Introduction to Independent Component Analysis

Barnabás Póczos
University of Alberta

$$
\text { Nov 26, } 2009
$$

Contents

- Independent Component Analysis
- ICA model
- ICA applications
- ICA generalizations
- ICA theory
- Independent Subspace Analysis
- ISA model
- ISA theory
- ISA results

Independent Component Analysis

$$
\begin{aligned}
& x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t) \\
& x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)
\end{aligned}
$$

Goal: Estimate $\left\{s_{i}(t)\right\}$, (and also $\left\{a_{i j}\right\}$)

Independent Component Analysis

$$
\begin{aligned}
& x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t) \\
& x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)
\end{aligned}
$$

Model

anvolumprow
 Observations (Mixtures)

OWMOMOMOMD

original signals

Independent Component Analysis

Model

$$
\begin{aligned}
& x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t) \\
& x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)
\end{aligned}
$$

We observe

$$
\binom{x_{1}(1)}{x_{2}(1)},\binom{x_{1}(2)}{x_{2}(2)}, \ldots,\binom{x_{1}(t)}{x_{2}(t)}
$$

We want

$$
\binom{s_{1}(1)}{s_{2}(1)},\binom{s_{1}(2)}{s_{2}(2)}, \ldots,\binom{s_{1}(t)}{s_{2}(t)}
$$

But we don't know $\left\{a_{i j}\right\}$, nor $\left\{s_{i}(t)\right\}$

Goal: Estimate $\left\{s_{i}(t)\right\}$, (and also $\left\{a_{i j}\right\}$)

ICA vs PCA, Similarities

- Perform linear transformations
- Matrix factorization

PCA: low rank matrix factorization for compression

ICA: full rank matrix factorization to remove dependency between the rows

\square

ICA vs PCA, Differences

- PCA: $\mathbf{X = U S}, \mathbf{U}^{\top} \mathbf{U}=\mathbf{I}$
- ICA: X=AS
- PCA does compression
- $M<N$
- ICA does not do compression
- same \# of features ($\mathrm{M}=\mathrm{N}$)
- PCA just removes correlations, not higher order dependence
- ICA removes correlations, and higher order dependence
- PCA: some components are more important than others (based on eigenvalues)
- ICA: components are equally important

ICA vs PCA

Note

- PCA vectors are orthogonal
- ICA vectors are not orthogonal

PCA vs ICA

The Cocktail Party Problem SOLVING WITH PCA

Sources
Mixing
Observation
PCA Estimation

$\mathbf{s}(\mathrm{t})$

$$
\mathbf{x}(\mathbf{t})=\mathrm{As}(\mathbf{t})
$$

The Cocktail Party Problem SOLVING WITH ICA

Mixing

$\mathbf{A} \in \mathbb{R}^{M \times M}$

Observation
ICA Estimation

$$
\mathbf{x}(\mathbf{t})=\operatorname{As}(\mathbf{t})
$$

$$
y(t)=W x(t)
$$

Some ICA Applications

STATIC

- Image denoising
- Microarray data processing
- Decomposing the spectra of galaxies
- Face recognition
- Facial expression recognition
- Feature extraction
- Clustering
- Classification

TEMPORAL

-Medical signal processing fMRI, ECG, EEG

- Brain Computer Interfaces
- Modeling of the hippocampus, place cells
-Modeling of the visual cortex
-Time series analysis
-Financial applications
-Blind deconvolution

ICA Application, Removing Artifacts from EEG

- EEG ~ Neural cocktail party
- Severe contamination of EEG activity
- eye movements
- blinks
- muscle
- heart, ECG artifact
- vessel pulse
- electrode noise
- line noise, alternating current (60 Hz)
- ICA can improve signal
- effectively detect, separate and remove activity in EEG records from a wide variety of artifactual sources. (Jung, Makeig, Bell, and Sejnowski)
- ICA weights help find location of sources

ICA decomposition

EEG Scalp Channels

Independent Components

activations scalp maps
$(u=W X) \quad\left(W^{-1}\right)$

Fig from Jung

Summed Projection of Selected Components

Fig from Jung

Fig from Jung

PCA+ICA for Microarray data processing

labels

$\mathbf{X}^{\mathrm{T}} \in \mathrm{R}^{\mathrm{MxN}}$

$\mathrm{M}=$ number of experiments
$\mathrm{N}=$ number of genes

PCA alone can estimate
US only \Rightarrow doesn't work

Assumption:

- each experiment is a mixture of independent expression modes $\left(\mathbf{s}_{1}, \ldots \mathbf{s}_{\mathrm{K}}\right)$.
- some of these modes (e.g. \mathbf{s}_{k}) can be related to the difference between the classes.
- $\rightarrow \mathbf{a}_{k}$ correlates with the class labels

