

q.j = 0.5 * s;

s = 0.5 / s;

q.k = (m[1,2] + m[2,1]) * s;

q.i = (m[0,1] + m[1,0]) * s;

q.r = (m[0,2] - m[2,0]) * s;

break;

case 2:

s = sqrt((m[2,2] - (m[0,0] + m[1,1])) + 1);
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q.k = 0.5 * s;

s = 0.5 / s;

q.i = (m[2,0] + m[0,2]) * s;

q.j = (m[1,2] + m[2,1]) * s;

q.r = (m[1,0] - m[0,1]) * s;

}

}

return q;

}

The matrix m is structured so that m[0,0], m[0,1] and m[0,2] form the first row (not column) of m.
The routines Array_to_Bodies and Bodies_to_Array don’t need any changes at all, but note

that the constant STATE_SIZE changes from 18 to 13, since a quaternion requires five less elements
than a rotation matrix. The only other change we need is in ddt_State_to_Array. Instead of

matrix Rdot = Star(rb->omega) * rb->R;

/* copy Ṙ(t) into array */

for(int i = 0; i < 3; i++)

for(int j = 0; j < 3; j++)

*ydot++ = Rdot[i,j];

we’ll use

quaternion qdot = .5 * (rb->omega * rb->q);

*ydot++ = qdot.r;

*ydot++ = qdot.i;

*ydot++ = qdot.j;

*ydot++ = qdot.k;

.We’re assuming here that the multiplication between the triple rb->omega and the quaternion
rb->q is defined to return the quaternion product

[0,rb->omega]q.

5 Examples

5.1 Inertia Tensor of a Block

Let us calculate the inertia tensor Ibody of the rectangular block in figure 7. The block has dimensions
x0 × y0 × z0. As required, the center of mass of the block is at the origin. Thus, the extent of the
block is from − x0

2 to x0
2 along the x axis, and similarly for the y and z axes. To calculate the inertia

tensor, we must treat the sums in equation (2–32) as integrals over the volume of the block. Let us
assume that the block has constant unit density. This means that the density function ρ(x, y, z) is
always one. Since the block has volume x0 y0z0, the mass M of the block is M = x0 y0z0. Then, in
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Figure 7: A rectangular block of constant unit density, with center of mass at (0,0,0).

body space,

Ixx =
∫ x0

2

−x0
2

∫ y0
2

−y0
2

∫ z0
2

−z0
2

ρ(x, y, z)(y2+ z2) dx dy dz =
∫ x0
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−x0
2

∫ y0
2

−y0
2

∫ z0
2

−z0
2

y2 + z2 dx dy dz
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∫ y0
2
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y2z+ z3
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12
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y3
0

3
z0 + z3

0

12
y0

∣∣∣∣y=
y0
2

y=−y0
2

dx

=
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2

y3
0z0

12
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0 y0

12
dx

= y3
0z0

12
+ z3

0 y0
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y3
0z0x0

12
+ z3

0 y0x0

12
= x0 y0z0

12
(y2

0 + z2
0) =

M
12
(y2

0 + z2
0).

(5–1)

Similarly, Iyy = M
12 (x

2
0 + z2

0) and Izz = M
12 (x

2
0 + y2

0). Now, the off-diagonal terms, such as Ixy,
are

Ixy =
∫ x0

2

−x0
2

∫ y0
2

−y0
2

∫ z0
2

−z0
2

ρ(x, y, z)(xy) dx dy dz =
∫ x0

2

−x0
2

∫ y0
2

−y0
2

∫ z0
2

−z0
2

xy dx dy dz = 0 (5–2)
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Figure 8: A block acted on by two equal forces F at two different points.

(and similarly for the others) because the integrals are all symmetric. Thus, the inertia tensor of the
block is

Ibody = M
12

 y2
0 + z2

0 0 0
0 x2

0 + z2
0 0

0 0 x2
0 + y2

0

 . (5–3)

5.2 A Uniform Force Field

Suppose a uniform force acts on each particle of a body. For example, we typically describe a
gravitational field as exerting a force mig on each particle of a rigid body, where g is a vector pointing
downwards. The net force Fg acting due to gravity on the body then is

Fg =
∑

mig = Mg (5–4)

which yields an acceleration of Mg
g = g of the center of mass, as expected. What is the torque due

to the gravitational field? The net torque is the sum∑
(ri(t)− x(t))×mig =

(∑
mi(ri(t)− x(t))

)
× g = 0 (5–5)

by equation (2–20). We see from this that a uniform gravitational field can have no effect on the
angular momentum of a body. Furthermore, the gravitational field can be treated as a single force
Mg acting on the body at its center of mass.

