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Independent Component Analysis
Goal:
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Independent Component Analysis

Observations (Mixtures)

original signals

Model

ICA estimated signals
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Independent Component Analysis

We observe

Model

We want

Goal:
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ICA vs PCA, Similarities

• Perform linear transformations

• Matrix factorization

X U S

X A S

PCA: low rank matrix factorization for compression

ICA: full rank matrix factorization to remove dependency between the rows

=

=

N

N

N

M

M<N



7

ICA vs PCA, Differences
• PCA: X=US, UTU=I
• ICA: X=AS

• PCA does compression 
– M<N

• ICA does not do compression 
– same # of features (M=N)

• PCA just removes correlations, not higher order dependence

• ICA removes correlations, and higher order dependence

• PCA: some components are more important than others 
(based on eigenvalues)

• ICA: components are equally important
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ICA vs PCA

Note
• PCA vectors are orthogonal 
• ICA vectors are not orthogonal
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PCA vs ICA 
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PCA EstimationSources Observation

x(t) = As(t)s(t)

Mixing

The Cocktail Party Problem
SOLVING WITH PCA

y(t)=Wx(t)
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ICA EstimationSources Observation

x(t) = As(t)s(t)

Mixing

The Cocktail Party Problem
 SOLVING WITH ICA

y(t)=Wx(t)
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Some ICA Applications
STATIC
• Image denoising

• Microarray data processing

• Decomposing the spectra of 
galaxies

• Face recognition

• Facial expression recognition

• Feature extraction

• Clustering

• Classification

TEMPORAL

•Medical signal processing – 
fMRI, ECG, EEG 

•Brain Computer Interfaces

•Modeling of the 
hippocampus, place cells 

•Modeling of the visual 
cortex

•Time series analysis 

•Financial applications

•Blind deconvolution
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ICA Application,
Removing Artifacts from EEG

• EEG ~ Neural cocktail party
• Severe contamination of EEG activity by 

– eye movements 
– blinks
– muscle
– heart, ECG artifact
– vessel pulse 
– electrode noise
– line noise, alternating current (60 Hz)

• ICA can improve signal 
– effectively detect, separate and remove activity in EEG 

records from a wide variety of artifactual sources. 
(Jung, Makeig, Bell, and Sejnowski)

• ICA weights help find location of sources
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PCA+ICA for Microarray data 
processing

XT = =
* S

A

XT ∈ RM x N

M = number of experiments
N = number of genes

sk

ak

Assumption: 
• each experiment is a mixture of   
     independent expression modes 
(s1,...sK). 
• some of these modes (e.g. sk) can be 
related to the difference between the 
classes.

• → ak correlates with the class labels

labels

PCA alone can estimate 
US only ) doesn’t work
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ICA for Microarray data processing
 (Schachtner et al, ICA07)

Breast Cancer Data set

9th column of A:

Class 1, 
weak metastasis

Class 2, 
strong metastasis

M=14 patients
N=22283 genes
2 classes

|Corr(a9, d)|=0.89, where
d is the vector of class labels



19

ICA for Microarray data processing
 (Schachtner et al, ICA07)

Leukemia Data set

ALL-B AML

M=38 Patients
N=5000 genes
3 classes: ALL-B, ALL-T, AML

ALL-T ALL-B AMLALL-T
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ICA for Image Denoising
(Hoyer, Hyvarinen)

original noisy Wiener filtered

median filtered

ICA denoised
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ICA for Motion Style Components
(Mori & Hoshino 2002, Shapiro et al 2006, Cao et al 2003)

• Method for analysis and synthesis of human motion from 
motion captured data

• Provides perceptually meaningful components

• 109 markers, 327 parameters
 ) 6 independent components (emotion, content,…)
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walk sneaky

walk with sneaky sneaky with walk
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ICA basis vectors extracted from 
natural images

Gabor wavelets, 
edge detection, 
receptive fields of V1 cells...
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PCA basis vectors extracted 
from natural images



Using ICA for classification
Activity distributions of 

– within-category test images  are 
much narrower  

– off-category is closer to the 
Gaussian distribution

Test data

Tr
ai

n 
da

ta

Happy

Disgust

ICA basis 
[Happy]

ICA basis 
[Disgust]



27

ICA Generalizations
• Independent Subspace Analysis

• Multilinear ICA

• Blind Source Deconvolution

• Blind SubSpace Deconvolution

• Nonnegative ICA

• Sparse Component Analysis

• Slow Component Analysis

• Noisy ICA

• Undercomplete, Overcomplete ICA

• Varying mixing matrix

• Online ICA

• (Post) Nonlinear ICA

x=f(s)

The Holy Grail



ICA Theory
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Basic terms, definitions

• uncorrelated and independent variables

• entropy, joint entropy, neg_entropy

• mutual information

• Kullback-Leibler divergence
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Statistical (in)dependence

Proof: Homework

Definition:

Lemma:

Definition:
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Definition:
Correlation

Lemma:

Proof: Homework

Lemma:

Proof: Homework

Lemma:

Proof: Homework
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Mutual Information, Entropy
Definition (Mutual Information)

Definition (Shannon entropy)

Definition (KL divergence)
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Solving the ICA problem with 
i.i.d. sources
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Solving the ICA problem with 
i.i.d. sources
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Whitening

Theorem (Whitening)

Definitions

Note
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 Proof of  the whitening theorem

We can use PCA for whitening!
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Whitening solves half of the ICA 
problem

Note: 
The number of free parameters of an N by N orthogonal 

matrix is (N-1)(N-2)/2. 

