
Homework 3 Solutions
Quantile Regression, Gaussian Processes

Kernels

CMU 10-715: Machine Learning (Fall 2015)
http://www.cs.cmu.edu/~bapoczos/Classes/ML10715_2015Fall/

OUT: Oct 19, 2015
DUE: Nov 2, 2015, 10:20 AM

As usual, for any programming problems we will use the following conventions:

• N is the number of datapoints, D is the dimension of each input.

• XTrain is an N ×D matrix of the input data, where row i is the features for example i.

• yTrain is an N × 1 vector of the input data, where the ith component is the ith output.

• XTest is an M ×D matrix of the input data, where row i is the features for example i.

• yTrain is an M × 1 vector of the input data, where the ith component is the ith output.

1 Quantile Regression [Eric; 35 pts]

In this section, you will derive the dual of the quantile regression problem and implement a solver.

1.1 Quantile Regression

1. (6pts) By now you may be used to minimizing problems with respect to squared error loss. Let’s
instead define the following loss:

ρτ (z) = z(τ − I(z < 0)) =

{
z(τ − 1) if z < 0

zτ if z ≥ 0

where τ ∈ (0, 1) is called the τth quantile, and I(z < 0) is the indicator function that is 1 if z < 0 and
0 otherwise. Show that

min
w

∑
i

ρτ (yi − w) = yτ

where yτ is an observation sitting at the τth top percentile of the observations (specifically, this means
that yτ is at least exactly τ percent of the observations).

2. (2pts) When τ = 0.5, this loss function has a well known name in statistics. What is it?

Solution:∑
i

ρτ (yi − w) =
∑
yi<w

ρτ (yi − w) +
∑
yi≥w

ρτ (yi − w) =
∑
yi<w

(τ − 1)(yi − w) +
∑
yi≥w

τ(yi − w)

so

min
w

∑
i

ρτ (yi − w) = min
w

1

n

∑
yi<w

(τ − 1)(yi − w) +
1

n

∑
yi≥w

τ(yi − w)

Take the derivative w.r.t. w:

1

n

∑
yi<w

(τ − 1) +
1

n

∑
yi≥w

τ = pw(τ − 1) + (1− pw)τ = τ − pw
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where pw is the fraction of observations satisfying yi < w and n is the total number of observations.
Setting this to 0 we get

pw = τ

so the optimal value is w that is at the τth percentile.

ρ0.5(z) = z(0.5− I(z < 0)) =

{
0.5z if z ≥ 0

−0.5z if z < 0

This is equivalent to L1 loss.

3. (6pts) Let {xi}i=1,...,N be points in RK with outputs {yi}i=1...n in R. Let X = (x1, . . . , xN ). We define
the regression quantile as

β̂(τ) = argmin
β∈RK

N∑
i=1

ρτ (yi − xTi β)

Prove that the solution of this problem is equivalent to the solution of the following linear program.
Hint: split the problem into positive and negative parts.

argmin
β∈RK ,u,v∈RN

uT 1τ + vT 1(1− τ), subject to XTβ − y + u− v = 0, u, v ≥ 0

Solution: Define ui = (yi−xTi β)+ and vi = (xTi β−yi)+. Let u = (u1, . . . , uN ) and v = (v1, . . . , vN ).
Then:

argmin
β∈RK

N∑
i=1

ρτ (yi − xTi β)

= argmin
β∈RK

N∑
i=1

ρτ (ui) + ρτ (−vi)

= argmin
β∈RK

N∑
i=1

uiτ − vi(τ − 1)

= argmin
β∈RK

uT 1τ + vT 1(1− τ)

so the primal linear program is

argmin
β∈RK

uT 1τ + vT 1(1− τ), subject to XTβ − y + u− v = 0, u, v ≥ 0

It will be useful to put this into standard form. Let w = (β, u, v), c = (0, 1τ, 1(1 − τ)), Z =
(XT , In,−In). Then this is equivalently

argmin
w∈RK

wT c, subject to Zw = y, u, v ≥ 0

4. (6pts) Show that the dual of the above linear program is

max
z
yT z, subject to Xz = (1− τ)X1, z ∈ [0, 1]n

Solution: The dual of the LP is

argmax
s

yT s subject to ZT s ≤ c
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Note that the constraint implies that s ≤ 1τ and −s ≤ 1(1 − τ), so 1(τ − 1) ≤ s ≤ 1τ . Thus this is
equivalent to

argmax
s

yT s subject to Xs = 0, s ∈ [τ − 1, τ ]n

A simple change of variables s = a− (1− τ)1 resutls in

argmax
a

yTa subject to Xa = (1− τ)X1, a ∈ [0, 1]n

5. (4pts) What does the value of zi in the dual problem tell us about yi−xTi β in the primal? Specifically,
using the KKT conditions, if zi = 0 then what can you say about yi − xTi β? If z = 1? If z ∈ (0, 1)?

