Introduction to Independent Component Analysis

Barnabás Póczos University of Alberta

Nov 26, 2009

Contents

- Independent Component Analysis
 - ICA model
 - ICA applications
 - ICA generalizations
 - ICA theory

- Independent Subspace Analysis
 - ISA model
 - ISA theory
 - ISA results

Independent Component Analysis

$$x_1(t) = a_{11}s_1(t) + a_{12}s_2(t)$$

 $x_2(t) = a_{21}s_1(t) + a_{22}s_2(t)$

Goal: Estimate
$$\{s_i(t)\}$$
, (and also $\{a_{ij}\}$)

Independent Component Analysis

$$x_1(t) = a_{11}s_1(t) + a_{12}s_2(t)$$

 $x_2(t) = a_{21}s_1(t) + a_{22}s_2(t)$
Model

Independent Component Analysis

Model

$$x_1(t) = a_{11}s_1(t) + a_{12}s_2(t)$$

$$x_2(t) = a_{21}s_1(t) + a_{22}s_2(t)$$

We observe

$$\begin{pmatrix} x_1(1) \\ x_2(1) \end{pmatrix}, \begin{pmatrix} x_1(2) \\ x_2(2) \end{pmatrix}, \dots, \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

We want

$$\begin{pmatrix} s_1(1) \\ s_2(1) \end{pmatrix}, \begin{pmatrix} s_1(2) \\ s_2(2) \end{pmatrix}, \dots, \begin{pmatrix} s_1(t) \\ s_2(t) \end{pmatrix}$$

But we don't know $\{a_{ij}\}$, nor $\{s_i(t)\}$

Goal:

Estimate $\{s_i(t)\}$, (and also $\{a_{ij}\}$)

ICA vs PCA, Similarities

- Perform linear transformations
- Matrix factorization

PCA: low rank matrix factorization for compression

ICA: full rank matrix factorization to remove dependency between the rows

ICA vs PCA, Differences

- PCA: X=US, U^TU=I
- ICA: **X=AS**
- PCA does compression
 - M<N
- ICA does **not** do compression
 - same # of features (M=N)
- PCA just removes correlations, not higher order dependence
- ICA removes correlations, and higher order dependence
- PCA: some components are more important than others (based on eigenvalues)
- ICA: components are **equally important**

ICA vs PCA

Note

- PCA vectors are orthogonal
- ICA vectors are **not** orthogonal

PCA vs ICA

The Cocktail Party Problem **SOLVING WITH PCA**

The Cocktail Party Problem **SOLVING WITH ICA**

Some ICA Applications

STATIC

- Image denoising
- Microarray data processing
- Decomposing the spectra of galaxies
- Face recognition
- Facial expression recognition
- Feature extraction
- Clustering
- Classification

TEMPORAL

- Medical signal processing –
 fMRI, ECG, EEG
- •Brain Computer Interfaces
- Modeling of the hippocampus, place cells
- Modeling of the visual cortex
- Time series analysis
- Financial applications
- Blind deconvolution

ICA Application, Removing Artifacts from EEG

- EEG ~ Neural cocktail party
- Severe *contamination* of EEG activity
 - eye movements
 - blinks
 - muscle
 - heart, ECG artifact
 - vessel pulse
 - electrode noise
 - line noise, alternating current (60 Hz)

- effectively detect, separate and remove activity in EEG records from a wide variety of artifactual sources. (Jung, Makeig, Bell, and Sejnowski)
- ICA weights help find **location** of sources

ICA decomposition

Summed Projection of Selected Components

16

PCA+ICA for Microarray data processing

 $\mathbf{X}^{\mathrm{T}} \in \mathbf{R}^{\mathrm{M} \times \mathrm{N}}$

M = number of experiments

N = number of genes

labels

PCA alone can estimate US only \Rightarrow doesn't work

Assumption:

- each experiment is a mixture of independent expression modes
 (s₁,...s_K).
- some of these modes (e.g. \mathbf{s}_k) can be related to the difference between the classes.
 - \rightarrow \mathbf{a}_k correlates with the class labels

ICA for Microarray data processing

(Schachtner et al, ICA07)

Breast Cancer Data set

M=14 patients N=22283 genes 2 classes

9th column of A:

 $|Corr(\mathbf{a}_9, \mathbf{d})| = 0.89$, where **d** is the vector of class labels