ICA for Microarray data processing (Schachtner et al, ICA07)

Breast Cancer Data set

$$
\begin{aligned}
& \mathrm{M}=14 \text { patients } \\
& \mathrm{N}=22283 \text { genes } \\
& 2 \text { classes }
\end{aligned}
$$

$9^{\text {th }}$ column of \mathbf{A} :

$\left|\operatorname{Corr}\left(\mathbf{a}_{9}, \mathbf{d}\right)\right|=0.89$, where \mathbf{d} is the vector of class labels

Class 1,
weak metastasis

Class 2,
strong metastasis

ICA for Microarray data processing (Schachtner et al, ICA07)

Leukemia Data set $\quad \mathrm{M}=38$ Patients
$\mathrm{N}=5000$ genes
3 classes: ALL-B, ALL-T, AML

ALL-B ALL-T AML

ICA for Image Denoising (Hoyer, Hyvarinen)

original

median filtered

Wiener filtered
ICA denoised

ICA for Motion Style Components

 (Mori \& Hoshino 2002, Shapiro et al 2006, Cao et al 2003)- Method for analysis and synthesis of human motion from motion captured data
- Provides perceptually meaningful components
- 109 markers, 327 parameters
$\Rightarrow 6$ independent components (emotion, content,...)

Neutral

walk

walk with sneaky

Kate's VIdeo Conventer (Free)

sneaky with walk

ICA basis vectors extracted from natural images

Gabor wavelets, edge detection,
 receptive fields of V1 cells...

PCA basis vectors extracted from natural images

Using ICA for classification

Activity distributions of

- within-category test images are much narrower
- off-category is closer to the Gaussian distribution

Нарру

Disgust

ICA Generalizations

- Independent Subspace Analysis
- Multilinear ICA
- Blind Source Deconvolution
- Blind SubSpace Deconvolution
- Nonnegative ICA
- Sparse Component Analysis
- Slow Component Analysis
- Noisy ICA

The Holy Grail

- Undercomplete, Overcomplete ICA
- Varying mixing matrix
- Online ICA
- (Post) Nonlinear ICA

ICA Theory

R L

Basic terms, definitions

- uncorrelated and independent variables
- entropy, joint entropy, neg_entropy
- mutual information
- Kullback-Leibler divergence

Statistical (in)dependence

Definition:

Y_{1}, Y_{2} are independent $\Leftrightarrow p\left(y_{1}, y_{2}\right)=p\left(y_{1}\right) p\left(y_{2}\right)$

Lemma:

Let h_{1}, h_{2} be arbitary functions.
Y_{1}, Y_{2} are independent \Rightarrow

$$
\mathbb{E}\left[h_{1}\left(Y_{1}\right) h_{2}\left(Y_{2}\right)\right]=\mathbb{E}\left[h_{1}\left(Y_{1}\right)\right] \mathbb{E}\left[h_{2}\left(Y_{2}\right)\right]
$$

Proof: Homework

Correlation

Definition:

$\operatorname{corr}\left(Y_{1}, Y_{2}\right)=\frac{\mathbb{E}\left[\left(Y_{1}-\mathbb{E}\left[Y_{1}\right]\right)\left(Y_{2}-\mathbb{E}\left[Y_{2}\right]\right)\right]}{\operatorname{var}\left(Y_{1}\right)^{1 / 2} \operatorname{var}\left(Y_{2}\right)^{1 / 2}}$

Lemma:

$\operatorname{corr}\left(Y_{1}, Y_{2}\right)=0 \Leftrightarrow \mathbb{E}\left[Y_{1} Y_{2}\right]=\mathbb{E}\left[Y_{1}\right] \mathbb{E}\left[Y_{2}\right]$
Proof: Homework

Lemma:

Y_{1}, Y_{2} are independent $\underset{\underset{\sim}{\underset{~}{*}} \underset{1}{ }, Y_{2} \text { are uncorrelated }}{\text { I }}$

Proof: Homework

Lemma: If $\left(Y_{1}, Y_{2}\right)$ are jointly Gaussian, then Y_{1}, Y_{2} are independent $\Leftrightarrow Y_{1}, Y_{2}$ are uncorrelated
Proof: Homework

Mutual Information, Entropy

Definition (Mutual Information)

$$
\begin{aligned}
0 \leq I\left(Y_{1}, \ldots, Y_{M}\right) & \doteq \int p\left(y_{1}, \ldots, y_{M}\right) \log \frac{p\left(y_{1}, \ldots, y_{M}\right)}{p\left(y_{1}\right) \ldots p\left(y_{M}\right)} d \mathbf{y} \\
& =K L\left(p\left(y_{1}, \ldots, y_{M}\right) \| p\left(y_{1}\right) \ldots p\left(y_{M}\right)\right) \\
& =\sum_{i=1}^{M} H\left(Y_{i}\right)-H\left(Y_{1}, \ldots, Y_{M}\right)
\end{aligned}
$$

