Designing With Diagrams

Chris Martens
Computer Science Department
Carnegie Mellon University

Human Aspects of Software Development
Spring 2011

Under scrutiny:

How Software Engineers plan and
design software using diagrams/visual
notations.

What's a Diagram?

a simplified and structured visual representation
that shows entities and relationships
representing the architecture or implementation
of a software system.

[Cherubini et. al. 2007 - "Let's Go to the
Whiteboard"]

Not:
Visual Programming
Code Visualization

Design diagrams come into
play separately from the act of
programming.

A good first question:

Are (visual) metaphors actually useful?

"[...] software engineers frequently talk about software
behavior in terms of what a component 'knows' or is 'trying to
do." This strikes many as sloppy and imprecise, hence
undesirable. Dijkstra [12] has gone so far as to suggest that
computer science faculty implement a system of fines to stamp
it out among their students, although he acknowledges this
would be very difficult to do."

[Herbsleb 1999 - "Metaphorical Representation in
Collaborative Software Engineering”]

Several papers bring up:

e The efficacy of drawings in other disciplines
(architecture, mechanical and electrical
engineering -- obvious spatial metaphors)

e Cognitive science literature supporting ease of
mental processing: parallel instead of
sequential; compact instead of linear.

But maybe SE is different?

Before we can make such
judgments...

"Let's Go to the Whiteboard: How and Why
Software Developers Use Drawings”

[Cherubini et. al. 2007]

Four central concerns:

A. How do engineers use diagrams in their work?
B. Why do engineers use diagrams in their work?
C. What graphical conventions do engineers use”

D. What is the culture around these drawings?

Their method:

Interviews and surveys of Microsoft developers.

e 45 minute semi-structured interview: what,
when, why, how questions
e Broader survey on nine recurring scenarios

Findings

Visual conventions:

e Iconic representations (db = cylinder, computer
= tower, person = stick figure)

e Circles (state diagrams) and boxes

e Labels; meaningful size

e Arrows for relationships: usually pointing
rightward or downward

e Colors rarely used

Findings

Many entities and relationships:

e Classes, methods, binaries, processes,
databases, hardware, Ul screens, states,
people

e Inheritance, data reference (e.g. pointers),
data access ("talks to"), procedure call,
message passing, transition, containment

Findings

Motivations and Scenarios:

Motivation —
Understand Design Communicate
Transient | 1) Understand 3) Refactor
€ | Reiterated | 2) Ad-hoc 5) Onboarding
§ 6) Secondary
3 stakeholders
£ | Rendered 4) Design review | 7) Customer
{ | Archival 8) Hallway art
9) Documentation

Table 2: The model of diagram use derived from interviews and
survey responses. Scenarios are categorized by the developer’s
motivation for creating the drawing and the developer’s
investment in the evolution process of the drawing.

Answers to questions

A. How do engineers use diagrams in their work?

e Transient forms for exploration (whiteboards,
scrap paper, notebooks

e More permanent renderings for
communication with others

"The transience of casual sketches seems to be a
difference with other disciplines like architecture, where
these are often archived with great care as a record of
design process."

Answers to questions

C. Which graphical conventions are used?

e Solo/peer-to-peer: no graphical standard! (like
UML...) Assumed meanings depend on
context.

e Visualizations in documentation out-of-date;
rarely used.

Answers to questions

D. What is the culture around these drawings?

e Limited adoption of drawing tools

e Developers remain focused on the code itself.

e Particular diagrams had value; used for
design reiteration.

e Diagrams generated automatically "less
interesting” than those produced in a
collaborative effort

Tool Implications?

"Many of the developers interviewed suggested
that they desired some sort of 'intelligent
whiteboard’' to augment the drawing process and
capture the result in electronic form."

So they made a prototype...

Building an Ecologically valid, Large-scale
Diagram to Help Developers Stay Oriented In
Their Code

[Cherubini et. al. 2007]

The "code map”

A large paper "map" of the types and
relationships in the existing code base, updated
every day, hung up in the hallway.

After initial feedback: also "MiniMaps".

But no one used it

Very little interaction, except for onboarding.

Why?

e \Wrong level of detall

e Content too static: couldn't display different
relationships for different use cases

e Layout too static: couldn't zoom or rearrange
to adapt to different conversation scope.

A different angle

The "Physics" of Notations: Toward
a Scientific Basis for Constructing
Visual Notations in Software
Engineering

[Moody 2009]

A different angle

Along similar lines to "cognitive dimensions”,
applied specifically to diagrams.

[...but, they criticize, CD's "level of generality
precludes specific predictions, meaning that it
Is unfalsifiable."]

Objectives

To "establish the foundations for a science of
visual notation design.”

Points out that SE has neither theory nor a
body of empirical evidence for design
practices -- leads to repeating common
practices without careful thought.

Ontological analysis/mappings

There should be a one-to-one mapping
between notation (visual constructs) and
ontology (formal concepts).

Violations: construct deficit, overload,
redundancy, excess

Principles:

4.1 Semiotic Clarity

4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management
4.5 Cognitive Integration

4.6 Visual Expressiveness

4.7 Dual Coding

4.8 Graphic Economy

4.9 Cognitive Fit

Principles:

4.1 Semiotic Clarity
1:1 correspondence between semantic
constructs and graphical symbols.

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
Different symbols should be distinguishable.

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
Use representations whose appearance
suggests their meaning.

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management

Include explicit mechanisms for dealing with
complexity (e.g. modularization/hierarchical
structure)

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management
4.5 Cognitive Integration
Include explicit mechanisms to support
integration of information from different
diagrams (e.g. contextualization; navigation)

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management
4.5 Cognitive Integration
4.6 Visual Expressiveness
Use the full range of visual variables (not just
shape... texture, brightness, size, color)

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management
4.5 Cognitive Integration
4.6 Visual Expressiveness
4.7 Dual Coding
Use text to complement graphics

Principles:

4.1 Semiotic Clarity

4.2 Perceptual Discriminability

4.3 Semantic Transparency

4.4 Complexity Management

4.5 Cognitive Integration

4.6 Visual Expressiveness

4.7 Dual Coding

4.8 Graphic Economy

he number of different symbols should be
cognitively manageable

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management
4.5 Cognitive Integration
4.6 Visual Expressiveness
4.7 Dual Coding
4.8 Graphic Economy
4.9 Cognitive Fit
Different visual dialects for different audiences

Empirical Validation?

Comprehension of diagram syntax: an
empirical study of Entity Relationship
notations

[Purchase et. al. 2004]

Aims:

e Raise the issue of criteria by which
notation may be chosen

e Propose a methodology to compare two
complete notations

e Demonstrate an application of the
methodology by performing an experiment

Two forms of Entitity Relationship
(ER) Diagrams

Academic

Chen >

N

N M 1 1
Subject Student | Project

Figure 1: The student application using the Chen notation [1]

VS

Academic

PRppp——

SSADM |

enrollec in works on
Subject > < Student |fpeccccccccaa Projact

Figure 2: The student application using the SSADM notation [2]

Experimental setup

Participants (university students) given a
tutorial on the two notations, then a textual
specification plus several diagrams: asked
to indicate (yes/no) whether the diagrams
meets the spec.

Measurements: correctness and response
time.

Findings

SSADM notation better understood.

Faster response times, but error rate the
same.

Subjectively preferred (particularly cardinality
notation)

Primary conclusion: "conciseness” wins.

Conclusion

IMO:

A lot of this work seems inconclusive.

To what extent can we apply design

principles and results of studies to the ad-hoc
diagram style commonly used?

To what extent are SE diagrams helpful when
compared to text?