Class 1, weak metastasis

Class 2, strong metastasis

ICA for Microarray data processing

(Schachtner et al, ICA07)

Leukemia Data set

M=38 Patients

N=5000 genes

3 classes: ALL-B, ALL-T, AML

ICA for Image Denoising (Hoyer, Hyvarinen)

noisy

Wiener filtered

median filtered

ICA for Motion Style Components

(Mori & Hoshino 2002, Shapiro et al 2006, Cao et al 2003)

- Method for analysis and synthesis of human motion from motion captured data
- Provides perceptually meaningful components
- 109 markers, 327 parameters
 - ⇒ 6 independent components (emotion, content,...)

walk

walk with sneaky

sneaky

sneaky with walk

ICA basis vectors extracted from natural images

Gabor wavelets, edge detection, receptive fields of V1 cells...

PCA basis vectors extracted from natural images

Using ICA for classification

Activity distributions of

- within-category test images are much narrower
- off-category is closer to the Gaussian distribution

ICA Generalizations

- Independent Subspace Analysis
- Multilinear ICA
- Blind Source Deconvolution
- Blind SubSpace Deconvolution
- Nonnegative ICA
- Sparse Component Analysis
- Slow Component Analysis
- Noisy ICA
- Undercomplete, Overcomplete ICA
- Varying mixing matrix
- Online ICA
- (Post) Nonlinear ICA

The Holy Grail

ICA Theory

Basic terms, definitions

- uncorrelated and independent variables
- entropy, joint entropy, neg_entropy
- mutual information
- Kullback-Leibler divergence

Statistical (in)dependence

Definition:

 Y_1 , Y_2 are independent $\Leftrightarrow p(y_1, y_2) = p(y_1) p(y_2)$

Lemma:

Let h_1, h_2 be arbitary functions.

 Y_1 , Y_2 are independent \Rightarrow

$$\mathbb{E}[h_1(Y_1) \ h_2(Y_2)] = \mathbb{E}[h_1(Y_1)] \mathbb{E}[h_2(Y_2)]$$

Proof: Homework

Correlation

Definition:

$$corr(Y_1, Y_2) = \frac{\mathbb{E}\left[(Y_1 - \mathbb{E}[Y_1]) \ (Y_2 - \mathbb{E}[Y_2])\right]}{var(Y_1)^{1/2} \ var(Y_2)^{1/2}}$$

Lemma:

$$corr(Y_1, Y_2) = 0 \Leftrightarrow \mathbb{E}[Y_1 Y_2] = \mathbb{E}[Y_1] \mathbb{E}[Y_2]$$

Proof: Homework

Lemma:

 Y_1 , Y_2 are independent $\stackrel{\Rightarrow}{\Leftarrow}$ Y_1 , Y_2 are uncorrelated

Proof: Homework

Lemma: If (Y_1, Y_2) are jointly Gaussian, then Y_1 , Y_2 are independent $\Leftrightarrow Y_1$, Y_2 are uncorrelated

Proof: Homework

Mutual Information, Entropy

Definition (Mutual Information)

$$0 \leq I(Y_1, \dots, Y_M) \doteq \int p(y_1, \dots, y_M) \log \frac{p(y_1, \dots, y_M)}{p(y_1) \dots p(y_M)} d\mathbf{y}$$
$$= KL(p(y_1, \dots, y_M) || p(y_1) \dots p(y_M))$$
$$= \sum_{i=1}^M H(Y_i) - H(Y_1, \dots, Y_M)$$

Definition (Shannon entropy)

$$H(\mathbf{Y}) \doteq H(Y_1, \dots, Y_m) \doteq -\int p(y_1, \dots, y_m) \log p(y_1, \dots, y_m) d\mathbf{y}.$$

Definition (KL divergence)

$$0 \le KL(f||g) = \int f(x) \log \frac{f(x)}{g(x)} dx$$

Solving the ICA problem with i.i.d. sources

ICA problem: $\mathbf{x} = \mathbf{A}\mathbf{s}$, $\mathbf{s} = [s_1; \dots; s_M]$ are jointly independent.

Ambiguity:

 $\mathbf{s} = [s_1; \dots; s_M]$ sources can be recovered only up to sign, scale and permutation.