Definition (Shannon entropy)
$H(\mathbf{Y}) \doteq H\left(Y_{1}, \ldots, Y_{m}\right) \doteq-\int p\left(y_{1}, \ldots, y_{m}\right) \log p\left(y_{1}, \ldots, y_{m}\right) d \mathbf{y}$.
Definition (KL divergence)
$0 \leq K L(f \| g)=\int f(x) \log \frac{f(x)}{g(x)} d x$

Solving the ICA problem with i.i.d. sources

ICA problem: $\mathbf{x}=\mathbf{A s}, \mathbf{s}=\left[s_{1} ; \ldots ; s_{M}\right]$ are jointly independent.

Ambiguity:

$$
\mathrm{s}=\left[s_{1} ; \ldots ; s_{M}\right] \text { sources can be recovered only up to }
$$ sign, scale and permutation.

Proof:

- $\mathbf{P}=$ arbitrary permutation matrix,
- $\Lambda=$ arbitrary diagonal scaling matrix.

$$
\Rightarrow \mathrm{x}=\left[\mathrm{AP}^{-1} \Lambda^{-1}\right][\Lambda \mathrm{Ps}]
$$

Solving the ICA problem with i.i.d. sources

Lemma:

We can assume that $E[\mathrm{~s}]=0$.

Proof:

Removing the mean does not change the mixing matrix.

$$
\mathbf{x}-E[\mathrm{x}]=\mathbf{A}(\mathrm{s}-E[\mathrm{~s}])
$$

In what follows we assume that $E\left[\mathrm{ss}^{T}\right]=\mathbf{I}_{M}, E[\mathrm{~s}]=0$.

Whitening

Let $\mathbf{A} \in \mathbb{R}^{N \times M}$ with full rank, $N \geq M$, and $\mathrm{x}=\mathrm{As}$

Theorem (Whitening)

$$
\begin{aligned}
& \exists \mathrm{Q} \in \mathbb{R}^{M \times N} \text { such that } \\
& \text { if } \mathrm{x}^{*} \doteq \mathrm{Qx}=\mathrm{QAs}=\mathbf{A}^{*} \mathbf{s}, \mathbf{A}^{*} \doteq \mathbf{Q A} \\
& \\
& \quad \Rightarrow E\left[\mathbf{x}^{*} \mathbf{x}^{* T}\right]=\mathbf{I}_{M}, \text { and } \mathbf{A}^{*} \mathbf{A}^{* T}=\mathbf{I}_{M} .
\end{aligned}
$$

Definitions

- $\mathrm{x}^{*}=\mathrm{Qx}$ transformation is the whitening transformation.
- Q is the whitening matrix
- $\mathrm{x}^{*} \doteq \mathrm{~A}^{*} \mathrm{~s}$ is the whitened ICA task.

Note After whitening we need only to consider orthogonal matrices for (de)mixing. (A* is orthogonal)

Proof of the whitening theorem

We can use PCA for whitening!

- Let $\mathbf{\Sigma} \doteq \operatorname{cov}(\mathrm{x})=E\left[\mathrm{xx}^{T}\right]=\mathbf{A} E\left[\mathbf{s s}^{T}\right] \mathbf{A}^{T}=\mathbf{A} \mathbf{A}^{T}$.
- Do PCA: $\boldsymbol{\Sigma} \in \mathbb{R}^{N \times N}, \operatorname{rank}(\boldsymbol{\Sigma})=M$,

$$
\Rightarrow \Sigma=\mathbf{U D U}^{T}
$$

$$
\text { where } \mathbf{U} \in \mathbb{R}^{N \times M}, \mathbf{U}^{T} \mathbf{U}=\mathbf{I}_{M}, \quad \text { Prinicipal vectors }
$$ $\mathbf{D} \in \mathbb{R}^{M \times M}$, diagonal with rank M. Prinicipal values

- Let $\mathbf{Q} \doteq \mathbf{D}^{-1 / 2} \mathbf{U}^{T} \in \mathbb{R}^{M \times N}$ whitening matrix
- Let $\mathrm{A}^{*} \doteq \mathrm{QA}$
- $\mathrm{x}^{*} \doteq \mathrm{Qx}=\mathrm{QAs}=\mathbf{A}^{*} \mathrm{~s}$ is our new (whitened) ICA task.

$$
\Rightarrow E\left[\mathbf{x}^{*} \mathrm{x}^{* T}\right]=\mathbf{I}_{M}, \text { and } \mathrm{A}^{*} \mathbf{A}^{* T}=\mathbf{I}_{M} .
$$

Whitening solves half of the ICA problem

Note:

The number of free parameters of an N by N orthogonal matrix is $(\mathrm{N}-1)(\mathrm{N}-2) / 2$.
\Rightarrow whitening solves half of the ICA problem

After whitening it is enough to consider orthogonal matrices only for separation.

