
An Introduction to Physically Based Modeling:
An Introduction to Continuum Dynamics for
Computer Graphics

Michael Kass
Pixar

Please note: This document is 1997 by Michael Kass. This chapter may be freely
duplicated and distributed so long as no consideration is received in return, and this
copyright notice remains intact.

An Introduction to Continuum Dynamics
for Computer Graphics

Michael Kass
Pixar

1 Introduction

Mass-spring systems have been widely used in computer graphics because they provide a simple
means of generating physically realistic motion for a wide range of situations of interest. Even though
the actual mass of a real physical body is distributed through a volume, it is often possible to simu-
late the motion of the body by lumping the mass into a collection of points. While the exact coupling
between the motion of different points on a body may be extremely complex, it can frequently be ap-
proximated by a set of springs. As a result, mass-spring systems provide a very versatile simulation
technique.

In many cases, however, there are much better simulation techniques than directly approximating
a physical system with a set of mass points and springs. The motion of rigid bodies, for example, can
be approximated by a small set of masses connected by very stiff springs. Unfortunately, the very
stiff springs wreak havoc on the numerical solution methods, so it is much better to use a technique
based on the rigid-body equations of motion.

Another important special case arises with our subject here: elastic bodies and fluids. In many
cases, they can be approximated by regular lattices of mass points and springs. While these sys-
tems can be simulated with simple general methods, the performance is often very disappointing.
The reason for the poor performance is relatively easy to understand because the regular lattices are
particularly amenable to analysis. Understanding the difficulties leads to formulations of solution
methods which exploit the regular structure and thereby achieve far more efficient behavior.

2 Spring with Mass

In idealized mass-spring systems, the springs are considered to have zero mass. This is primarily
because such systems are easy to simulate, not because real springs are massless. Here we will use
idealized springs to simulate a more realistic spring with mass distributed along its length. With this
change, the behavior of the simulated spring becomes a great deal more complex than an idealized
spring and includes full wave behavior along its length, much like a “Slinky.”

Figure 1 shows a large zero-rest length spring modeled as a collection of n smaller springs in
series. If the mass of the entire spring is m, then the masses between the smaller springs are mi =
m/(n+ 1). For simplicity and ease of exposition, we will initially consider the one-dimensional
problem in which all forces and motion are limited to the x-axis. Let xi denote the position of the ith
mass point. If the spring constant of the ith spring is ki, the energy of the collection of small springs

E1

...
m0 m1 m2 mn–1 mn

Figure 1: Single spring (top) is simulated by a collection of smaller springs connected in series (bot-
tom).

An Introduction to Physically-Based Modeling E2 Witkin/Baraff/Kass

can be written

E = 1
2

n∑
i=1

ki(xi − xi−1)
2 (1)

When the small springs are equally stretched out, their energy should sum to the energy of the
entire spring. This will happen when ki = nk where k is the spring constant of the entire spring.
Substituting into the energy expression yields

E = nk
2

n∑
i=1

(xi − xi−1)
2 (2)

3 Continuous limit

Additional insight into this energy function can be achieved by examining the limit as the number of
springs n goes to infinity. Then x becomes a continuous function of a parameter u instead of being
indexed by i . In the limit, the energy function can be written

E = lim
n→∞

nk
2

n∑
i=1

ki(xi − xi−1)
2 = lim

n→∞
k

2n

n∑
i=1

(
x(i/n)− x((i− 1)/n)

1/n

)2

(3)

The term being summed on the right-hand side of converges to the square of the derivative of x. The
summation converges to an integral. As a consequence, the energy function can be written

E = k
2

∫ 1

0

(
∂x(u)
∂u

)2

(4)

in the limit as n goes to infinity. It is also possible to arrive at this energy expression directly from
arguments about the infinitesimal properties of springs.

The continuous energy expression in equation 4 is very similar to a continuous energy expression
of great importance in computer graphics: the energy

E = k
2

∫ 1

0

(
∂2x(u)

∂u2

)2

(5)

of a natural spline. The only difference is that the spring energy of equation 4 depends on first deriva-
tives, while the spline energy of equation 5 depends on second derivatives. When these energy func-
tions are extended to surfaces, the spring energy corresponds to the behavior of a membrane, while
the spline energy corresponds to the energy of a thin plate.