Proof:

- \bullet P = arbitrary permutation matrix,
- ullet Λ = arbitrary diagonal scaling matrix.

$$\Rightarrow x = [AP^{-1}\Lambda^{-1}][\Lambda Ps]$$

Solving the ICA problem with i.i.d. sources

Lemma:

We can assume that E[s] = 0.

Proof:

Removing the mean does not change the mixing matrix.

$$\mathbf{x} - E[\mathbf{x}] = \mathbf{A}(\mathbf{s} - E[\mathbf{s}]).$$

In what follows we assume that $E[ss^T] = I_M$, E[s] = 0.

Whitening

Let $\mathbf{A} \in \mathbb{R}^{N \times M}$ with full rank, $N \geq M$, and $\mathbf{x} = \mathbf{A}\mathbf{s}$

Theorem (Whitening)

Definitions

- \bullet $\mathbf{x}^* = \mathbf{Q}\mathbf{x}$ transformation is the *whitening* transformation.
- Q is the whitening matrix
- $\mathbf{x}^* \doteq \mathbf{A}^* \mathbf{s}$ is the *whitened* ICA task.

Note

After whitening we need only to consider orthogonal matrices for (de)mixing. (A^* is orthogonal)

Proof of the whitening theorem

We can use PCA for whitening!

- Let $\Sigma \doteq cov(\mathbf{x}) = E[\mathbf{x}\mathbf{x}^T] = \mathbf{A}E[\mathbf{s}\mathbf{s}^T]\mathbf{A}^T = \mathbf{A}\mathbf{A}^T$.
- Do PCA: $\Sigma \in \mathbb{R}^{N \times N}$, $rank(\Sigma) = M$, $\Rightarrow \Sigma = \mathbf{U}\mathbf{D}\mathbf{U}^T$, where $\mathbf{U} \in \mathbb{R}^{N \times M}$, $\mathbf{U}^T\mathbf{U} = \mathbf{I}_M$, Prinicipal vectors $\mathbf{D} \in \mathbb{R}^{M \times M}$, diagonal with rank M. Prinicipal values
- ullet Let $\mathbf{Q} \doteq \mathbf{D}^{-1/2} \mathbf{U}^T \in \mathbb{R}^{M \times N}$ whitening matrix
- Let $A^* \doteq QA$
- $x^* \doteq Qx = QAs = A^*s$ is our new (whitened) ICA task.

$$\Rightarrow E[\mathbf{x}^*\mathbf{x}^{*T}] = \mathbf{I}_M$$
, and $\mathbf{A}^*\mathbf{A}^{*T} = \mathbf{I}_M$.

Whitening solves half of the ICA problem

Note:

The number of free parameters of an N by N orthogonal matrix is (N-1)(N-2)/2.

⇒ whitening solves half of the ICA problem

After whitening it is enough to consider **orthogonal matrices** only for separation.

Solving ICA

ICA task: Given X,

- find y (the estimation of s),
- find W (the estimation of A⁻¹)

ICA solution: y=Wx

- Remove mean, E[x]=0
- Whitening, E[xx^T]=I
- Find an orthogonal W optimizing an objective function
 - Sequence of 2-d Jacobi (Givens) rotations

Optimization Using Jacobi Rotation Matrices

$$\mathbf{G}(p,q,\theta) \doteq \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \dots & \cos(\theta) & \dots & -\sin(\theta) & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \dots & \sin(\theta) & \dots & \cos(\theta) & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} \leftarrow \mathbf{P} \\ \in \mathbf{R}^{M \times M} \\ \leftarrow \mathbf{q}$$

Observation : x = As

Estimation : y = Wx

$$\mathbf{W} = \arg\min_{\mathbf{\tilde{W}} \in \mathcal{W}} J(\mathbf{\tilde{W}}\mathbf{x}),$$

where
$$\mathcal{W} = \{\mathbf{W} | \mathbf{W} = \prod_i G(p_i, q_i, \theta_i)\}$$

Gaussian sources are problematic

The Gaussian distribution is **spherically symmetric**.

Mixing it with an orthogonal matrix... produces the same distribution...