Solving ICA

ICA task: Given \mathbf{x},

- find \mathbf{y} (the estimation of \mathbf{s}),
- find \mathbf{W} (the estimation of \mathbf{A}^{-1})

ICA solution: $\mathbf{y}=\mathbf{W x}$

- Remove mean, $\mathrm{E}[\mathbf{x}]=0$
- Whitening, $\mathrm{E}\left[\mathbf{x x}^{\top}\right]=\mathbf{I}$
- Find an orthogonal \mathbf{W} optimizing an objective function
- Seauence of 2-d Jacobi (Givens) rotations

Optimization Using Jacobi Rotation Matrices

$\mathbf{G}(p, q, \theta) \doteq\left(\begin{array}{ccccccc}1 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \ldots & \cos (\theta) & \ldots & -\sin (\theta) & \ldots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \ldots & \sin (\theta) & \ldots & \cos (\theta) & \ldots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \ldots & 0 & \ldots & 0 & \ldots & 1\end{array}\right) \leftarrow \mathrm{p}$

Observation : x = As
Estimation : y $=\mathbf{W} \mathbf{x}$

$$
\begin{aligned}
& \mathbf{W}=\arg \min _{\tilde{\mathbf{W}} \in \mathcal{W}} J(\tilde{\mathbf{W}} \mathbf{x}), \\
& \text { where } \mathcal{W}=\left\{\mathbf{W} \mid \mathbf{W}=\prod_{i} G\left(p_{i}, q_{i}, \theta_{i}\right)\right\}
\end{aligned}
$$

Gaussian sources are problematic

The Gaussian distribution is spherically symmetric.
Mixing it with an orthogonal matrix... produces the same distribution...

However, this is the only 'nice' distribution that we cannot recover! ©

ICA Cost Functions

Let $\mathbf{y} \doteq \mathbf{W} \mathbf{x}, \mathbf{y}=\left[y_{1} ; \ldots ; y_{M}\right]$, and let us measure the dependence using Shannon's mututal information:

$$
J_{I C A_{1}}(\mathbf{W}) \doteq I\left(y_{1}, \ldots, y_{M}\right) \doteq \int p\left(y_{1}, \ldots, y_{M}\right) \log \frac{p\left(y_{1}, \ldots, y_{M}\right)}{p\left(y_{1}\right) \ldots p\left(y_{M}\right)} d \mathbf{y}
$$

Let $H(\mathbf{y}) \doteq H\left(y_{1}, \ldots, y_{m}\right) \doteq-\int p\left(y_{1}, \ldots, y_{m}\right) \log p\left(y_{1}, \ldots, y_{m}\right) d \mathbf{y}$.
$H(\mathbf{W} \mathbf{x})=H(\mathbf{x})+\log |\operatorname{det} \mathbf{W}|$, thus
$I\left(y_{1}, \ldots, y_{M}\right)=\int p\left(y_{1}, \ldots, y_{M}\right) \log \frac{p\left(y_{1}, \ldots, y_{M}\right)}{p\left(y_{1}\right) \ldots p\left(y_{M}\right)}$
$=-H\left(y_{1}, \ldots, y_{M}\right)+H\left(y_{1}\right)+\ldots+H\left(y_{M}\right)$
$=-H\left(x_{1}, \ldots, x_{M}\right)-\log |\operatorname{det} \mathbf{W}|+H\left(y_{1}\right)+\ldots+H\left(y_{M}\right)$.
$H\left(x_{1}, \ldots, x_{M}\right)$ is constant, $\log |\operatorname{det} \mathbf{W}|=0$, thus

Central Limit Theorem

The sum of independent variables converges to the normal distribution \Rightarrow For separation go far away from the normal distribution
\Rightarrow Negentropy, |kurtozis| maximization

Algorithms

There are more than 100 different ICA algorithms...

- Mutual information (MI) estimation
- Kernel-ICA [Bach \& Jordan, 2002]
- Entropy, negentropy estimation
- Infomax ICA [Bell \& Sejnowski 1995]
- RADICAL [Learned-Miller \& Fisher, 2003]
- FastICA [Hyvarinen, 1999]
- [Girolami \& Fyfe 1997]
- ML estimation
- KDICA [Chen, 2006]
- EM-ICA [Welling]
- [MacKay 1996; Pearlmutter \& Parra 1996; Cardoso 1997]
- Higher order moments, cumulants based methods
- JADE [Cardoso, 1993]
- Nonlinear correlation based methods
- [Jutten and Herault, 1991]

