
Lecture 26:
Constraints and Data Bindings

05-431/631 Software Structures for User
Interfaces (SSUI)
Fall, 2022

© 2021 Brad Myers 1

Logistics
 Last regular lecture!
 Student group presentations

Thursday+Friday
 Everyone is expected to attend both in person

 Please fill out the class questionnaire:
https://www.surveymonkey.com/r/SSUI2022Fall-Final

© 2021 Brad Myers 2

https://www.surveymonkey.com/r/SSUI2022Fall-Final

Constraints
 Relationships defined once and maintained by the

system
 Useful for keeping parts of the graphics together.
 Also for passing values around
 Typically expressed as arithmetic or code

relationships among variables.
 Variables are often the properties of objects (left, color)

 Types:
 "Dataflow" constraints; Choices:

 Single-Output vs. Multi-output
 Types: One-way, Multi-way, Simultaneous equations, Incremental,

Special purpose
 Cycles: supported or not

 Others: AI systems, scheduling systems, etc.

3© 2021 Brad Myers

Historical Note: “Active Values”
 Old Lisp systems had active values
 Attach procedures to be called when changed

 Similar to today’s “Listeners” or “Observer
pattern”

 Like the “inverse” of constraints
 Procedures are attached to values which change

instead of values where needed
 Push vs. Pull

 Inefficient because all downstream values are
re-evaluated, possibly many times
 E.g., when x and y values change

4© 2021 Brad Myers

Important Historical
Constraint Systems
 Alan Borning’s ThingLab (1979)
 Spreadsheets (~1979)
 Peridot (1987) (Myers)
 Garnet & Amulet (1989, 1994) (Myers)
 Graphics and “data bindings”

 DeltaBlue (1990) (Freemen-Benson)
 SkyBlue (1994) (Michael Sannella)

 subarctic (Hudson) (1991)
 Gleicher’s (1993)
 …

© 2021 Brad Myers 5

Some Constraint Systems Today
 Apple constraints for “Auto Layout”
 Toolkit and windows “layout managers”/”geometry

managers” (lecture 10)
 “data bindings”

 Usually one-to-one two-way connections
 Adobe Flex, AngularJS

 Google’s AngularJS (before v2)
 Most AutoDesk (CAD) products, e.g., Fusion 360 for 2D &

geometric
 Ember. http://emberjs.com/

 MVC, “Computed Values” of properties
 KnockoutJS. http://knockoutjs.com/

 “Declarative Bindings”, “Dependency Tracking”
 Research: Stephen Oney’s ConstraintJS https://from.so/

(2012)

© 2021 Brad Myers 6

http://emberjs.com/
https://guides.emberjs.com/release/components/component-state-and-actions/
http://knockoutjs.com/
https://from.so/Myers_et_al-UIST2012-ConstraintJS_Programming_Interactive_Behaviors_for_the_Web_by_Integrating_Constraints_and_States

Angular Data Bindings
 Tie DOM properties to other values
 Can be one-way or two-way
 Use [] to bind from source to view.
 Use () to bind from view to source.
 Use [()] to bind

in a two way
sequence of
view to source
to view.

© 2021 Brad Myers 7

https://angular.io
/guide/binding-
syntax

https://angular.io/guide/architecture-
components#data-binding

https://angular.io/guide/binding-syntax
https://angular.io/guide/architecture-components#data-binding

One Way Constraints
 Simplest form of constraints
 D = F(I1, I2, ... In)
 Often called formulas since like spreadsheets
 Can be other dependencies on D

CurrentSliderVal = mouse.X - scrollbar.left
scrollbar.left = window.left + 200
scrollbar.visible = window.has_focus

8© 2021 Brad Myers

Data flow graph
 Nodes for variables (values) grouped into

objects
 Lines for data flow for the constraints
 Reverse direction of lines for “dependencies”
 E.g., A = B+5
 B’s value flows to A