5.3 Rotation Free Movement of a Body

Now, let us consider some forces acting on the block of figure 8. Suppose that an external force
F = (0, 0, f ) acts on the body at points x(t)+ (−3, 0,−2) and x(t)+ (3, 0,−2). We would expect
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that this would cause the body to accelerate linearly, without accelerating angularly. The net force
acting on the body is (0, 0, 2 f ), so the acceleration of the center of mass is

2 f
M

along the z axis. The torque due to the force acting at x(t)+ (−3, 0,−2) is

((x(t)+
 −3

0
−2

 )− x(t))× F =
 −3

0
−2

 × F

while the torque due to the force acting at x(t)+ (3, 0,−2) is

((x(t)+
 3

0
−2

 )− x(t))× F =
 3

0
−2

 × F.

The total torque τ is therefore

τ =
 −3

0
−2

 × F+
 3

0
−2

 × F = (
 −3

0
−2

 +
 3

0
−2

 )× F =
 0

0
−2

 × F.

But this gives

τ =
 0

0
−2

 ×
 0

0
f

 = 0.

As expected then, the forces acting on the block impart no angular acceleration to the block.

5.4 Translation Free Movement of a Body

Suppose now that an external force F1 = (0, 0, f ) acts on the body at point x(t)+ (−3, 0,−2) and an
external force F2 = (0, 0,− f ) acts on the body at point x(t)+ (3, 0, 2) (figure 9). Since F1 =−F2,
the net force acting on the block is F1+ F2 = 0, so there is no acceleration of the center of mass. On
the other hand, the net torque is
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Figure 9: A block acted on by two opposite forces F1 and F2 = −F1, at two different points.

((x(t)+
 −3

0
−2

)− x(t))× F1+

((x(t)+
 3

0
2

 )− x(t))× F2 =
 −3

0
−2

 ×
 0

0
f

 +
 3

0
−2

 ×
 0

0
− f


=
 0

3 f
0

 +
 0

3 f
0

 =
 0

6 f
0

 .
(5–6)

Thus, the net torque is (0, 6 f, 0), which is parallel to the y axis. The final result is that the forces
acting on the block cause it to angularly accelerate about the y axis.

5.5 Force vs. Torque Puzzle

In considering the effect of a force acting at a point on a body, it sometimes seems that the force is
being considered twice. That is, if a force F acts on a body at a point r+ x(t) in space, then we first
consider F as accelerating the center of mass, and then consider F as imparting a spin to the body.

This gives rise to what at first seems a paradox: Consider the long horizontal block of figure 10
which is initially at rest. Suppose that a force F acts on the block at the center of mass for some
period of time, say, ten seconds. Since the force acts at the center of mass, no torque is exerted on
the body. After ten seconds, the body will have acquired some linear velocity v. The body will not
have acquired any angular velocity; thus the kinetic energy of the block will be 1

2 M|v|2.
Now suppose that the same force F is applied off-center to the body as shown in figure 11. Since

the force acting on the body is the same, the acceleration of the center of mass is the same. Thus,
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Figure 10: A rectangular block acted on by a force through its center of mass.

v
(ten seconds later)

Energy:
               0
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F
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2

ωT Iω

Figure 11: A block acted on by a force, off-center of the center of mass.
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after ten seconds, the body will again have linear velocity v. However, after ten seconds, the body
will have picked up some angular velocity ω, since the force F, acting off center, now exerts a torque
on the body. Since the kinetic energy is (see appendix C)

1
2 M|v|2+ 1

2ω
T Iω

the kinetic energy of the block is higher than when the force acted through the center of mass. But
if identical forces pushed the block in both cases, how can the energy of the block be different?
Hint: Energy, or work, is the integral of force over distance.
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Figure 12: The path the force acts over is longer than in figure 10. As a result, the force does more
work, imparting a larger kinetic energy to the block.

Figure 12 shows why the force acting off center results in a higher kinetic energy. The kinetic
energy of the block is equivalent to the work done by the force. The work done by the force is the
integral of the force over the path traveled in applying that force. In figure 11, where the force acts off
the center of mass, consider the path traced out by the point where the force is applied. This path is
clearly longer than the path taken by the center of mass in figure 10. Thus, when the force is applied
off center, more work is done because the point p at which the force is applied traces out a longer
path then when the force is applied at the center of mass.
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