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Independent Component Analysis

1 (1) a1151(t) + a12s2(t) Goal: Estimate {s;(¢)},
ro(t) = an1s1(t) + axosa(t) (and also {a;;})




Independent Component Analysis
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Independent Component Analysis
Model z1(t) = a1151(t) + a1252(¢)

ro(t) = ap151(t) + anosa(t)
We observe

(901(1)> (931(2)) (m(ﬂ)
(1)) ' \z2(2)) 7 "7 \za(t)

(81(1)> <81(2)) (81@))
so(1) )7 \s2(2) )7 "7 \s2(t)

But we don't know {a;;}, nor {s;(t)}

We want

Goal:  Estimate {s;(t)}, (and also {a;;})



ICA vs PCA, Similarities

e Perform linear transformations
e Matrix factorization

PCA: low rank matrix factorization for compression

N{ X - |u S }M<N

=
M

ICA: full rank matrix factorization to remove dependency between the rows

A S

N 6

N| X




ICA vs PCA, Differences

PCA: X=US, UU=I
ICA: X=AS

PCA does compression
- M<N

ICA does not do compression
— same # of features (M=N)

PCA just removes correlations, not higher order dependence
ICA removes correlations, and higher order dependence

PCA: some components are more important than others
(based on eigenvalues)

ICA: components are equally important



ICA vs PCA

Note
* PCA vectors are orthogonal
* [CA vectors are not orthogonal



PCA vs ICA
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The Cocktail Party Problem
SOLVING WITH PCA

Sources o Observation  pea Estimation

\-\EJI

y(t)=Wx(t)
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The Cocktail Party Problem
SOLVING WITH ICA

Sources Mixing Observation ICA Estimation

\%I

y(t)=Wx(t)
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Some ICA Applications

STATIC

Image denoising
Microarray data processing

Decomposing the spectra of
galaxies

Face recognition

Facial expression recognition
Feature extraction

Clustering

Classification

TEMPORAL

eMedical signal processing —
fMRI, ECG, EEG

*Brain Computer Interfaces

eModeling of the
hippocampus, place cells

*Modeling of the visual
cortex

eTime series analysis
eFinancial applications
*Blind deconvolution

12



ICA Application,
Removing Artifacts from EEG

EEG ~ Neural cocktail party

Severe contamination of EEG activity
— eye movements

— blinks

— muscle

— heart, ECG artifact

— vessel pulse

— electrode noise

— line noise, alternating current (60 Hz)

ICA can improve signal

— effectively detect, separate and remove activity in EEG

records from a W|de varletz of artifactual sources.
(Jung, Makeig, Bell, and Sejnowski)

ICA weights help find location of sources

13



ICA decomposition

Independent Components

EEG Scalp Channels
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Summed Projection of Selected Components

Anrtifact—-corrected EEG

Fig from Jung
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Original EEG
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PCA+ICA for Microarray data

processing
Ssisse o S ________ S .
Xr= = A
labels Assumption:
* cach experiment 1s a mixture of
XT[]RMxN independent expression modes

M = number of experiments (81---8g)-
N = number of genes » some of these modes (e.g. s,) can be

related to the difference between the

classes.

PCA alone can estimate « — a, correlates with the class labels
US only = doesn’t work 17




ICA for Microarray data processing
(Schachtner et al, ICAQ07)

Breast Cancer Data set

1200

M=14 patients
N=22283 genes 10007
2 classes 800l

Oth column of A:

\1 o 3 4\/5 6 7 8/\9 10 11V12 13 14/
Corr(a,, d)[=0.89, wh
|Corr(ay, d)| where Class 1, Class 2,

d is the vector of class labels : .
weak metastasis strong metastasis
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Leukemia Data set

coafficient

-B00

ICA for Microarray data processing
(Schachtner et al, ICA07)

M=38 Patients
N=5000 genes

3 classes: ALL-B, ALL-T, AML

column 8
200

] 5 10 15 20 25 30
row index

N N A y,
Y Y Y

ALL-B ALL-T AML

coefficient

column 9

5 10 15 pai) 26 30
row index

A A )

Y Y Y
ALL-B  ALL-T AML
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ICA for Image Denoising
(Hoyer, Hyvarine)
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Wiener filtered
ICA denoised

median filtered



ICA for Motion Style Components
(Mori & Hoshino 2002, Shapiro et al 2006, Cao et al 2003)

e Method for analysis and synthesis of human motion from
motion captured data

e Provides perceptually meaningful components

e 109 markers, 327 parameters
= 6 independent components (emotion, content,...)
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ICA basis vectors extracted from
natural images

Gabor wavelets,
edge detection,
receptive fields of V1 cells...

e,
.