ICA ALGORITHMS

R L A I

Maximum Likelihood ICA Algorithm

- simplest approach
- requires knowing densities of hidden sources $\left\{f_{i}\right\}$

$$
\mathbf{x}(t)=\mathbf{A s}(t), \mathbf{s}(t)=\mathbf{W} \mathbf{x}(t), \text { where } \mathbf{A}^{-1}=\mathbf{W}=\left[\mathbf{w}_{1} ; \ldots ; \mathbf{w}_{M}\right] \in \mathbb{R}^{M \times M}
$$

$$
L=\sum_{t=1}^{T} \log p(\mathbf{x}(t))=\sum_{t=1}^{T} \log p(\mathbf{A s}(t))=\sum_{t=1}^{T} \log |\mathbf{W}|+\log p(\mathrm{~s}(t))
$$

$$
=T \log |\mathbf{W}|+\sum_{t=1}^{T} \sum_{i=1}^{M} \log f_{i}(\underbrace{\mathbf{w}_{i} \mathbf{x}(t)}_{s_{i}(t)})
$$

$\Rightarrow \max _{\mathbf{W}} L \Rightarrow \frac{\partial L}{\partial w_{i j}}=\frac{\partial L}{\partial w_{i j}} T \log |\mathbf{W}|+\frac{\partial L}{\partial w_{i j}} \sum_{t=1}^{T} \sum_{k=1}^{M} \log f_{k}(\underbrace{\mathbf{w}_{k} \mathbf{x}(t)}_{s_{k}(t)})$
$\Rightarrow \frac{\partial L}{\partial w_{i j}} \approx T\left(\mathbf{W}^{T}\right)_{i j}^{-1}+\sum_{t=1}^{T} \frac{f_{i}{ }^{\prime}\left(s_{i}(t)\right)}{f_{i}\left(s_{i}(t)\right)} x_{j}(t)$
$\Rightarrow \Delta \mathbf{W} \propto\left[\mathbf{W}^{T}\right]^{-1}+\frac{1}{T} \sum_{t=1}^{T} g(\mathbf{W} \mathbf{x}(t)) \mathbf{x}^{T}(t)$, where $g_{i}=f_{i}^{\prime} / f_{i}$

ICA algorithm based on Kurtosis maximization

Kurtosis $=4^{\text {th }}$ order cumulant

Measures
-the distance from normality
-the degree of peakedness

$$
\text { - } \kappa_{4}(y)=\mathrm{E}\left\{y^{4}\right\}-\underbrace{3\left(\mathrm{E}\left\{y^{2}\right\}\right)^{2}}_{=3 \text { if } \mathrm{E}\{y\}=0 \text { and whitened }}
$$

The Fast ICA algorithm (Hyvarinen)

- Given whitened data z
- Estimate the $1^{\text {st }}$ ICA component:

Probably the most famous ICA algorithm

$$
\begin{aligned}
& \star y=\mathbf{w}^{T} \mathbf{z},\|\mathbf{w}\|=1, \quad \Leftarrow \mathbf{w}=1^{\text {st }} \text { row of } \mathbf{W} \\
& \star \text { maximize kurtosis } f(\mathrm{w}) \doteq \kappa_{4}(y) \doteq \mathbb{E}\left[y^{4}\right] \\
& \text { with constraint } h(\mathbf{w})=\|\mathbf{w}\|^{2}-1=0 \\
& \star \text { At optimum } f^{\prime}(\mathbf{w})+\lambda h^{\prime}(\mathbf{w})=0^{T} \\
& \Rightarrow 4 \mathbb{E}\left[\left(\mathbf{w}^{T} \mathbf{z}\right)^{3} \mathbf{z}\right]+2 \lambda \mathbf{w}=0 \\
& \text { * After calculating } \lambda \text { we arrive at the following iteration: } \\
& \text { Let } \mathbf{w}_{1} \text { be the fix pont of: } \\
& \tilde{\mathbf{w}}(k+1)=\mathbb{E}\left[\left(\mathbf{w}(k)^{T} \mathbf{z}\right)^{3} \mathbf{z}\right]-3 \mathbf{w}(k) \\
& \mathbf{w}(k+1)=\frac{\tilde{\mathbf{w}}(k+1)}{\|\tilde{\mathbf{w}}(k+1)\|}
\end{aligned}
$$

- Estimate the $2^{\text {nd }}$ ICA component similarly using the $w \perp w_{1}$ additional constraint... and so on ...