4 Discretization

Suppose we are given a continuous energy function such as equation 4 or 5 and we wish to simulate its
behavior with a computer. Before we can simulate the behavior, we must decide on a representation
for the continuous function x(u). There are two basic choices: we can represent x(u) by its values
at a set of sample points, or we can represent it by a collection of coefficients of local basis functions
(e.g. the control points of a spline). The first is known as the finite-difference method and the second
as the finite-element method. Here we will examine the finite-difference method.

An Introduction to Physically-Based Modeling E3 Witkin/Baraff/Kass

If the function x(u) is represented by n+ 1 samples evenly distributed on the interval from zero
to one with xi = x(i/n), 0 ≤ i ≤ n, the derivatives can be approximated by the expressions

∂x
∂u

∣∣∣∣
x=ih
≈ xi+1 − xi

h
(6)

and
∂2x
∂u2

∣∣∣∣
x=ih
≈ xi+1 − 2xi + xi−1

h2 (7)

where h = 1/n is the spacing between sample values of u. The approximation of equation 7 is de-
rived by using the approximation of equation 6 twice, once for each differentiation. If the approx-
imation of equation 6 is combined with the energy function of equation 4 and the integral in the
energy function is converted into a sum over the sample values, then the result is exactly the energy
expression of 2. We therefore have two different interpretations of the spring energy in equation 2.
One interpretation is the approximation of a large massive spring by a collection of smaller springs
connected to point masses. The other interpretation is that the energy in equation 2 is a discrete ap-
proximation to the continuous energy function of 4. If the approximation of equation 7 is combined
with the continuous energy function of 5, the result is the following discrete energy function:

E = n2k
2

n∑
i=1

(xi+1 − 2xi + xi−1)
2 (8)

Like the energy function in equation 2, this energy has an interpretation in terms of springs, but it is
not nearly so simple. The energy corresponds to springs between xi and the midpoint between xi−1

and xi+1.

5 Euler’s Method

In order to simulate the motion of physical system from a discrete energy like equation 2, we have to
compute the force from the energy expression and then use Newton’s second law F =ma to calculate
the accelerations. We then integrate the accelerations through time to compute the velocities and
integrate the velocities to compute the positions of the mass points.

The force on the ith mass point is given by the partial derivative of the energy with respect to xi.
For the energy of 2, we have

Fi = ∂E
∂xi
=

−nk(x1 − x0) if i = 0;
nk(xn − xn−1) if i = n;
nk(−xi+1 + 2xi − xi−1 otherwise.

(9)

The reason for the special cases is that there are two springs pulling on each mass point except for the
first and the last. Note that if the spring is stretched out evenly (xi− xj = c(i− j)) then the force on
all the internal mass points (0< i < n) is zero because the force from the spring on the left precisely
balances the force from the spring on the right.

With the above force expressions, we must still choose an integration method for the differen-
tial equation F = ma. Let us first consider the behavior of the simplest integration method, Euler’s
method. In order to apply Euler’s method, we have to transform the differential equation into the

An Introduction to Physically-Based Modeling E4 Witkin/Baraff/Kass

canonical form dY/dt = f (Y). Then if we are given the value of Y at time t, we can compute the
value of Y at time t+1t from the Euler update formula

Y (t+1t) = Y (t)+ (1t) f (Y). (10)

The equation F = ma is not in canonical form because the acceleration a is a second derivative and
the canonical form requires relationships involving first derivatives of the state variables. This diffi-
culty is easily remedied by introducing new variables to represent the velocities. Then we can write
two sets of equations involving first derivatives instead of one involving second derivatives. Let vi

denote the velocity of the ith mass point. Then F = ma in canonical form can be written as follows:

dvi

dt
= Fi

mi

dxi

dt
= vi. (11)

(12)

Using this canonical form, the Euler update formula can be written

vi(t+1t) = vi(t)+ (1t)Fi(t)/mi

xi(t+1t) = xi(t)+ (1t)vi(t). (13)

If the time step1t is small enough, the above equations provide a means for simulating the behavior
of the spring with mass shown in . Unfortunately, the required time step is very small, particularly
if n, the number of small springs, is very large. In fact, as we will see shortly, the time step 1t must
be of order 1/n to ensure that the iteration in equation 13 does not diverge.