However, this is the only 'nice' distribution that we cannot recover! ©

ICA Cost Functions

Let $y \doteq Wx$, $y = [y_1; ...; y_M]$, and let us measure the dependence using Shannon's mututal information:

$$\int J_{ICA_1}(\mathbf{W}) \doteq I(y_1, \dots, y_M) \doteq \int p(y_1, \dots, y_M) \log \frac{p(y_1, \dots, y_M)}{p(y_1) \dots p(y_M)} d\mathbf{y},$$

Let
$$H(\mathbf{y}) \doteq H(y_1, \dots, y_m) \doteq -\int p(y_1, \dots, y_m) \log p(y_1, \dots, y_m) d\mathbf{y}$$
.

$$H(\mathbf{W}\mathbf{x}) = H(\mathbf{x}) + \log |\det \mathbf{W}|$$
, thus

$$I(y_1, ..., y_M) = \int p(y_1, ..., y_M) \log \frac{p(y_1, ..., y_M)}{p(y_1) ... p(y_M)}$$

$$= -H(y_1, ..., y_M) + H(y_1) + ... + H(y_M)$$

$$= -H(x_1, ..., x_M) - \log |\det \mathbf{W}| + H(y_1) + ... + H(y_M).$$

 $H(x_1,\ldots,x_M)$ is constant, $\log |\det \mathbf{W}| = 0$, thus

$$\int_{ICA_2} J_{ICA_2}(\mathbf{W}) \doteq H(y_1) + \ldots + H(y_M) \Longrightarrow \text{go away from normal distribution}$$

Central Limit Theorem

The sum of independent variables converges to the normal distribution

- ⇒ For separation go far away from the normal distribution
- ⇒ Negentropy, |kurtozis| maximization

Algorithms

There are more than 100 different ICA algorithms...

- Mutual information (MI) estimation
 - Kernel-ICA [Bach & Jordan, 2002]
- Entropy, negentropy estimation
 - Infomax ICA [Bell & Sejnowski 1995]
 - RADICAL [Learned-Miller & Fisher, 2003]
 - FastICA [Hyvarinen, 1999]
 - [Girolami & Fyfe 1997]
- ML estimation
 - KDICA [Chen, 2006]
 - EM-ICA [Welling]
 - MacKay 1996; Pearlmutter & Parra 1996; Cardoso 1997
- Higher order moments, cumulants based methods
 - JADE [Cardoso, 1993]
- Nonlinear correlation based methods
 - [Jutten and Herault, 1991]

ICA ALGORITHMS

Maximum Likelihood ICA Algorithm

- simplest approach
- ullet requires knowing densities of hidden sources $\{f_i\}$

$$\Rightarrow \Delta \mathbf{W} \propto [\mathbf{W}^T]^{-1} + \frac{1}{T} \sum_{t=1}^T g(\mathbf{W}\mathbf{x}(t))\mathbf{x}^T(t),$$
 where $g_i = f_i'/f_i$

ICA algorithm based on Kurtosis maximization

Kurtosis = 4th order cumulant

Measures

- •the distance from normality
- •the degree of peakedness

•
$$\kappa_4(y) = \mathsf{E}\{y^4\} - \underbrace{3\left(\mathsf{E}\{y^2\}\right)^2}_{= 3 \text{ if } \mathsf{E}\{y\} = 0 \text{ and whitened}}$$

The Fast ICA algorithm (Hyvarinen)

- Given whitened data z
- Estimate the 1st ICA component:

Probably the most famous ICA algorithm

$$\star y = \mathbf{w}^T \mathbf{z}, \|\mathbf{w}\| = 1,$$

$$\Leftarrow \mathbf{w} = \mathbf{1}^{st}$$
 row of \mathbf{W}

- * maximize kurtosis $f(\mathbf{w}) \doteq \kappa_4(y) \doteq \mathbb{E}[y^4]$ with constraint $h(\mathbf{w}) = \|\mathbf{w}\|^2 - 1 = 0$
- * At optimum $f'(\mathbf{w}) + \lambda h'(\mathbf{w}) = \mathbf{0}^T$ $\Rightarrow 4\mathbb{E}[(\mathbf{w}^T \mathbf{z})^3 \mathbf{z}] + 2\lambda \mathbf{w} = 0$
- \star After calculating λ we arrive at the following iteration:

Let
$$\mathbf{w}_1$$
 be the fix pont of:
$$\tilde{\mathbf{w}}(k+1) = \mathbb{E}[(\mathbf{w}(k)^T\mathbf{z})^3\mathbf{z}] - 3\mathbf{w}(k)$$
$$\mathbf{w}(k+1) = \frac{\tilde{\mathbf{w}}(k+1)}{\|\tilde{\mathbf{w}}(k+1)\|}$$

 \bullet Estimate the 2 nd ICA component similarly using the $w\perp w_1$ additional constraint... and so on ...

