
Designing With Diagrams

Chris Martens
Computer Science Department

Carnegie Mellon University

Human Aspects of Software Development
Spring 2011

Under scrutiny:

How Software Engineers plan and
design software using diagrams/visual

notations.

What's a Diagram?

a simplified and structured visual representation
that shows entities and relationships
representing the architecture or implementation
of a software system.

[Cherubini et. al. 2007 - "Let's Go to the
Whiteboard"]

Not:
Visual Programming
Code Visualization

Design diagrams come into
play separately from the act of

programming.

A good first question:

Are (visual) metaphors actually useful?

 "[...] software engineers frequently talk about software
behavior in terms of what a component 'knows' or is 'trying to
do.' This strikes many as sloppy and imprecise, hence
undesirable. Dijkstra [12] has gone so far as to suggest that
computer science faculty implement a system of fines to stamp
it out among their students, although he acknowledges this
would be very difficult to do."

 [Herbsleb 1999 - "Metaphorical Representation in
Collaborative Software Engineering"]

Several papers bring up:

The efficacy of drawings in other disciplines
(architecture, mechanical and electrical
engineering -- obvious spatial metaphors)
Cognitive science literature supporting ease of
mental processing: parallel instead of
sequential; compact instead of linear.

But maybe SE is different?

Before we can make such
judgments...

"Let's Go to the Whiteboard: How and Why
Software Developers Use Drawings"

[Cherubini et. al. 2007]

Four central concerns:

A. How do engineers use diagrams in their work?

B. Why do engineers use diagrams in their work?

C. What graphical conventions do engineers use?

D. What is the culture around these drawings?

Their method:

Interviews and surveys of Microsoft developers.

45 minute semi-structured interview: what,
when, why, how questions
Broader survey on nine recurring scenarios

Findings

Visual conventions:
Iconic representations (db = cylinder, computer
= tower, person = stick figure)
Circles (state diagrams) and boxes
Labels; meaningful size
Arrows for relationships: usually pointing
rightward or downward
Colors rarely used

Findings

Many entities and relationships:
Classes, methods, binaries, processes,
databases, hardware, UI screens, states,
people
Inheritance, data reference (e.g. pointers),
data access ("talks to"), procedure call,
message passing, transition, containment

Findings

Motivations and Scenarios:

Answers to questions

A. How do engineers use diagrams in their work?

Transient forms for exploration (whiteboards,
scrap paper, notebooks
More permanent renderings for
communication with others

"The transience of casual sketches seems to be a
difference with other disciplines like architecture, where
these are often archived with great care as a record of
design process."

Answers to questions

C. Which graphical conventions are used?

Solo/peer-to-peer: no graphical standard! (like
UML...) Assumed meanings depend on
context.
Visualizations in documentation out-of-date;
rarely used.

Answers to questions

D. What is the culture around these drawings?

Limited adoption of drawing tools
Developers remain focused on the code itself.
Particular diagrams had value; used for
design reiteration.
Diagrams generated automatically "less
interesting" than those produced in a
collaborative effort

Tool Implications?

"Many of the developers interviewed suggested
that they desired some sort of 'intelligent

whiteboard' to augment the drawing process and
capture the result in electronic form."

Building an Ecologically valid, Large-scale
Diagram to Help Developers Stay Oriented in

Their Code

[Cherubini et. al. 2007]

So they made a prototype...

A large paper "map" of the types and
relationships in the existing code base, updated

every day, hung up in the hallway.

After initial feedback: also "MiniMaps".

The "code map"

Very little interaction, except for onboarding.

But no one used it

Wrong level of detail
Content too static: couldn't display different
relationships for different use cases
Layout too static: couldn't zoom or rearrange
to adapt to different conversation scope.

Why?

The "Physics" of Notations: Toward
a Scientific Basis for Constructing

Visual Notations in Software
Engineering

[Moody 2009]

A different angle

Along similar lines to "cognitive dimensions",
applied specifically to diagrams.

[...but, they criticize, CD's "level of generality
precludes specific predictions, meaning that it

is unfalsifiable."]

A different angle

To "establish the foundations for a science of
visual notation design."

Points out that SE has neither theory nor a
body of empirical evidence for design

practices -- leads to repeating common
practices without careful thought.

Objectives

There should be a one-to-one mapping
between notation (visual constructs) and

ontology (formal concepts).

Violations: construct deficit, overload,
redundancy, excess

Ontological analysis/mappings

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management
4.5 Cognitive Integration
4.6 Visual Expressiveness
4.7 Dual Coding
4.8 Graphic Economy
4.9 Cognitive Fit

Principles:

4.1 Semiotic Clarity
 1:1 correspondence between semantic
constructs and graphical symbols.

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
 Different symbols should be distinguishable.

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
 Use representations whose appearance
suggests their meaning.

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management
 Include explicit mechanisms for dealing with
complexity (e.g. modularization/hierarchical
structure)

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management
4.5 Cognitive Integration
 Include explicit mechanisms to support
integration of information from different
diagrams (e.g. contextualization; navigation)

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management
4.5 Cognitive Integration
4.6 Visual Expressiveness
 Use the full range of visual variables (not just
shape... texture, brightness, size, color)

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management
4.5 Cognitive Integration
4.6 Visual Expressiveness
4.7 Dual Coding
 Use text to complement graphics

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management
4.5 Cognitive Integration
4.6 Visual Expressiveness
4.7 Dual Coding
4.8 Graphic Economy
 The number of different symbols should be
cognitively manageable

Principles:

4.1 Semiotic Clarity
4.2 Perceptual Discriminability
4.3 Semantic Transparency
4.4 Complexity Management
4.5 Cognitive Integration
4.6 Visual Expressiveness
4.7 Dual Coding
4.8 Graphic Economy
4.9 Cognitive Fit
 Different visual dialects for different audiences

Principles:

Comprehension of diagram syntax: an
empirical study of Entity Relationship

notations

[Purchase et. al. 2004]

Empirical Validation?

Raise the issue of criteria by which
notation may be chosen
Propose a methodology to compare two
complete notations
Demonstrate an application of the
methodology by performing an experiment

Aims:

Two forms of Entitity Relationship
(ER) Diagrams

Chen

vs

SSADM

Experimental setup

Participants (university students) given a
tutorial on the two notations, then a textual
specification plus several diagrams: asked
to indicate (yes/no) whether the diagrams
meets the spec.

Measurements: correctness and response
time.

Findings

SSADM notation better understood.

Faster response times, but error rate the
same.

Subjectively preferred (particularly cardinality
notation)

Primary conclusion: "conciseness" wins.

Conclusion

IMO:

A lot of this work seems inconclusive.

To what extent can we apply design
principles and results of studies to the ad-hoc
diagram style commonly used?

To what extent are SE diagrams helpful when
compared to text?