Dependence Estimation Using Kernel Methods

The Kernel ICA Algorithm

Kernel covariance (KC)

A. Gretton, R. Herbrich, A. Smola, F. Bach, M. Jordan Let $\mathbf{x} \in \mathbb{R}^{d_{x}}, \mathbf{y} \in \mathbb{R}^{d_{y}}$ stochastic variables.
We want to measure their dependence.

$$
\begin{aligned}
J_{K C} & \doteq \sup _{\substack{f \in \mathcal{F} x, g \in \mathcal{F} y \\
\|f\| \leq 1,\|g\| \leq 1}}|E\{[f(\mathbf{x})-E f(\mathbf{x})][g(\mathbf{y})-E g(\mathbf{y})]\}| \\
J_{K C}^{e m p} & \left.\doteq \sup _{\substack{f \in \mathcal{F} x, g \in \mathcal{F} y \\
\|f\| \leq 1,\|g\| \leq 1}} \frac{1}{m} \sum_{l=1}^{m}\left\{\left[f\left(\mathbf{x}_{l}\right)-\frac{1}{m} \sum_{j=1}^{m} f\left(\mathbf{x}_{j}\right)\right]\left[g\left(\mathbf{y}_{l}\right)-\frac{1}{m} \sum_{j=1}^{m} g\left(\mathbf{y}_{j}\right)\right]\right\} \right\rvert\,
\end{aligned}
$$

where $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$, and $\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}$ are m pieces of i.i.d. samples and $\mathcal{F}^{x}, \mathcal{F}^{y}$ are sets of real valued functions.

The calculation of the supremum over function sets is extremely difficult. Reproducing Kernel Hilbert Spaces make it easier.

RKHS construction for x, y stochastic variables.

Let $K^{x}(\cdot, \cdot) \in \mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{x}} \rightarrow \mathbb{R}, K^{y}(\cdot, \cdot) \in \mathbb{R}^{d_{y}} \times \mathbb{R}^{d_{y}} \rightarrow \mathbb{R}$ kernel functions.
These kernels define the following RKHS:

$$
\begin{aligned}
& \mathcal{F}^{x} \doteq\left\{f: f=\sum_{j=1}^{\infty} \Psi_{j} \Phi_{j}^{x}(\cdot), \sum_{j=1}^{\infty} \frac{\Psi_{j}^{2}}{\lambda_{j}^{x}}<\infty\right\}, \\
& \mathcal{F}^{y} \doteq\left\{f: f=\sum_{j=1}^{\infty} \Psi_{j} \Phi_{j}^{y}(\cdot), \sum_{j=1}^{\infty} \frac{\Psi_{j}^{2}}{\lambda_{j}^{y}}<\infty\right\},
\end{aligned}
$$

where $\Phi_{j}^{x}(\cdot), \Phi_{j}^{y}(\cdot), \lambda_{j}^{x}, \lambda_{j}^{y}$ are eigenfunctions and eigenvalues corresponding to the $K^{x}(\cdot, \cdot), K^{y}(\cdot, \cdot)$ Hilbert spaces.

The Representer Theorem

Theorem:

 $k(\cdot, \cdot): \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, Mercer kernel on $\mathcal{X})$$$
z=\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) \in(\mathcal{X} \times \mathcal{Y})^{m} \text { training sample }
$$

$$
\left.g_{e m p}:(\mathcal{X} \times \mathcal{Y} \times \mathbb{R})^{m} \rightarrow \mathbb{R} \cup\{\infty\}\right\} \Rightarrow
$$

$g_{\text {reg }}: \mathbb{R} \rightarrow[0, \infty)$ strictly increasing function $\mathcal{F}:$ RKHS induced by $k(\cdot, \cdot)$)
$\Rightarrow f^{*}=\arg \min _{f \in \mathcal{F}} R_{r e g}[f, z]$
$\doteq \arg \min _{f \in \mathcal{F}} \underbrace{g_{e m p}\left[\left(x_{i}, y_{i}, f\left(x_{i}\right)\right)_{i \in\{1 \ldots m\}}\right]}+\underbrace{g_{r e g}(\|f\|)}$
$1^{\text {st }}$ term, empirical loss $2^{\text {nd }}$ term, regularization admits the following representation:

$$
f^{*}(\cdot)=\sum_{i=1}^{m} c_{i} k\left(x_{i}, \cdot\right), \quad c=\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{R}^{m}
$$

Kernel covariance (KC)

Yay! We can use the representer theorem for our problem ©

The optimal f, g can be found in these forms:

$$
\begin{aligned}
& f^{*}(\cdot)=\sum_{i=1}^{m} c_{i} k\left(x_{i}, \cdot\right), \quad \mathbf{c}=\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{R}^{m} \\
& g^{*}(\cdot)=\sum_{i=1}^{m} d_{i} k\left(x_{i}, \cdot\right), \quad \mathbf{d}=\left(d_{1}, \ldots, d_{m}\right) \in \mathbb{R}^{m}
\end{aligned}
$$