 A’s value depends on B

 Often need back-pointers too to clean up
when change

© 2021 Brad Myers 9

A = 15 B = 10

A = 15 B = 10

One Way Constraints
CurrentSliderVal = mouse.X - scrollbar.left
scrollbar.left = window.left + 200
scrollbar.visible = window.has_focus

10© 2021 Brad Myers

Window

…
left = 50

top = 5

scrollbar

…
left = f3() = 250

top = 835

has_focus = truevisible = f2() = true

mouse

X = 267

Y = 840

CurrentSliderVal = f1() =17

One Way Constraints, cont.
 Not just for numbers: mycolor = x.color
 Implementations:

1. Just re-evaluate all required equations every
time a value is requested
 least storage, least overhead
 Equations may be re-evaluated many times when

not changed. (e.g, scrollbar.left when mouse
moves)

 cycles:
file_position = F1(scrollbar.Val)
scrollbar.Val = F2(file_position)

 Objects may jitter – change X and then change Y
 Cannot detect when values change (to optimize

redraw)
2. More efficient algorithms are available

11
© 2021 Brad Myers

Garnet / Amulet
Constraint Solving
 Default: one-way, data flow constraints with

variables in the dependencies, support for
cycles, and multiple changes before solving
 Efficient enough for ubiquitous use
 Garnet text button widget contained 43 constraints

internally, and the Lapidary graphical interface builder
contained 16,700 constraints

 Also can bring in alternative solvers
 Brad Vander Zanden’s multi-way solver

[Vander Zanden 1996]
 “Animation Constraints” [Myers 1996]

 Snippets of video for Garnet and Amulet
constraints

© 2021 Brad Myers 12

https://youtu.be/wc8A0woo0X4?t=106
https://youtu.be/J3MRifpaCOI?list=PL3856C8FlIWfr_tX8CMUhOJvl34ylClgb&t=164

Garnet / Amulet Default
Algorithm

 Variables in the dependencies
 Example: D = p^.left + A
 Important innovation in Garnet we

invented, now ubiquitous
 Supports feedback objects

 outlineRect.left = selectedObject^.left …

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

 Supports loops: D = Max(components^)
 Only evaluates needed part of conditionals

width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

 Requires the dependencies be dynamically determined

© 2021 Brad Myers 13

D=f()=? p = obj1

A = 15

obj1

left = 12

top = 5

obj2

left = 22

top = 15

Garnet / Amulet Default
Algorithm

 Variables in the dependencies
 Example: D = p^.left + A
 Important innovation in Garnet we

invented, now ubiquitous
 Supports feedback objects

 outlineRect.left = selectedObject^.left …

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

 Supports loops: D = Max(components^)
 Only evaluates needed part of conditionals

width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

 Requires the dependencies be dynamically determined

© 2021 Brad Myers 14

D=f()=27 p = obj1

A = 15

obj1

left = 12

top = 5

obj2

left = 22

top = 15

Garnet / Amulet Default
Algorithm

 Variables in the dependencies
 Example: D = p^.left + A
 Important innovation in Garnet we

invented, now ubiquitous
 Supports feedback objects

 outlineRect.left = selectedObject^.left …

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

 Supports loops: D = Max(components^)
 Only evaluates needed part of conditionals

width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

 Requires the dependencies be dynamically determined

© 2021 Brad Myers 15

D=f()=37 p = obj2

A = 15

obj1

left = 12

top = 5

obj2

left = 22

top = 15

Examples of Expressing Constraints
 Garnet:
(create-instance NIL opal:line

(:points '(340 318 365 358))
(:grow-p T)
(:x1 (o-formula (first (gvl :points))))
(:y1 (o-formula (second (gvl :points))))
(:x2 (o-formula (third (gvl :points))))
(:y2 (o-formula (fourth (gvl :points)))))

 Amulet:
Am_Define_Formula (int, height_of_layout) {
int h = (int)Am_Height_Of_Parts(self) + 2 *

((int)self.Get(Am_TOP_OFFSET));
return h < 75 ? 75 : h;

}

am_empty_dialog = Am_Window.Create("empty_dialog_window")
.Set (Am_LEFT_OFFSET, 5) // used in width_of_layout
.Set (Am_TOP_OFFSET, 5) // used in height_of_layout
.Set (Am_WIDTH, width_of_layout)
.Set (Am_HEIGHT, height_of_layout)

...