[\
N



PCA basis vectors extracted
from natural images
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Using ICA for classification

Activity distributions of

— within-category test images are
much narrower

— off-category is closer to the
Gaussian distribution

Happy
ICA basis
§ " [Happy]
=
©
= _ICA basis
[Disgust]

Disgust

Test data
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ICA Generalizations

Independent Subspace Analysis
Multilinear ICA

Blind Source Deconvolution
Blind SubSpace Deconvolution
Nonnegative ICA

Sparse Component Analysis
Slow Component Analysis

Noisy ICA

Undercomplete, Overcomplete ICA

Varying mixing matrix

Online ICA

(Post) Nonlinear ICA 27

The Holy Grail
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Basic terms, definitions

uncorrelated and independent variables
entropy, joint entropy, neg_entropy
mutual information

Kullback-Leibler divergence

29



Statistical (in)dependence
Definition:
Y1, Yo are independent < p(y1,y2) = p(y1) p(y2)

Lemma:

Let hq,ho be arbitary functions.
Y41, Yo are independent =

Elh1(Y1) ho(Y2)] = Elh1(Y1)]E[ha(Y2)]

Proof: Homework

30



Correlation

Definition: [ }
E|(Y1-E[Y1]) (Yo—E[Y2])
corr(Y1,¥2) = var(Y1)1/2 var(Ys)1/2
Lemma:

COTT(Yl,YQ) =0 & E[Y1Y2] — E[Yl]E[YQ]

Proof: Homework

Lemma:
Y41, Yo are independent :Z Y7, Yo are uncorrelated

Proof: Homework

Lemma: If (Y1,Y5) are jointly Gaussian, then
Y1, Yo are independent < Y7, Yo are uncorrelated

Proof: Homework 31



Mutual Information, Entropy

Definition (Mutual Information)

0 <I(Y1,...,Yn) = [p(y1,---,ym) 1O p]Z;%’_:;?(’%z)dy

= KL(p(y1,--->ya)llp(y1) - - p(ynr))

M

Definition (Shannon entropy)

Definition (KL divergence)

0 < KL(fllg9) = [ f(x)log

g(z) ,



Solving the ICA problem with
i.i.d. sources

Proof:
e P = arbitrary permutation matrix,
e A = arbitrary diagonal scaling matrix.

= x = [AP 1A 1][APs]

33



Solving the ICA problem with
i.i.d. sources

Lemma:
We can assume that E[s] = 0.

Proof:
Removing the mean does not change the mixing matrix.
x — F[x] = A(s — Els]).

In what follows we assume that E[ss!] =1,;, E[s] = O.

34



Let A € RVXM with full rank, N > M, and x = As

Whitening

Theorem (Whitening)

Definitions

e X* = Qx transformation is the whitening transformation.

e () is the whitening matrix
o ‘x* = A™s|is the whitened ICA task.

Note

After whitening we need only to consider

orthogonal matrices for (de)mixing. (A* is orthogonal)

35




Proof of the whitening theorem

We can use PCA for whitening!

o Let T = cov(x) = E[xx!] = AE[ss{]AT = AAT.

e Do PCA: ¥ e RVXN rank(X) = M,
= ¥ = UDUY,
where U € RV*M UTU =1,,, Prinicipal vectors
D ¢ RM*XM diagonal with rank M. Prinicipal values

o Let Q =D 1/2UT ¢ RMXN whitening matrix
o Let A* =QA
o x* = Qx = QAs = A*s is our new (whitened) ICA task.