Solution: If zi = 1, then yi > xTi β. If zi = 0, then yi < xTi β. Otherwise, yi = xTi β. These follow
from the KKT conditions of complementary slackness.

6. We have generated a synthetic dataset in quantile.mat. For this problem you will use quantile regression
to get the quantile estimates for this dataset.

You should implement quantile regression by solving the primal LP. You may use any linear pro-
gramming solver to do so. For example, CVXOPT (http://cvxopt.org/) is a powerful solver for
general convex problems. Alternatively, you can use the glpk function in Octave (https://www.gnu.
org/software/octave/doc/interpreter/Linear-Programming.html) or linprog in Matlab (http:
//www.mathworks.com/help/optim/ug/linprog.html).

You may need to reformulate your problem into a canonical form accepted by the solver. Be sure to
account for a non-zero intercept term. Submit the following items in your writeup:

• (6pts) First, plot a scatterplot of the data in XTrain,yTrain. Then, plot three quantile regression
lines on top of the scatterplot at the following quantiles: τ = 0.25, 0.50, 0.75.

• (3pts) Report the β values for each value of τ .

• (2pts) Attach your code for this problem.

2 Gaussian Processes and Hyperparameter Tuning [Eric; 25pts]

2.1 Lemma from Class

1. (5pts) First, let’s verify a lemma from class. Let X, y be n examples of training data and labels and let
X∗, y∗ be m examples of test data and labels. Let 0n, 0m denote zero vectors of length n,m respectively,
and let k be some kernel function. Suppose that[

y
y∗

]
∼ N y

y∗


([

0n
0m

]
,

[
k(X,X) k(X,X∗)
k(X∗, X) k(X∗, X∗)

])

Show that the posterior distribution is

P (y∗|X∗, X, y) = Ny∗ (µ,Σ)

where µ = k(X∗, X)k(X,X)−1y and Σ = k(X∗, X∗) − k(X∗, X)k(X,X)−1k(X,X∗). Note: For this
question, you may assume that the conditional distribution is of a Normal form, however you must
derive the mean and variance.

Solution: Let z = y∗ +Ay where A = −K(X∗, X)K(X,X)−1. Note that z, y are independent since

Cov(z, y) = Cov(y∗, y) + Cov(Ay, y) = k(X∗, X) +Ak(X,X) = 0

Then, the mean is:

E(y∗|X∗, X, y) = E(z−Ay|X∗, X, y) = E(z|X∗, X, y)−E(Ay|X∗, X, y) = −Ay = −K(X∗, X)K(X,X)−1y
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And the variance is:

Var(y∗|X∗, X, y)

=V (z −Ay|X∗, X, y)

= Var(z|X∗, X, y) + Var(Ay|X∗, X, y)− Cov(z,−Ay|X∗, X, y)− Cov(−Ay, z|X∗, X, y)

= Var(z|X∗, X)

= Var(y∗ +Ay|X∗, X)

= Var(y∗|X∗, X) + Var(Ay|X∗, X)− Cov(y∗, Ay|X∗, X)− Cov(Ay, y∗|X∗, X)

=K(X∗, X∗) +AK(X,X)AT − Cov(y∗, y|X∗, X)AT −ACov(y, y∗|X∗, X)

=K(X∗, X∗) +AK(X,X)AT −K(X∗, X)AT −AK(X,X∗)

=K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)

2.2 GP Regression

For this problem, you will implement a basic Gaussian Process Regression. We will be using the standard
radial basis kernel:

K(xi, xj) = σ exp

(
−||xi − xj ||22

2h2

)
where σ, h are known as the scale and bandwith parameters.

For additional help, better performance, and numerical stability, we refer you to chapter 2 of Rasmussen
and Williams (http://www.gaussianprocess.org/gpml/chapters/RW2.pdf).

We will test your implementation on the Concrete Compressive Strength dataset from the UCI repository.
The strength of concrete is predicted from 8 features consisting of the ingredients that make up the concrete
composition and its age. We have given you this dataset as an octave mat file.