Suppose that the spring is initially at rest with xi = i/n and appropriate forces are applied to both
ends in order to keep it at rest. That is, an external force nk(x1 − x0) is applied to the left end, and
an external force −nk(xn − xn−1) is applied to the right end. The net force on each mass point is
zero, so the system is in equilibrium. Now suppose that a large force P is suddenly applied to the
left-most mass point m0. The sudden application of the force will cause a compression wave to move
from the left edge towards the right. Physical intuition tells us that the speed of the wave depends on
the relationship between the stiffness of the little springs and the mass of the points in between. If the
springs are very stiff and the masses are light, we expect the wave to travel very rapidly. Conversely,
if the springs are floppy and the masses are heavy, we expect the wave to travel slowly. We will make
this notion precise in the next section. For now, we will look at how Euler’s method simulates the
effect.

Suppose the large force P is applied to the left-most mass point at time zero. In the first Euler
step, only the left-most mass point m0 will accelerate. All the other mass points have zero net force,
so they remain at rest. At the end of the first Euler step m0 will have a non-zero velocity, but it
still will not have moved. Only after the second Euler step will m0 have moved from its equilibrium
position. All the other mass points remain in their original positions. Looking at the force expression
in equation 12, we see that the force is still zero except on mass point m1. The reason is that the force
on each mass point depends only on the positions of its immediate neighbors. After two more Euler
steps, m1 will have moved and m2 will feel a non-zero force. Only after 2n Euler steps will the right-
most mass point feel any effect from the initial disturbance on the left-most mass point.

Let τ be the time that it should take a disturbance to propagate from one end of the spring to the
other in the real physical situation. We know that it has to take at least 2n Euler steps for this to hap-
pen in the simulation, so the time step1t must be less than τ/2n in order for the simulation to work.

An Introduction to Physically-Based Modeling E5 Witkin/Baraff/Kass

If we try to simulate the behavior with a larger time step, the Euler iteration will simply diverge.
Now the problem with Euler’s method should be clear. As we increase the number of samples along
the spring, we have to keep reducing the time step because information cannot travel faster than one
sample per Euler step. Since each Euler step requires a fixed amount of work per sample, the amount
of computational work needed to simulate the disturbance propagating down the length of the spring
is n2 because it requires n iterations each with work proportional to n. If we want to simulate elastic
surfaces with thousands of samples, we clearly need a better simulation technique.

6 The Wave Equation

We can gain further insight into the nature of the problem by examining the continuous equations
that we are approximating with the collection of springs. Away from the ends of the whole spring,
the acceleration Fi/mi of a mass point is given by

Fi

mi
= n(n+ 1)

m
k(−xi+1 + 2xi − xi−1) (14)

The right hand side of equation 14 has the familiar look of the second derivative approximation we
saw in equation 7. In the limit as n goes to infinity, the second derivative returns

lim
n→∞

Fi

mi
= k

m
∂2x
∂u2 (15)

and we are left with the wave equation:

∂2x
∂t2 =

k
m
∂2x
∂u2 (16)

It is also possible to derive equation 16 directly from the energy expression of equation 4 using a
mathematical technique known as the calculus of variations.

The wave equation has been studied extensively for a long time because of its importance in a
number of areas of physics. Its solution is well known.

x(u, t) = T1

(
u− t

√
k/m

)
+ T2

(
u+ t

√
k/m

)
(17)

The function x(u, t) is given by the sum of a waveform T1 translating in the positive x direction and
another waveform T2 translating in the negative x direction. The translation velocity is given by the
square root of the constant of proportionality between the second spatial derivative and the second
temporal derivative, in this case k/m. If this solution is substituted back into equation 16, it is easy
to verify that it satisfies the differential equation.