= E[X*X*T] — IM, and A*A*T = IM

36



Whitening solves half of the ICA
problem

Note:
The number of free parameters of an N by N orthogonal
matrix 1s (N-1)(N-2)/2.

= whitening solves half of the ICA problem

D = O = N

original mixed whitened

After whitening it is enough to consider
orthogonal matrices only for separation. 37



Solving ICA
ICA task: Given X,

e find y (the estimation of s),
e find W (the estimation of A!)

ICA solution: y=Wx
e Remove mean, E[x]=0
e Whitening, E[xx"]=1I

e Find an orthogonal W optimizing an objective function
— Sequence of 2-d Jacobi (Givens) rotations
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Optimization Using Jacobi Rotation

Matrices
(1 O O O\
(:) cos:(e) —si:n(H) (:)«
G(p7Q76): T : : : ERMXM
O ... sin(8) ... cos(f) ... 0]+9
o ... o ... o .. 1
f t

q
Observation : x = As

Estimation . y = Wx
W = arg min J(Wx),
Wew

where W = {W|W = HG(Z%;, qi,0;) }
1
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Gaussian sources are problematic

The Gaussian distribution is spherically symmetric.

Mixing it with an orthogonal matrix... produces the same
distribution...

-* .. No hope for recovery... ®

However, this is the only ‘nice’ distribution that we cannot recover! ©
40



ICA Cost Functions

Lety = Wx, y = [y1;...;ynm], and let us measure the dependence
using Shannon’s mututal information:

Let H(Y) = H(y17' - 7ym) = _fp(y17 . 7yTR) |ng(y1,.. 7ym)dy

H(Wx) = H(x) + log | det W|, thus

- p(ylaayM>
ICy1,-- - ym) = /p<y1""’yM)logp(yl)---p(yM)

—H(y1,.-,yp) + Hi) + ...+ H(ypy)

H(x1,...,zpr) is constant, log|det W| = 0, thus

41

D Jroa,(W) = H(y1) + ...+ H(yy) ﬁ]=> go away from normal distribution




Central Limit Theorem

The sum of independent variables converges to the normal distribution
—> For separation go far away from the normal distribution
—> Negentropy, |kurtozis| maximization

i : _ 1 R
‘ a=ﬁ|_51+53_| b—ﬂl,51-l-53+5jll
- 17 —. 1+ — 1A
E 5 - T (0 5- -EH (1.5-
w0 : i i | w= i I
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& 3 h
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" 0.2- T 0,2- Z0.2-
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-0 i 60 6 6 U i
5 3

Figs borrowed from Ata Kaban



Algorithms

There are more than 100 different ICA algorithms...

e Mutual information (MI) estimation
— Kernel-ICA [Bach & Jordan, 2002]

e Entropy, negentropy estimation
— Infomax ICA [Bell & Sejnowski 1995]

— RADICAL [Learned-Miller & Fisher, 2003]
— FastICA [Hyvarinen, 1999]

— [Girolami & Fyfe 1997]
e ML estimation

— KDICA [Chen, 2006]
— EM-ICA [Welling]

— [MacKay 1996; Pearlmutter & Parra 1996; Cardoso 1997]

e Higher order moments, cumulants based methods
— JADE [Cardoso, 1993]

e Nonlinear correlation based methods
— [Jutten and Herault, 1991]

43



ICA ALGORITHMS
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David J.C. MacKay (97)

Maximum Likelihood ICA Algorithm

e Simplest approach

e requires knowing densities of hidden sources {f;}
rows of W

x(t) = As(t), s(t) = Wx(t), where A1l =W = [wq;...;wy] €

L—E log p(x(t)) = Z log p(As(t)) = Z log [W| + log p(s(t))

= T'log |[W| + Z Z log fi(w;x(1))

t=1:=1
. sq(t) oy
= mvexL = 5, w; = awalog 'W| + tgl k; log fk(Wk}((t()t))
Sk
1 I fZ s;(t
= g ¥ TV + 3 g0