) whitening solves half of the ICA problem

whitenedoriginal mixed
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Solving ICA

• Remove mean, E[x]=0

• Whitening, E[xxT]=I
• Find an orthogonal W optimizing an objective function

– Sequence of 2-d Jacobi (Givens) rotations

• find y (the estimation of s), 

• find W (the estimation of A-1)

ICA solution: y=Wx

ICA task: Given x, 

original mixed whitened rotated
(demixed)
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Optimization Using Jacobi Rotation 
Matrices

p q

p

q
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Gaussian sources are problematic

The Gaussian distribution is spherically symmetric.

Mixing it with an orthogonal matrix… produces the same 
distribution... 

However, this is the only ‘nice’ distribution that we cannot recover! 

No hope for recovery... 
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ICA Cost Functions

) go away from normal distribution
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Central Limit Theorem
The sum of independent variables converges to the normal distribution
) For separation go far away from the normal distribution
) Negentropy, |kurtozis| maximization

Figs borrowed from Ata Kaban
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Algorithms
There are more than 100 different ICA algorithms…

• Mutual information (MI) estimation 
– Kernel-ICA [Bach & Jordan, 2002]

• Entropy, negentropy estimation
– Infomax ICA [Bell & Sejnowski 1995] 
– RADICAL [Learned-Miller & Fisher, 2003] 
– FastICA [Hyvarinen, 1999] 
– [Girolami & Fyfe 1997]

• ML estimation
– KDICA [Chen, 2006]
– EM-ICA [Welling]
– [MacKay 1996;   Pearlmutter & Parra 1996; Cardoso 1997]

• Higher order moments, cumulants based methods
– JADE [Cardoso, 1993] 

• Nonlinear correlation based methods
– [Jutten and Herault, 1991]



ICA ALGORITHMS
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Maximum Likelihood ICA Algorithm
David J.C. MacKay (97)

rows of W
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Kurtosis = 4th order cumulant

Measures 
•the distance from normality
•the degree of peakedness

ICA algorithm based on Kurtosis 
maximization
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The Fast ICA algorithm (Hyvarinen)
Probably the most 
famous ICA algorithm



Dependence Estimation Using 
Kernel Methods

The Kernel ICA Algorithm 
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Kernel covariance (KC)
 A. Gretton, R. Herbrich, A. Smola, F. Bach, M. Jordan

The calculation of the supremum over function sets is extremely difficult. 
Reproducing Kernel Hilbert Spaces make it easier.
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RKHS construction 
for x, y stochastic variables.
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The Representer Theorem

Theorem:

1st term, empirical loss 2nd term, regularization



52

Kernel covariance (KC)

Yay! We can use the representer theorem for our problem 
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Kernel covariance (KC)

⇒
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Amari Error for Measuring the 
Performance

• Measures how close a square matrix is to a 
permutation matrix

B = WA

demixing mixing



Independent Subspace 
Analysis
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Independent Subspace Analysis
(ISA, The Woodstock Problem)

Sources Observation Estimation

Find W, recover Wx
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Independent Subspace Analysis
Original

Separated

Mixed

Hinton diagram
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ISA Cost Functions

Mutual Information:

py pydyHy  ¡
R

Shannon-entropy:

R
Iy; : : : ;ym   py

py¢¢¢pymdy
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ISA Cost Functions



Multidimensional Entropy 
Estimation
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Multi-dimensional Entropy Estimations,
 Method of Kozahenko and Leonenko 

Then the nearest neighbor entropy estimation:

This estimation is means-square consistent, but not robust.
Let us try to use more neighbors!
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Multi-dimensional Rényi’s Entropy 
Estimations

Let us apply Rényi’s-

entropy for estimating 

the Shannon-entropy:

H®


¡® 
R


®!

H®  ¡
R

Let us use 
- K-nearest neighbors 
- minimum spanning trees 
for estimating the multi-dimensional Rényi’s entropy.
(It could be much more general…)

f®zdz

fz fzdz
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 Beardwood - Halton - Hammersley 
Theorem for kNN graphs 
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Lots of other graphs, e.g. MST, TSP, minimal matching, Steiner 
graph…etc could be used as well.
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Examples
(J. A. Costa and A. O. Hero)



Independent Subspace Analysis
Results
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Numerical Simulations 
2D Letters (i.i.d.)

Sources Observation
Estimated sources

Performance matrix
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Numerical Simulations
3D Curves (i.i.d.)

Sources Observation
Estimated sources

Performance matrix
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Numerical Simulations
Facial images (i.i.d.)

Sources Observation
Estimated sources

Performance matrix
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ISA 2D
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ISA 3D after ICA preprocessing 
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Thanks for the Attention! 