Kernel covariance (KC)

$$
\begin{aligned}
& f(\mathbf{x})=\left\langle f, K^{x}(\cdot, \mathbf{x})\right\rangle_{\mathcal{F}^{x}} \text { and } f(\cdot)=\sum_{j=1}^{m} c_{j} K^{x}\left(\cdot, \mathbf{x}_{j}\right)+f^{\perp}(\cdot), \text { thus } \\
& f\left(\mathbf{x}_{i}\right)=\left\langle f, K^{x}\left(\cdot, \mathbf{x}_{i}\right)\right\rangle_{\mathcal{F}^{x}}=\left\langle\sum_{j=1}^{m} c_{j} K^{x}\left(\cdot, \mathbf{x}_{j}\right)+f^{\perp}(\cdot), K^{x}\left(\cdot, \mathbf{x}_{i}\right)\right\rangle_{\mathcal{F}^{x}}=\sum_{j=1}^{m} c_{j} K^{x}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& {\left[f\left(\mathbf{x}_{1}\right)-\frac{1}{m} \sum_{i=1}^{m} f\left(\mathbf{x}_{i}\right), \ldots, f\left(\mathbf{x}_{m}\right)-\frac{1}{m} \sum_{i=1}^{m} f\left(\mathbf{x}_{i}\right)\right]=\mathbf{c}^{T} \widetilde{\mathbf{K}}^{x}} \\
& {\left[g\left(\mathbf{y}_{1}\right)-\frac{1}{m} \sum_{i=1}^{m} g\left(\mathbf{y}_{i}\right), \ldots, g\left(\mathbf{y}_{m}\right)-\frac{1}{m} \sum_{i=1}^{m} g\left(\mathbf{y}_{i}\right)\right]=\mathbf{d}^{T} \widetilde{\mathbf{K}} \widetilde{\mathbf{K}}^{y}}
\end{aligned}
$$

Where $\mathbf{K}^{x}=\left\{K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right\}_{i, j}, \mathbf{H} \doteq \mathbf{I}_{m}-\frac{1}{m} \mathbf{1}_{m} \mathbf{1}_{m}^{T}$, and $\widetilde{\mathbf{K}}^{x} \doteq \mathbf{H K}^{x} \mathbf{H}$
Thus, for the estimation of $J_{K C}^{e m p}$ we have to calculate the maximum of $\mathbf{c}^{T} \widetilde{\mathbf{K}}^{x} \widetilde{\mathbf{K}}^{y} \mathbf{d}$ over $\mathbf{c}, \mathbf{d} \in \mathbb{R}^{n}$ subject to $\mathbf{c}^{T} \widetilde{\mathbf{K}}^{x} \mathbf{c}=1, \mathbf{d}^{T} \widetilde{\mathbf{K}}^{y} \mathbf{d}=1$.

Amari Error for Measuring the Performance

- Measures how close a square matrix is to a permutation matrix

$r(\mathbf{B})=\frac{1}{2 M(M-1)} \sum_{i=1}^{M}\left(\frac{\sum_{j=1}^{M}\left|b_{i j}\right|}{\max _{j}\left|b_{i j}\right|}-1\right)+\frac{1}{2 M(M-1)} \sum_{j=1}^{M}\left(\frac{\sum_{i=1}^{M}\left|b_{i j}\right|}{\max _{i}\left|b_{i j}\right|}-1\right)$
$r(\mathbf{B}) \in[0,1], \quad r(\mathbf{B})=0 \Leftrightarrow \mathbf{B}$ is a permutation matrix

Independent Subspace Analysis

Independent Subspace Analysis (ISA, The Woodstock Problem)

Sources
$s^{1} \in \mathbb{R}^{D}$
$s^{2} \in \mathbb{R}^{D}$

Observation
Estimation

$$
\mathbf{A} \in \mathbb{R}^{D M \times D M} \quad \mathbf{W} \in \mathbb{R}^{D M \times D M}
$$

Find \mathbf{W}, recover $\mathbf{W} \boldsymbol{x}$

Independent Subspace Analysis

Original

Separated

Mixed

Hinton diagram

ISA Cost Functions

Mutual Information: $I\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{m}\right)=\int \log \frac{p(\mathbf{y})}{p\left(\mathbf{y}^{1}\right) \cdots p\left(\mathbf{y}^{m}\right)} d \mathbf{y}$ Shannon-entropy: $\quad H(\mathbf{y})=-\int p(\mathbf{y}) \log p(\mathbf{y}) d \mathbf{y}$ Assume $\mathbf{y}=\mathbf{W x}$. Then