T
=AW o [WT]71 7 Zlg(WX(t))XT(t). where g; = fi/fi
=

45



ICA algorithm based on Kurtosis
maximization

Kurtosis = 4th order cumulant
Measures

*the distance from normality
*the degree of peakedness

o vy (y) =E{y'} - 3 (E {'-UE}]E

=3 if E{y! =0 and whitened

Raly) = _% Kqly)l =10 rgly) =12
— 14 — .44 044
22 0.5 0.2 0.2
== , (] , W ,
—2 0 2 —6 0 G —G 0 6
Y W




The Fast ICA algorithm (Hyvarinen)

Probably the most

e Given whitened data z )
famous ICA algorithm

e Estimate the 15t ICA component:

xy=wlzg, |w| =1, < w= 1% row of W

x maximize kurtosis f(w) = ka(y) = E[y?]
with constraint h(w) = ||w||?—1=0

x At optimum f/(w) + \h/(w) = 01
= AE[(w!12z)3z] 4 22w =0

* After calculating A we arrive at the following iteration:

Let wq be the fix pont of:
w(k +1) =E[(w(k)12)3z] — 3w(k)

_ w(k+1
w(k+ 1) = [ZoiD

e Estimate the 24 ICA component similarly

using the w 1 wy additional constraint... and so on ...
47



Dependence Estimation Using
Kernel Methods

The Kernel ICA Algorithm



Kernel covariance (KC)
A. Gretton, R. Herbrich, A. Smola, F. Bach, M. Jordan

Let x € R%, y € R% stochastic variables.
We want to measure their dependence.

y A
D
Jkc = sup |E{[f(x) — Ef(x)][9(y) — Eg(y)]}|
feEFT geFY
Il <1,lgll <1
JIP = sup | ESAFGD) - = Y Fe)lle) — = 3 gl
feFr,geFy M —q m ;=1 mi—1
1Al < 1,9l <1
J
\/ . - .
where x41,...,Xm, and y1,...,ym are m pieces of i.i.d. samples

and F*, FY are sets of real valued functions.

The calculation of the supremum over function sets is extremely difficult.
Reproducing Kernel Hilbert Spaces make it easier.




RKHS construction
for x, y stochastic variables.

Let KZ(-,-) € R x R — R, KY(-,-) € R% x R% — R kernel
functions.
These kernels define the following RKHS:

Fo= (i f= ) wel0) Z—<oo}
i=1

2

(Fif=Y wol(), Z <o)
=1

fy

where ®%(.), CD?(-), AT, A? are elgenfunctlons and eigenvalues
corresponding to the K*(-,-), KY(-,-) Hilbert spaces.

50



The Representer Theorem
Theorem: k(-,-) : X x X — R, Mercer kernel on X
2= (21,91), .., (Tm,ym) € (X x Y)™ training sample
gemp : (X XY XR)™ - RU {oo} ; =

greg - R — [0, 00) strictly increasing function

F . RKHS induced by k(-,-) |

= f* = arg minfE]:Rreg[fa z]
= argminser gempl(zi, i, £(%i))icqa..mp] + greg(|I£11)
~ ——

1st term, empirical loss 2" term, reqgularization

admits the following representation:
m
f*() — ,Zlcik(xia')v C — (Clv'“acm) c R™
1=

51



Kernel covariance (KC)

Yay! We can use the representer theorem for our problem ©

The optimal f,g can be found in these forms:

() = g:l cik(zi, ), ¢=(ct,...,cm) €R™

m
g*(.) — Zl d’l,k(x'Z) ')7 d — (dl, . o e ,dm) E Rm
1=

52




Kernel covariance (KC)

F(x) = (f, K%(,x)) £z and fC)==,§:cykﬁ(wxy)%-fL(0,thUS

]:

m m

F(x) = (fKCxi))re = (Y K C,x) + [0 K5Cox)) e = > ¢ KT (x4,%;).