We will use the following conventions for this problem:

• X1, X2 are n1 ×D and n2 ×D matrices of the input data. Note that n1 is not necesarily equal to n2.
Each row consists of the features of a particular example.

• K is a n1 × n2 kernel matrix for X1,X2.

• GPMean is a N × 1 vector containing the predicted mean values of the GP at XTest.

• GPVariance is a N ×N matrix containing the predicted covariance matrix of the GP at XTest.

• logml is a scalar value containing the log marginal likelihood of the data given the parameters.

• sigma is a the scale parameter described above, and sigmas is a P1 × 1 vector of potential parameters.

• h is a the bandwith parameter described above, and hs is a P2 × 1 vector of potential parameters.

• gamma is the noise parameter for the Gaussian Process. Specifically,

cov(y) = K(X,X) + γI

1. (3pts) Implement [K] = RBFKernel(X1, X2, sigma, h), which takes as input two matrices of examples
with hyperparameters sigma, h, and outputs the kernel matrix where Ki,j = k(X1i,X2i), where k is
the RBF function described above. Bonus: do this without any for loops.

2. (7pts) Implement [GPMean, GPVariance] = GPRegression(XTrain, yTrain, XTest, gamma, sigma, h),
which carries out the Gaussian Process regression and returns the estimated mean and variances for
the variables in XTest. See page 19 of chapter 2 in Rasmussen and Williams for help on making this
computationally efficient and numerically stable.
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3. (3pts) Now, we need to find hyperparameters for the Gaussian Process. One reasonable method for
Gaussian processes is to choose parameters that minimizes the log marginal likelihood. First implement
[logml] = LogMarginalLikelihood (XTrain, yTrain, gamma, sigma,h) which computes the log marginal
likelihood of the training data given the parameters.

4. (3pts) Implement [gamma, h,sigma] = HyperParameters (XTrain, yTrain, hs, sigmas), which does a grid
search across the parameters in hs,sigmas and returns the combination that minimizes the log marginal
likelihood. Also set gamma to be 0.01 · σy where σy is the standard deviation of the training example
outputs.

5. (4pts) Run your Gaussian process regression method on the dataset provided in concrete.mat. Com-
pare and report your results with a naive mean prediction. Get your hyperparameters by using your
implemented HyperParameters functions and searching over the space of hs = logspace(-1,1,10)’ *
norm(std(XTrain)) and sigmas = logspace(-1,1,10)’ * std(yTrain).

3 Kernel two sample-test [Fish; 40 pts]

Suppose you are collecting data on the expression level of gene No. 10715 after inserting a secret drug into
mice liver. There are two labs, Lab A and Lab B, that run the experiments for you and send you the results.
Of course you would hope that the environment and quality of each lab would not cause a difference in the
data between the two locations. To make it simpler, assume the data from Lab A is i.i.d drawn from a
disribution p, and the data from lab B are i.i.d. drawn from a distribution q. The question you would like
to answer is: given data X = {x1, x2, · · · , xm} collected from lab A and Y = {y1, y2, · · · , ym} collected from
lab B, is p = q?

1. (10pts) Let X be a sample space, and consider two distributions p and q. p = q if and only if
Ex∼p [f(x)] = Ey∼q [f(y)] for all f ∈ F(X ) where F(X ) is the space of bounded continuous func-
tions from X → R. Using this theorem, we define the maximum mean discrepency as

MMD [F , p, q] := sup
f∈F

(Ex∼p[f(x)]− Ey∼q [f(y)]) . (1)

To answer the question of whether p = q, if MMD [F , p, q] = 0, then we have p = q. Write the empirical
version of this MMD statement that we can estimate with a dataset X,Y from the two distributions
and all the functions in some F .
Solution:

ˆMMD [F , p, q] := sup
f∈F

(
1

m

m∑
i=1

f(xi)−
1

m

m∑
i=1

f(yi)

)
. (2)

2. (10pts) The issue with the estimate from question 2 is that we need to find a sufficiently large function
class to identify p and q, which is not practical. One way to solve this problem is to kernelize the
function to implicitly project the data into a potentially infinite space. More importantly, using a
kernel allows us to use the special properties for functions in a Reproducing Kernel Hilbert Space
(RKHS): H is a RKHS if there exists a feature mapping φ from space X to R such that, for all x ∈ X ,

f(x) = 〈f, φ(x)〉H (3)

for every f ∈ H. The subscript for the inner product indicates that the inner product is done in the
RKHS instead of our sample space. Note that here f refers to the function as an object (you can
imagine it as an vector in the RKHS), and f(x) ∈ Rd → R is defined over X .
Replace f(x) in (??) with the inner product in (??), and set F to be a unit ball in a RKHS:

F = {f : ‖f‖H ≤ 1, where ‖f‖H :=
√
〈f, f〉H}
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Derive an upper bound for MMD2 [F , p, q] using Ex∼p[φ(x)] and Ey∼q[φ(y)].