$$
\begin{aligned}
H(\mathbf{y}) & =H\left(\mathrm{y}^{1}, \ldots, \mathbf{y}^{m}\right)=H(\mathbf{W} \mathbf{x})=H(\mathbf{x})+\log |\mathbf{W}| \\
I\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{m}\right) & =-H(\mathbf{x})-\log |\mathbf{W}|+\sum_{i=1}^{m} H\left(\mathbf{y}^{i}\right) \\
I\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{m}\right) & \xlongequal[=]{=}-H\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{m}\right)+\sum_{j=1}^{m} \sum_{i=1}^{d} H\left(y_{i}^{j}\right)-\sum_{j=1}^{m} I\left(y_{1}^{j}, \ldots, y_{d}^{j}\right) \\
H\left(\mathbf{y}^{j}\right) & =H\left(y_{1}^{j}, \ldots, y_{d}^{j}\right)=\sum_{i=1}^{d} H\left(y_{i}^{j}\right)-I\left(y_{1}^{j}, \ldots, y_{1}^{j}\right)
\end{aligned}
$$

and we get the following ISA cost functions:

ISA Cost Functions

$$
\begin{aligned}
& J_{I S A_{1}}(\mathbf{W}) \doteq I\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{m}\right) \\
& J_{I S A_{2}}(\mathbf{W}) \doteq H\left(\mathbf{y}^{1}\right)+\ldots+H\left(\mathrm{y}^{m}\right) \\
& J_{I S A_{3}}(\mathbf{W}) \doteq \sum_{j=1}^{m} \sum_{i=1}^{d} H\left(y_{i}^{j}\right)-\sum_{j=1}^{m} I\left(y_{1}^{j}, \ldots, y_{d}^{j}\right) \\
& J_{I S A_{4}}(\mathrm{~W}) \doteq I\left(y_{1}^{1}, \ldots, y_{d}^{m}\right)-\sum_{j=1}^{m} I\left(y_{1}^{j}, \ldots, y_{d}^{j}\right)
\end{aligned}
$$

Multidimensional Entropy Estimation

Multi-dimensional Entropy Estimations, Method of Kozahenko and Leonenko

Let $\{\mathbf{z}(1), \ldots, \mathbf{z}(n)\}$ denote n i.i.d. samples drawn from the distribution of $\mathbf{z} \in \mathbf{R}^{d}$.
Let $\mathcal{N}_{1, j}$ be the nearest neighbour of $\mathbf{z}(j)$ in the sample set.

Then the nearest neighbor entropy estimation:
$\hat{H}(\mathbf{z})=\frac{1}{n} \sum_{j=1}^{n} \log \left(n\left\|\mathcal{N}_{1, j}-\mathbf{z}(j)\right\|\right)+\ln (2)+C_{E}$,
where $C_{E}=-\int_{0}^{\infty} e^{-t} \ln (t) d t$ is the Euler-constant.
This estimation is means-square consistent, but not robust. Let us try to use more neighbors!

Multi-dimensional Rényi's Entropy Estimations

Let us apply Rényi's-

$$
H_{\alpha}=\frac{1}{1-\alpha} \log \int f^{\alpha}(\mathbf{z}) d \mathbf{z}
$$ entropy for estimating

the Shannon-entropy: $\lim _{\alpha \rightarrow 1} H_{\alpha}=-\int f(\mathbf{z}) \log f(\mathbf{z}) d \mathbf{z}$
Let us use

- K-nearest neighbors
- minimum spanning trees
for estimating the multi-dimensional Rényi's entropy. (It could be much more general...)

Beardwood - Halton - Hammersley Theorem for RN graphs

Let $\{\mathbf{z}(1), \ldots, \mathbf{z}(n)\}$ denote n i.i.d. samples drawn from the distribution of $\mathbf{z} \in \mathbf{R}^{d}$.
Let $\mathcal{N}_{k, j}$ be the k nearest neighbours of $\mathbf{z}(j)$ in the sample set.
Let $\gamma=d-d \alpha$, then

$$
\begin{aligned}
& \frac{1}{1-\alpha} \log \left(\frac{1}{k n^{\alpha}} \sum_{j=1}^{n} \sum_{\mathbf{v} \in \mathcal{N}_{k, j}}\|\mathbf{v}-\mathbf{z}(j)\|^{\gamma}\right) \rightarrow H_{\alpha}(\mathbf{z})+c, \\
& \text { as } n \rightarrow \infty
\end{aligned}
$$

Lots of other graphs, e.g. MST, TSP, minimal matching, Steiner graph...etc could be used as well.

Examples
 (J. A. Costa and A. O. Hero)

Uniform on unit square: $n=400$ samples

4-NNG on 2D uniform: $\gamma=1$

Independent Subspace Analysis Results

Numerical Simulations 2D Letters (i.i.d.)

Numerical Simulations 3D Curves (i.i.d.)

Numerical Simulations
 Facial images (i.i.d.)

Sources

ISA 2D

Kateis Vrieo Contintar (frea)

ISA 3D after ICA preprocessing

Kate's Viteo Converter (Fiee)

Thanks for the Attention! ©

R L
 A I