16© 2021 Brad Myers

Other One-Way Variations
 Multiple outputs
 (D1, D2, ... Dm) = F(I1, I2, ... In)

 Side-effects in the formulas
 useful for creating objects
 when happen?
 what if create new objects with new constraints
 cycles cannot be detected

 Constant formula elimination
 To decrease the size used by constraints

© 2021 Brad Myers 17

Two-Way (Multi-way) Constraints
 From ThingLab (~1979)

 Alan Borning. “Defining Constraints Graphically,” Human Factors in Computing
Systems. Boston, MA, Apr, 1986. pp. 137-143. Proceedings SIGCHI'86.

 Constraints are expressions with multiple variables
 Any may be modified to get the right values
 Example: A.right = A.left + A.width - 1
 Often requires programmer

to provide methods for
solving the constraint in
each direction:
A.left = A.right - A.width + 1
A.width = A.right - A.left + 1

 Useful if mouse expressed
as a constraint

18© 2021 Brad Myers

Two-Way implementations
 Requires a planning step to decide which way to solve

 Many systems compute plans and save them around since usually
change same variable repeatedly

 In general, have a graph of dependencies, find a path
through the graph

 How control which direction is solved?
CurrentSliderVal = mouseX - scrollbar.left
 "Constraint hierarchies" = priorities

 constants, interaction use "stay" constraints with high priority
 Dynamically add and remove constraints

 Brad Vander Zanden's "QuickPlan" solver
 Handles multi-output, multi-way cyclic constraints in O(n2) time

instead of exponential like previous algorithms

19© 2021 Brad Myers

Simultaneous Equations
 Required for parallel, perpendicular lines;

tangency, etc.
 Also for aggregate's size
 Numerical (relaxation)

or symbolic techniques
 Thinglab bridge (1979)

(cite)

20© 2021 Brad Myers

https://constraints.cs.washington.edu/ui/thinglab-tr.pdf

Incremental
 Michael Gleicher's PhD thesis, 1994
 Only express forward computations
 Tries to get reverse by incrementally

changing the forward computation in the right
direction using
derivatives.

 Supports interactions
otherwise not possible

 Produces smooth
animations

21© 2021 Brad Myers

Animation Constraints in
Amulet
 Implemented using Amulet's constraint

mechanism
 When slot set with a new value, restores old

value, and animates from old to new value
 Usually, linear interpolation
 For colors, through either HSV or RGB space
 For visibility, various special effects between

TRUE and FALSE
 Demo

22© 2021 Brad Myers

Other Forms of Constraints
 For UI work, typically express in form of

equations
 Often just data-copying (equality): this.x = that.x
 For graphics, usually arithmetic required:
 this.x = that.x + that.w + 5

 5 pixels to the right
 this.x = that.x + that.w/2 - this.w/2

 centered
 this.w = 10 + max (child[i].x + child[i].w)

 10 larger than children

© 2021 - Scott Hudson and Brad Myers 23

Implementation Note
 Implementation details (the rest of these

slides) will not be on the final test

© 2021 Brad Myers 24

Dependency graphs for
Implementation
 Useful to look at a system of constraints as a

“dependency graph”
 graph showing what depends on what
 two kinds of nodes (bipartite graph)
 variables (values to be constrained)
 constraints (equations that relate)

© 2021 - Scott Hudson and Brad Myers 25

Dependency graphs
Example: A = f(B, C, D)