Dependence Estimation Using Kernel Methods

The Kernel ICA Algorithm

Kernel covariance (KC)

A. Gretton, R. Herbrich, A. Smola, F. Bach, M. Jordan

Let $\mathbf{x} \in \mathbb{R}^{d_x}$, $\mathbf{y} \in \mathbb{R}^{d_y}$ stochastic variables.

We want to measure their dependence.

$$J_{KC} \doteq \sup_{f \in \mathcal{F}^{x}, g \in \mathcal{F}^{y}} |E\{[f(\mathbf{x}) - Ef(\mathbf{x})][g(\mathbf{y}) - Eg(\mathbf{y})]\}|$$

$$||f|| \leq 1, ||g|| \leq 1$$

$$J_{KC}^{emp} \doteq \sup_{f \in \mathcal{F}^{x}, g \in \mathcal{F}^{y}} |\frac{1}{m} \sum_{l=1}^{m} \{[f(\mathbf{x}_{l}) - \frac{1}{m} \sum_{j=1}^{m} f(\mathbf{x}_{j})][g(\mathbf{y}_{l}) - \frac{1}{m} \sum_{j=1}^{m} g(\mathbf{y}_{j})]\}|$$

$$||f|| \leq 1, ||g|| \leq 1$$

where $\mathbf{x}_1, \dots, \mathbf{x}_m$, and $\mathbf{y}_1, \dots, \mathbf{y}_m$ are m pieces of i.i.d. samples and \mathcal{F}^x , \mathcal{F}^y are sets of real valued functions.

The calculation of the supremum over function sets is extremely difficult. Reproducing Kernel Hilbert Spaces make it easier.

RKHS construction for x, y stochastic variables.

Let $K^x(\cdot,\cdot)\in\mathbb{R}^{d_x}\times\mathbb{R}^{d_x}\to\mathbb{R}$, $K^y(\cdot,\cdot)\in\mathbb{R}^{d_y}\times\mathbb{R}^{d_y}\to\mathbb{R}$ kernel functions.

These kernels define the following RKHS:

$$\mathcal{F}^{x} \doteq \{f : f = \sum_{j=1}^{\infty} \Psi_{j} \Phi_{j}^{x}(\cdot), \sum_{j=1}^{\infty} \frac{\Psi_{j}^{2}}{\lambda_{j}^{x}} < \infty\},$$

$$\mathcal{F}^{y} \doteq \{f : f = \sum_{j=1}^{\infty} \Psi_{j} \Phi_{j}^{y}(\cdot), \sum_{j=1}^{\infty} \frac{\Psi_{j}^{2}}{\lambda_{j}^{y}} < \infty\},$$

where $\Phi_j^x(\cdot)$, $\Phi_j^y(\cdot)$, λ_j^x , λ_j^y are eigenfunctions and eigenvalues corresponding to the $K^x(\cdot,\cdot)$, $K^y(\cdot,\cdot)$ Hilbert spaces.

The Representer Theorem

Theorem:
$$k(\cdot,\cdot):\mathcal{X}\times\mathcal{X}\to\mathbb{R},$$
 Mercer kernel on \mathcal{X} $z=(x_1,y_1),\ldots,(x_m,y_m)\in(\mathcal{X}\times\mathcal{Y})^m$ training sample $g_{emp}:(\mathcal{X}\times\mathcal{Y}\times\mathbb{R})^m\to\mathbb{R}\cup\{\infty\}$ \Rightarrow $g_{reg}:\mathbb{R}\to[0,\infty)$ strictly increasing function $\mathcal{F}:$ RKHS induced by $k(\cdot,\cdot)$

$$\Rightarrow f^* = \arg\min_{f \in \mathcal{F}} R_{reg}[f, \mathbf{z}]$$

$$\doteq \arg\min_{f \in \mathcal{F}} \underbrace{g_{emp}[(x_i, y_i, f(x_i))_{i \in \{1...m\}}]}_{f \in \mathcal{F}} + \underbrace{g_{reg}(\|f\|)}_{f \in \mathcal{F}}$$