Now we have another perspective on the difficulties with Euler’s method. If the spring constant
k is very large compared to the mass, then the effect of a force applied at one point in the spring will
rapidly spread up and down the length of a spring. A very small time step will be required to combat
the problem that Euler’s method limits propagation speed to no more than one sample per iteration.

7 Implicit Integration

Not all the difficulty in simulating the massive spring is due to Euler’s method. Part of it is inherent
in the problem statement. Consider for a moment the energy landscape given by equation 4. If the

An Introduction to Physically-Based Modeling E6 Witkin/Baraff/Kass

springs are all equally stretched out, the energy is at a local minimum. If any one mass point is moved
from this position by itself, the energy increases very rapidly (approximately as the square of the
displacement). On the other hand, if all the mass points are moved together by the same amount,
the energy does not change at all. While it is somewhat difficult to visualize because it exists in an
n dimensional space, this is the description of an energy landscape that acts like a ravine. If you
move in most directions, the energy increases rapidly. If you pick a direction near the axis of the
ravine, the energy varies very slowly. Note that the sides of the ravine can be made arbitrarily steep
by increasing the spring constant k.

The correct solution to the differential equation will tend to follow along the ravine in the energy
function unless large external forces are pulling it away. The problem with Euler’s method is that it
tries to follow along the ravine without knowing that a ravine is present. Its local knowledge of the
energy function is limited to computing the force at the current state. Since the force is the gradient of
the energy, Euler’s method computes its next step using a local planar model of the energy function.
Unfortunately, for Euler’s method, a plane is a very poor model of a ravine, so the method ends up
doing a very bad job. The only way to make the planar model a good approximation of a ravine is to
consider a very small region. As a result, Euler’s method will only work on this problem when very
small step sizes are used.

To improve the performance, we need to incorporate a better model of the energy function into
the differential equation solver. Since first derivatives of the energy are insufficient, the obvious im-
provement is to look at second derivatives. In this case, second derivatives of the energy correspond
to first derivatives of the forces.

7.1 General Implicit Formulation

Consider once again the canonical differential equation form dY/dt = f (Y). Instead of assuming
(as Euler’s method does) that the derivative dY/dt throughout the time interval is simply f (Y0), let
us assume that it is some weighted average of the derivative f (Y0) at the beginning of the interval
and f (Y (t+1t)) at the end of the interval. Then we can write the update

Y (t+1t) = Y (t)+ (1t)
[
(1− λ) f (Y (t))+ λ f (Y (t+1t))

]
. (18)

where λ is a constant between zero and one. Note that when λ= 0, this reverts to the ordinary Euler
update of equation 10. Any update of this form where f (Y (t+1t)) appears on the right is known as
an implicit update formula. When λ = 1, this equation is known as the backwards Euler or implicit
Euler update.

Since we do not know Y (t+1t) at the beginning of the step, it may not be clear that equation
18 is helpful in calculating Y (t+1t). This is where we make use of the additional derivative infor-
mation. Around the current state Y0, we have the approximation

dY
dt
≈ f (Y0)+ (Y − Y0)(∇ f)|Y=Y0 (19)

Substituting this approximation into equation 18 we have

1Y = (1t)
[

f (Y0)+ λ1Y(∇ f)|Y=Y0

]
(20)

Solving for 1Y , we obtain the update formula

1Y

[
1
1t

I − λ(∇ f)|Y=Y0

]
= f (Y0) (21)

An Introduction to Physically-Based Modeling E7 Witkin/Baraff/Kass

where I denotes the identity matrix. Note that computing the update for Y over a time step now
requires solving a linear system. This is the price of using the extra derivative information.