Solution:

MMD2 [F , p, q] =

[
sup
‖f‖H≤1

(Ex∼p[f(x)]− Ey∼q [f(y)])

]2
(4)

=

[
sup
‖f‖H≤1

(Ex∼p[〈f, φ(x)〉H]− Ey∼q [〈f, φ(y)〉H])

]2
(5)

=

[
sup
‖f‖H≤1

〈f,Ex∼p[φ(x)]− Ey∼q[φ(y)]〉H

]2
(6)

≤ ‖Ex∼p[φ(x)]− Ey∼q[φ(y)]‖2H (7)

3. (10pts) Replace Ex∼p[φ(x)] and Ey∼q[φ(y)] with its empirical estimates to get the kernel method of
estimating MMD.

Solution:

ˆMMD
2

[F , p, q] ≤

∥∥∥∥∥ 1

m

m∑
i=1

φ(x)− 1

m

m∑
i=1

φ(y)]

∥∥∥∥∥
2

H

(8)

=
1

m2

m∑
i=1

k(xi, xi)−
2

m2

m∑
i,i′=1

k(xi, yi′) +
1

m2
k(yi, yi) (9)

4. (10pts) We have provided a dataset containing two vectors drawn from some mystery distributions p
and q in twosample.mat. Use the the RBF kernel to test whether the two vectors of variables have
the same distribution. You can use your RBFKernel function that you wrote in question 2.1.1 with
parameters h = 10, 1, 0.1 and σ = 1 to calculate the MMD. Use the following threshold: if MMD is
less than 0.01, we say they are the same distribution, otherwise they are different.

Report in your writeup the calculated empirical MMD and your corresponding conclusion.

4 Saddle Points in optimization[Fish; 14 pts] (Bonus)

Often we solve constrained optimization problem by first transforming it into a non-constrained optimization
problem. The most common way to conduct such transformation is to introduce Lagrange multipliers and
construct a dual problem for the primal problem. Before solving the dual problem, one question we would
like to answer is: Is the optimal value for the dual problem equal to the primal problem?
Consider the convex optimization problem:

min f(x) (10)

s.t. gi(x) ≤ 0, ∀i ∈ [m], (11)

fi(x) = 0 ∀i ∈ [k], (12)

where f1, f2, · · · , fk are affine functions and f, g1, · · · , gm are convex functions. In this question, we are going
to prove that for x∗ ∈ R, if there exists Lagrange Multipliers λ∗i ≥ 0 such that (x∗, λ∗) is a saddle point of
Lagrange function L(x, λ), then x∗ is the optimal solution for the primal problem. A point (x∗, λ∗) is said
to be a saddle point of function L(x, λ) if

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) ∀x ∈ Rd, λ ∈ Rm+ × Rk. (13)
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1. (2pts) Introduce Lagrange Multipliers, λ1, λ2, · · · , λk+m, and write out the Lagrange function for the
primal problem.

Solution:

L(x, λ) = f(x) +

m∑
i=1

λigi(x) +

k∑
i=1

λi+mfi(x), (14)

where λi ≥ 0 for i = [m].

2. (2pts) Show that the infimum

L̃(λ) = inf
x
L(x, λ) (15)

of the Lagrange function in x ∈ X is a lower bound for the optimal primal value f(x∗). Also prove
that

sup
λ1,λ2,λm≥0

L(λ) (16)

is also a lower bound for the optimal primal value f(x∗).