1st term, empirical loss 2nd term, regularization

admits the following representation:

$$f^*(\cdot) = \sum_{i=1}^m c_i k(x_i, \cdot), \quad c = (c_1, \dots, c_m) \in \mathbb{R}^m$$

Kernel covariance (KC)

Yay! We can use the representer theorem for our problem ©

The optimal f, g can be found in these forms:

$$f^*(\cdot) = \sum_{i=1}^m c_i k(x_i, \cdot), \quad \mathbf{c} = (c_1, \dots, c_m) \in \mathbb{R}^m$$
$$g^*(\cdot) = \sum_{i=1}^m d_i k(x_i, \cdot), \quad \mathbf{d} = (d_1, \dots, d_m) \in \mathbb{R}^m$$

Kernel covariance (KC)

$$f(\mathbf{x}) = \langle f, K^x(\cdot, \mathbf{x}) \rangle_{\mathcal{F}^x} \text{ and } f(\cdot) = \sum_{j=1}^m c_j K^x(\cdot, \mathbf{x}_j) + f^{\perp}(\cdot), \text{ thus}$$

$$f(\mathbf{x}_i) = \langle f, K^x(\cdot, \mathbf{x}_i) \rangle_{\mathcal{F}^x} = \langle \sum_{j=1}^m c_j K^x(\cdot, \mathbf{x}_j) + f^{\perp}(\cdot), K^x(\cdot, \mathbf{x}_i) \rangle_{\mathcal{F}^x} = \sum_{j=1}^m c_j K^x(\mathbf{x}_j, \mathbf{x}_i).$$

$$\Rightarrow$$

$$[f(\mathbf{x}_1) - \frac{1}{m} \sum_{i=1}^m f(\mathbf{x}_i), \dots, f(\mathbf{x}_m) - \frac{1}{m} \sum_{i=1}^m f(\mathbf{x}_i)] = \mathbf{c}^T \widetilde{\mathbf{K}}^x$$

$$[g(\mathbf{y}_1) - \frac{1}{m} \sum_{i=1}^m g(\mathbf{y}_i), \dots, g(\mathbf{y}_m) - \frac{1}{m} \sum_{i=1}^m g(\mathbf{y}_i)] = \mathbf{d}^T \widetilde{\mathbf{K}}^y$$

Where
$$\mathbf{K}^x = \{K(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j}$$
, $\mathbf{H} \doteq \mathbf{I}_m - \frac{1}{m} \mathbf{1}_m \mathbf{1}_m^T$, and $\widetilde{\mathbf{K}}^x \doteq \mathbf{H} \mathbf{K}^x \mathbf{H}$

Thus, for the estimation of J_{KC}^{emp} we have to calculate the maximum of $\mathbf{c}^T \widetilde{\mathbf{K}}^x \widetilde{\mathbf{K}}^y \mathbf{d}$ over $\mathbf{c}, \mathbf{d} \in \mathbb{R}^n$ subject to $\mathbf{c}^T \widetilde{\mathbf{K}}^x \mathbf{c} = \mathbf{1}$, $\mathbf{d}^T \widetilde{\mathbf{K}}^y \mathbf{d} = \mathbf{1}$.

Amari Error for Measuring the Performance

 Measures how close a square matrix is to a permutation matrix

$$\mathbf{B} = \mathbf{W}\mathbf{A}$$
demixing mixing

$$r(\mathbf{B}) = \frac{1}{2M(M-1)} \sum_{i=1}^{M} \left(\frac{\sum_{j=1}^{M} |b_{ij}|}{\max_{j} |b_{ij}|} - 1 \right) + \frac{1}{2M(M-1)} \sum_{j=1}^{M} \left(\frac{\sum_{i=1}^{M} |b_{ij}|}{\max_{i} |b_{ij}|} - 1 \right)$$

 $r(\mathbf{B}) \in [0,1], \quad r(\mathbf{B}) = 0 \Leftrightarrow \mathbf{B}$ is a permutation matrix

Independent Subspace Analysis

Independent Subspace Analysis (ISA, The Woodstock Problem)