For the greatest accuracy, we should use λ = 1/2 since the best estimate of the derivative in the
middle of the interval is halfway between its value at the beginning and the end. There is another
criterion that affects our choice, however, and that is the issue of stability. To understand the stability
of the update, let us consider the the single variable linear case dY/dt = −cY where c is a positive
constant and where the initial condition is Y (0) = γ. Then we have

Y (t+1t) ≈ Y (t)+1t[(1− λ)Y ′(t)+ λY ′(t+1t)] (22)

= Y (t)− c1t[(1− λ)Y (t)+ λY (t+1t)] (23)

= (1− c1t(1− λ))Y (t)
1+ λc1t

(24)

= γ

(
(1− c1t(1− λ))

1+ λc1t

) t/1t

. (25)

Clearly, the update will diverge if the fraction in equation 25 is greater in magnitude than one. Since
c is positive, this can occur only when 1t > 2/[c(1− 2λ)]. When λ = 0, we have the ordinary Eu-
ler update, and the calculated Y (t) diverges if 1t > 2/c. In other words, the maximum time step
is inversely proportional to the constant of proportionality between Y and Y ′. As λ increases, the
scheme gets more and more stable. If λ ≥ 1/2, the iteration cannot diverge for this linear differen-
tial equation. When applied to non-linear differential equations, however, there is still a possibility
of divergence. If λ is increased from 1/2 to one, the iteration gets even more stable. For severely
nonlinear problems, the additional stability, even though it comes at the expense of some reduction
in accuracy, can be very useful.

7.2 Application To Springs

When we apply equation 21 to the spring system, there are some simplifications because the force
depends only on the positions of the mass points and not on their velocities (unless we add damping
forces). As a result, we end up with the same equation for the velocities as in the Euler step, but a
very different update formula for the positions:

(1x)A = v (26)

where

A =
[

1
1t

I − λH

]
(27)

where

H = ∂2 E
∂xi∂x j

(28)

is the Hessian matrix of the spring energy.
For some problems, this solution method could take even more work than Euler’s method be-

cause solving a general linear system requires computational work proportional to n3. In this case,
however, the special structure of the problem makes it possible to solve the linear system with com-
putational work proportional to n. As a result, the method is far faster than Euler’s method for cases
of practical interest.

An Introduction to Physically-Based Modeling E8 Witkin/Baraff/Kass

Remember that the force on the ith mass point depends only on the positions of mass points i− 1
through i+ 1. As a result, the derivative of the force on the ith mass point is zero, except with respect
to mass points i− 1, i, and i+ 1. This means that every row of the matrix A has at most three non-
zero elements: the element on the diagonal and one entry on either side.

A =



a0 b0

b0 a1 b1 0

b1 a2
. . .

. . .
. . .

. . .
. . . an−3 bn−3

0 bn−3 an−2 bn−2

bn−2 an−1


(29)

Matrices with this special form are known as tridiagonal matrices, and linear systems involving
them are particularly easy to solve. Numerical Recipes [1], for example, includes a seventeen line
program which solves tridiagonal matrices in time proportional to n. The algorithm works by fac-
toring the matrix into the product A = LU of a lower triangular matrix L and an upper-triangular
matrix U where

L =



c0

d0 c1 0
d1 c2

.
. . . cn−3

0 dn−3 cn−2

dn−2 cn−1


U =



r0 s0

r1 s1 0

r2
. . .
.

rn−3 sn−3

0 rn−2 sn−2

rn−1


(30)

It then solves the equation AX = B by first solving LY = B for Y and then solving Y = U X for
X. Consider solving LY = B for Y . The first component is easy: Y0 = B0/c0. After that, we can
solve for the remaining components of Y using the recurrence Yi = (Bi − Yi−1di−1)/ci. To get an
idea of what this recurrence does, let us examine the special case where di = 1/a and ci = (a− 1)/a
. This is representative of the behavior away from the boundaries. In this case, we can rewrite the
recurrence as

Yi = αBi + (1− α)Yi−1. (31)

Some will recognize equation 31 as a simple recursive filter. The next output value Yi is a blend of
the last output value Yi−1 and the current input value Bi. The effect of any particular input decays
exponentially as it gets repeatedly blended in with the subsequent inputs.The result is a low-pass
filter with an effective smoothing width determined by α. The output of the filter when given an
impulse as input is shown in b. When the subsequent linear system Y = U X is solved for X, the
result is to do essentially the same thing but in the reverse direction. Figure 2c shows the effect of
the two combined filtering operations is shown. The initial spike is blurred out symmetrically in both
directions. Note that the behavior will be somewhat different near the boundaries because di and ci

will not be constant.
Now it should be clear how the implicit solution method of avoids the problems with Euler’s

method. When a force is applied to a single mass point, the low-pass filtering applies the effect of
the force to all the neighboring mass points. If k is large, then the coefficients of the recursive filter