[FG1) = 3 Ji)s o fGem) = > )] = TR
1=1

i=1
1 1 -
g(y1) —— > 9(¥i),. -, 9(ym) —— > g(y)] =d"KY
m;— m;—
Where K? = {K(x;,%x;)};j, H=1In - 11,17, and K* = HK*H
Thus, for the estimation of J; 7 we have to calculate the maximum of

cTK*K¥Yd over c¢,d € R” subject to cIK%c =1, dTK¥d = 1.
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Amari Error for Measuring the
Performance

e Measures how close a square matrix is to a
permutation matrix

B=WA
N

demixing mixing

r(B) =

1 M (Zj\izl

2M (M — 1) 2. 1 3 (Zi\il
=1

_1)+2M(M—1) 2

_ 1)
=1

man

bij maxXx; bij

r(B) € [0,1], r(B)=0<« B is a permutation matrix
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Independent Subspace
Analysis
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Independent Subspace Analysis
(ISA, The Woodstock Problem)

Sources Observation Estimation
st e RP rl ¢ RD yl ¢ RP
s2 ¢ RD 2 ¢ RD y2 € RP

A € RDMXDM W € RDMXDM

Find W, recov@

56



Independent Subspace Analysis

Original
> @ X
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ISA Cost Functions

Mutual Information: I(y?l,...,y™) :f p(y)
o9 p(y1)---p(y™) dy

Shannon-entropy: H(y) = —fp(y) log p(y)dy
Assume y = Wx. Then
H(y) =

Ity y™)

H(y',...,y™) = H(Wx) = H(x) + log |W|
—H(x) —log |W|+ > H(y")

B 1 =1
x m d ] m . .
= _H(y',...y™+ Z Z H(y)) = > 1],y

=1

Iyl ...y

N

H(y)) = H(@,...,v) = ZH<y>—I<y1,...,y{>

and we get the following ISA cost functlons:



ISA Cost Functions

JISAl(W) I(y177ym)

HyY + ...+ HF ™)

J154,(W)

m d , m ) )
Jrsa,(W) = > > H(y))— > I(y,---,y))
j=1i=1 j=1

J154,(W)

m . -
I(yi, - yf) = > Iy, )
j=1

59



Multidimensional Entropy
Estimation



Multi-dimensional Entropy Estimations,
Method of Kozahenko and Leonenko

Let {z(1),...,z(n)} denoteni.i.d.samples drawn
from the distribution of z € R%.

Let N1 ; be the nearest neighbour of z(j) in
the sample set.

Then the nearest neighbor entropy estimation:

A(z) =1 il 0g(nl|N1j — z()I) + In(2) + Cg,

]:
o
where Cp = — [ e tIn(t)dt is the Euler-constant.
0

This estimation is means-square consistent, but not robust.
Let us try to use more neighbors!

61



Multi-dimensional Rényi’s Entropy
Estimations

Let us apply Rényi's- Hy, = L |ogff0‘(z) dz

entropy for estimatin
oY | limy Ho =~ f(2) 109 f(2) dz
the Shannon-entropy: @1

Let us use

- K-nearest neighbors

- minimum spanning trees

for estimating the multi-dimensional Rényi’'s entropy.

(It could be much more general...)

62



Beardwood - Halton - Hammersley
Theorem for KNN graphs

Let {z(1),...,z(n)} denoteni.i.d.samples drawn
from the distribution of z € R%.
Let NV ; be the k nearest neighbours of z(j) in

the sample set.
et vy =d— da, then

109 (s Z Z |[v—2(3)[]") = Ha(z) + ¢,
j=1veMN,
dS n — o0 o

Lots of other graphs, e.g. MST, TSP, minimal matching, Steiner

graph...etc could be used as well.
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Examples

A. Costa and A.

(J

Uniform on unit square: n = 400 samples

032

02 03 04 05 06 07 08 08

0.1

1

N =
i

.

4-NNG on 2D uniform

MST on 2D uniform: y =1




Independent Subspace Analysis
Results
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Numerical Simulations
2D Letters (i.i.d.)

Sources Observation
Estimated sources
Performance matrix




Numerical Simulations
3D Curves (i.i.d.)

Sources Observation
Estimated sources
Performance matrix



Numerical Simulations
Facial images (i.i.d.)

Sources Observation
Estimated sources
Performance matrix



i 1 ERY e el T R B

69



ISA 3D after ICA preprocessing

Kate s Vdeo Comeener [Frea)
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Thanks for the Attention! ©
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