Independent Subspace Analysis

Original

Mixed

Separated

Hinton diagram

ISA Cost Functions

Mutual Information:
$$I(\mathbf{y}^1, \dots, \mathbf{y}^m) = \int_{\log \frac{p(\mathbf{y})}{p(\mathbf{y}^1) \cdots p(\mathbf{y}^m)}} d\mathbf{y}$$

Shannon-entropy:
$$H(y) = -\int p(y) \log p(y) dy$$

Assume y = Wx. Then

$$H(\mathbf{y}) = H(\mathbf{y}^{1}, \dots, \mathbf{y}^{m}) = H(\mathbf{W}\mathbf{x}) = H(\mathbf{x}) + \log |\mathbf{W}|$$

$$I(\mathbf{y}^{1}, \dots, \mathbf{y}^{m}) = -H(\mathbf{x}) - \log |\mathbf{W}| + \sum_{i=1}^{m} H(\mathbf{y}^{i})$$

$$I(\mathbf{y}^{1}, \dots, \mathbf{y}^{m}) = -H(\mathbf{y}^{1}, \dots, \mathbf{y}^{m}) + \sum_{j=1}^{m} \sum_{i=1}^{d} H(y_{i}^{j}) - \sum_{j=1}^{m} I(y_{1}^{j}, \dots, y_{d}^{j})$$

$$H(\mathbf{y}^{j}) = H(y_{1}^{j}, \dots, y_{d}^{j}) = \sum_{i=1}^{d} H(y_{i}^{j}) - I(y_{1}^{j}, \dots, y_{1}^{j})$$

and we get the following ISA cost functions:

ISA Cost Functions

Multidimensional Entropy Estimation

Multi-dimensional Entropy Estimations, Method of Kozahenko and Leonenko

Let $\{z(1), \ldots, z(n)\}$ denote n i.i.d. samples drawn from the distribution of $\mathbf{z} \in \mathbf{R}^d$.

Let $\mathcal{N}_{1,j}$ be the nearest neighbour of $\mathbf{z}(j)$ in the sample set.

Then the nearest neighbor entropy estimation:

$$\begin{split} \widehat{H}(\mathbf{z}) &= \frac{1}{n} \sum_{j=1}^n \log(n\|\mathcal{N}_{1,j} - \mathbf{z}(j)\|) + \ln(2) + C_E, \\ \text{where } C_E &= -\int\limits_0^\infty e^{-t} \ln(t) dt \text{ is the Euler-constant.} \end{split}$$

This estimation is means-square consistent, but not robust. Let us try to use more neighbors! 61

Multi-dimensional Rényi's Entropy Estimations

Let us apply Rényi'sentropy for estimating the Shannon-entropy:

$$H_{\alpha} = \frac{1}{1-\alpha} \log \int f^{\alpha}(\mathbf{z}) d\mathbf{z}$$
$$\lim_{\alpha \to 1} H_{\alpha} = -\int f(\mathbf{z}) \log f(\mathbf{z}) d\mathbf{z}$$

Let us use

- K-nearest neighbors
- minimum spanning trees

for estimating the multi-dimensional Rényi's entropy. (It could be much more general...)

Beardwood - Halton - Hammersley Theorem for kNN graphs

Let $\{\mathbf{z}(1), \dots, \mathbf{z}(n)\}$ denote n i.i.d. samples drawn from the distribution of $\mathbf{z} \in \mathbf{R}^d$.

Let $\mathcal{N}_{k,j}$ be the k nearest neighbours of $\mathbf{z}(j)$ in the sample set.

Let $\gamma = d - d\alpha$, then

$$\frac{1}{1-\alpha}\log(\frac{1}{kn^{\alpha}}\sum_{j=1}^{n}\sum_{\mathbf{v}\in\mathcal{N}_{k,j}}\|\mathbf{v}-\mathbf{z}(j)\|^{\gamma})\to H_{\alpha}(\mathbf{z})+c,$$
 as $n\to\infty$

Lots of other graphs, e.g. MST, TSP, minimal matching, Steiner graph...etc could be used as well.

Examples (J. A. Costa and A. O. Hero)

Independent Subspace Analysis Results

Numerical Simulations 2D Letters (i.i.d.)

Numerical Simulations 3D Curves (i.i.d.)

Numerical Simulations Facial images (i.i.d.)

ISA 2D

ISA 3D after ICA preprocessing

Thanks for the Attention! ©