An Introduction to Physically-Based Modeling E9 Witkin/Baraff/Kass

a

c

b

Figure 2: Effect of recursive filter. Input (a) is filtered forward (b) and and then backward (c).

become such that the width of the filter is correspondingly large. In the limit as k grows very large,
the filter will essentially move all the mass points together as one. With this solution method, the
number of iterations required for a disturbance to propagate from one end of the spring to the other
is independent of n. The coefficients of the filters adjust to take account of the different number of
samples. Since the computational work per iteration is proportional to n, the entire simulation takes
computational work proportional to n instead of the n2 work required by Euler’s method. This can
be the difference between having a practical simulation and having an impractical one.

8 Fluids

With a very small modification, the spring with mass can be made to simulate the behavior of shallow
water. While the derivation of the equations is fairly different, the end result is much the same. If
we divide a volume of water into a collection of vertical columns as in figure 3 and make use of a set
of approximations known as the shallow water equations, we can describe the motion of the surface
by a wave equation in which the wave velocity is proportional to the square root of the depth:

∂2h
∂t2 = gd

∂2h
∂x2 . (32)

where h is the height of the column of water, d= h− b is its depth, and g is the gravitational constant.
In [2], the discretization

∂2h
∂t2 = −g

(
di−1+ di

2(1x)2

)
(hi − hi−1)+ g

(
di + di+1

2(1x)2

)
(hi+1 − hi) (33)

is presented. The main difference between these fluid equations and the spring equations we have
been examining is that the spring constant is no longer uniform. As a result, the differential equation
becomes nonlinear and it becomes useful to have λ = 1.

An Introduction to Physically-Based Modeling E10 Witkin/Baraff/Kass

h0 h1 h2 hn–3 hn–2 hn–1h3 ...

b0 b1 b2 bn–3 bn–2 bn–1b3 ...
u0 u1 un–3 un–2

Figure 3: Discrete two-dimensional height-field representation of the water surface h, the ground
bottom b, and the horizontal water velocity u.

The iteration required to solve equation 33 with the implicit method of equation 21 consists of
solving a tridiagonal linear system. Precise formulas for the entries in the linear system and many
further details can be found in [2].

9 Surfaces

So far, we have been considering the one-dimensional problem of a spring with mass. If we use
a rectangular lattice of springs, we can simulate an elastic membrane surface. For the most part,
the one-dimensional analysis still applies. We still have difficulties with forces propagating over
large numbers of samples. On a surface, however, the problem is more severe because the matrix
equations we get from the implicit solution technique are no longer tridiagonal. The reason is that
mass points are tied to their neighbors along both rows and columns. No matter how the mass points
are indexed in the matrix, it will come out with a more complicated structure than the tridiagonal
situation in one dimension. One effective solution to this difficulty is to consider rows and columns
of the spring lattice alternately. Then the one-dimensional technique can be used on each row or
column separately. This works very well, for example, in the case of shallow fluids.

10 Conclusion

Regular lattices of masses and springs have some special properties that are important to be aware
of for the purposes of simulation. If the number of nodes in the lattice is large, then the choice of
solution technique is very important. A naive use of Euler’s method can result in computational cost

An Introduction to Physically-Based Modeling E11 Witkin/Baraff/Kass

proportional to the square of the number of nodes. This is because the effects of forces can never
propagate faster than one sample per iteration. Using implicit techniques can avoid these problems
and produce a computational cost which is linear in the number of nodes.

References

[1] W. Press, B. Flanner, S. Teukolsky and W. Vetterling,. Numerical Recipes: The Art of Scientific
Computing Cambridge University Press, Cambridge 1986.

[2] Michael Kass and Gavin Miller. Rapid, Stable Fluid Mechanics for Computer Graphics. In
Proceedings of SIGGRAPH ’90, pages 49–57, August 1990.

An Introduction to Physically-Based Modeling E12 Witkin/Baraff/Kass