Solution: Since x∗ is the optimal solution, it satisfies all the constrains, i.e., gi(x
∗) ≤ 0 and fi(x

∗) = 0.
We say λi ≥ 0 for i = [m], so λigi(x

∗) ≤ 0 for all i ∈ [m]. Thus, we have

L(x∗, λ) = f(x∗) +

m∑
i=1

λigi(x
∗) +

k∑
i=1

λm+ifi(x
∗) ≤ f(x∗). (17)

Since L̃(λ) = infx L(x, λ) ≤ L(x′, λ) for all x′, we have L̃(λ) ≤ f(x∗). Since we have shown that the
inequality holds for all λ that satisfies λi ≥ 0 for i ∈ [m], the supremum will also be the lower bound
for f(x∗).

3. (2pts) If (x∗, λ∗) is a saddle point of the function L(x, λ). Prove that the left half of the saddle point

conditions implies fi(x
∗) = 0 for i ∈ [k] and

m∑
i=1

λ∗i gi(x
∗) = 0, so we can conclude that f(x∗) =

L(x∗, λ∗).

Solution: The left hand part of the saddle point conditions says supλi≤0|i∈[m] L(x∗, λ) ≤ L(x∗, λ∗).
If there is some fi(x

∗) 6= 0, then we can set λi = sign(fi(x
∗))∞̇, then the lower bound becomes +∞,

which contradicts the condition. So fi(x
∗) = 0 for i ∈ [k]. For gi(x

∗), if there exists some gi(x) > 0,
then the lower bound goes to +∞ by setting λi = +∞. So gi(x

∗) ≤ 0 for i = [m]. We know that
m∑
i=1

λigi(x) ≤ 0, and there exists a trivial solution λi = 0 for i ∈ [m] such that
m∑
i=1

λigi(x) = 0. So we

conclude that f(x∗) = supλi≤0|i∈[m] L(x∗, λ) = L(x∗, λ∗).

4. (2pts) Complete the proof by saying the right half of the saddle point condition is upper bounded by
f(x∗).

Solution: Define X be the solution space that contains all the feasible points for our primal problem.

L(x∗, λ∗) ≤ inf
x
L(x, λ∗) ≤ inf

x∈X
L(x, λ∗) ≤ inf

x∈X
f(x). (18)

In the previous question, we have shown that x∗ in the saddle point (x∗, λ∗) satifies the constraints in
the primal problem, and L(x∗, λ∗) = f(x∗). So x∗ is the solution for infx∈X f(x) since it satifies all the
constraints and achieve the lower bound for f(x).

5. (2pts) The other direction of the saddle point theory says that if x∗ is a solution for the primal problem
and the primal problem satisfies Slater C.Q., then there is a λ∗ ∈ Rm+ × Rk such that (x∗, λ∗) is a
saddle point of L(x, λ). We say if a problem statisfies Slater C.Q., then there is a λ∗ such that (x∗, λ∗)
satisfies KKT conditions. Write out the KKT conditions for the optimization problem.
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Solution: Stationary:

−∇f(x∗) =

m∑
i=1

λi∇g(x∗) +

k∑
i=1

λm+i∇g(x∗) (19)

Primal feasiblility:

gi(x
∗) ≤ 0 ∀i ∈ [m]fi(x

∗) = 0 ∀i ∈ [k] (20)

Dual feasiblility:

λi ≥ 0 ∀i ∈ [m] (21)

Completmentary Slackness:

λigi(x) = 0 ∀i ∈ [m] (22)

6. (2pts) Use Primal feasibility, dual feasibility and complementary slackness to show the left half of the
saddle point conditions.

Solution: For all lambda that satisfies λi ≥ 0 for i ∈ [m],

L(x∗, λ) = f(x∗) +

m∑
i=1

λigi(x
∗) +

k∑
i=1

λm+ifi(x
∗) ≤ f(x∗) (23)

≤ f(x∗) (24)

= f(x∗) +

m∑
i=1

λ∗i gi(x
∗) +

k∑
i=1

λ∗m+ifi(x
∗) ≤ f(x∗) (25)

= L(x∗, λ∗), (26)

7. (2pts) Use dual feasibility to show the right half of the saddle point condition is a convex function in
x, so the stationary condition in KKT implies that the right half of the saddle point condition should
be satisfied. (Hint: Use the convexity properties we had proved in HW1.)

Solution: Since f, g1, g2, · · · , gm are convex function and λi ≥ for i ∈ [m], the summation of these
functions is still a convex function. Besides, f1, · · · , fk are affine functions, so adding them does not
affect the convexity. Since right hand side is a convex funciton, the extreme value happens at a point
that has gradient equals to zero. Stationary condition in KKT says that the optimal solution satisfies
such property, so they are the lower bound for L(x, λ∗).
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