Edges are dependencies

A
B
C
D

f

© 2021 - Scott Hudson and Brad Myers 26

Dependency graphs
Dependency graphs chain together:

X = g(A, Y)

A
B
C
D

fX

Y

g

© 2021 - Scott Hudson and Brad Myers 27

Kinds of constraint systems
 Actually lots of kinds, but 3 major varieties used in

UI work
 one-way, multi-way, numerical (less use)
 reflect kinds of limitations imposed
 Reminder: Angular has both one-way and multi-way

 One-Way constraints
 must have a single variable on LHS
 information only flows to that variable

 can change B,C,D system will find A
 can’t do reverse (change A …)

© 2021 - Scott Hudson and Brad Myers 28

One-Way constraints
Results in a directed dependency graph:
A = f(B,C,D)

Normally require dependency graph
to be acyclic
 cyclic graph means cyclic definition

A
B
C
D

f
NOTE: These
arrows are in
the dataflow
direction. Not
dependency

© 2021 - Scott Hudson and Brad Myers 29

One-Way constraints
 Problem with one-way:

introduces an asymmetry
 this.x = that.x + that.w + 5
 can move “that” (change that.x)

but can’t move “this”

© 2021 - Scott Hudson and Brad Myers 30

Multi-way constraints
Don’t require info flow only to the left in
equation
 can change A and have system find B,C, and/or D

Not as hard as it might seem
 most systems require you to explicitly factor the

equations for them
 provide B = g(A,C,D), etc.

 I believe this is true for Angular two-way bindings
– have to supply a function for each “way” unless
equality

© 2021 - Scott Hudson and Brad Myers 31

A = f(B,C,D)

Multi-way constraints
 Modeled as an undirected dependency graph

 No longer have asymmetry

© 2021 - Scott Hudson and Brad Myers 32

Multi-way constraints
But all is not rosy
 most efficient algorithms require that dependency

graph be a tree (acyclic undirected graph)

A
B
C
D

fX

Y

g

© 2021 - Scott Hudson and Brad Myers 33

Multi-way constraints
But: A = f(B,C,D) & X = h(D,A)

Not OK because it has a cycle (not a tree)

A
B
C
D

fX h

© 2021 - Scott Hudson and Brad Myers 34

Another important issue
 A set of constraints can be:
 Over-constrained
 No valid solution that meets all constraints

 Under-constrained
 More than one solution
 sometimes infinite numbers

© 2021 - Scott Hudson and Brad Myers 35

Over- and under-constrained
 Over-constrained systems
 solver will fail
 isn’t nice to do this in interactive systems
 typically need to avoid this
 need at least a “fallback” solution

© 2021 - Scott Hudson and Brad Myers 36

Over- and under-constrained
 Under-constrained
 many solutions
 system has to pick one
 may not be the one you expect
 example: constraint: point stays at midpoint of line

segment
 move end point, then?

© 2021 - Scott Hudson and Brad Myers 37

Over- and under-constrained
 Under-constrained
 example: constraint: point stays at midpoint of line

segment
 move end point, then?
 Lots of valid solutions
 move other end point
 collapse to one point
 etc.

© 2021 - Scott Hudson and Brad Myers 38

Over- and under-constrained
 Good news is that one-way is never over- or

under-constrained (assuming acyclic)
 system makes no arbitrary choices
 pretty easy to understand

© 2021 - Scott Hudson and Brad Myers 39

Over- and under-constrained
 Multi-way can be either over- or under-

constrained
 have to pay for extra power somewhere
 typical approach is to over-constrain, but have a

mechanism for breaking / loosening constraints in
priority order
 one way: “constraint hierarchies”

© 2021 - Scott Hudson and Brad Myers 40

Over- and under-constrained
 Multi-way can be either over- or under-

constrained
 unfortunately system still has to make arbitrary

choices
 generally harder to understand and control

© 2021 - Scott Hudson and Brad Myers 41

Implementing constraints
 Algorithm for one-way systems
 Need bookkeeping for variables
 For each keep:

value - the value of the var
eqn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg

© 2021 - Scott Hudson and Brad Myers 42

Implementing constraints
 Algorithm for one-way systems
 Need bookkeeping for variables
 For each keep:

value - the value of the var
eqn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg

Incoming
Edges

© 2021 - Scott Hudson and Brad Myers 43

Naïve algorithm
For each variable v do
evaluate(v)

evaluate(v):
Parms = empty
for each DepVar in v.dep do

Parms += evaluate(DepVar)
v.value = v.eqn(Parms)
return v.value

© 2021 - Scott Hudson and Brad Myers 44

Why is this not a good plan?

© 2021 - Scott Hudson and Brad Myers 45

Exponential Wasted Work

© 2021 - Scott Hudson and Brad Myers

NOTE: These
arrows are in
the dataflow
direction. Not
dependency

46

Exponential Wasted Work

1 3 279 3n

© 2021 - Scott Hudson and Brad Myers 47

Exponential Wasted Work
Breadth first does not fix this

No fixed order works for all graphs
Must respect topological ordering of
graph (do in reverse topsort order)

1 2 84 2n

© 2021 - Scott Hudson and Brad Myers 48

Simple algorithm for one-way
(Embed evaluation in topsort)
After any change:
// reset all the marks

for each variable V do

V.done = false

// make each var up-to-date

for each variable V do

evaluate(V)
© 2021 - Scott Hudson and Brad Myers 49

Simple algorithm for one-way
evaluate(V):
if (!V.done)
V.done = true

Parms = empty

for each DepVar in V.dep do
Parms += evaluate(DepVar)

V.value = V.eqn(Parms)

return V.value

© 2021 - Scott Hudson and Brad Myers 50

Still a lot of wasted work
 Typically only change small part of system,

but this algorithm evaluates all variables
every time

 Also evaluates variables even if nothing they
depend on has changed, or system never
needs value
 e.g., with non-strict functions such as boolean ops

and conditionals

© 2021 - Scott Hudson and Brad Myers 51

An efficient incremental
algorithm
 Add bookkeeping
 For each variable: OODMark
 “Out Of Date mark”
 Indicates variable may be out of date with respect to

its constraint
 For each dependency edge: pending
 Indicates that variable depended upon has changed,

but value has not propagated across the edge

© 2021 - Scott Hudson and Brad Myers 52

Part one (of two)
When variable (or constraint)
changed, call MarkOOD() at point
of change

MarkOOD(v): [x]
if !v.OODMark
v.OODMark = true
for each depV depending upon v do
MarkOOD(depV)

© 2021 - Scott Hudson and Brad Myers 53

Part one (of two)
When variable (or constraint)
changed, call MarkOOD() at point
of change

MarkOOD(v):
if !v.OODMark
v.OODMark = true
for each depV depending upon v do
MarkOOD(depV)

Outgoing
Edges

© 2021 - Scott Hudson and Brad Myers 54

Part 2: only evaluate variables
when value requested (lazy
eval)
Evaluate(v):
if v.OODMark
v.OODMark = false

Parms = empty

for each depVar in V.dep do
Parms += Evaluate(depVar)

UpdateIfPending(v,Parms)

return v.value

© 2021 - Scott Hudson and Brad Myers 55

Part 2: only evaluate variables
when value requested (lazy
eval)
Evaluate(v):
if v.OODMark
v.OODMark = false

Parms = empty

for each depVar in V.dep do
Parms += Evaluate(depVar)

UpdateIfPending(v,Parms)

return v.value

Incoming
Edges

© 2021 - Scott Hudson and Brad Myers 56

UpdateIfPending(v,Parms):
pendingIn = false //any incoming pending?
For each incoming dep edge E do

pendingIn |= E.pending
E.pending = false

if pendingIn
newVal = V.eqn(Parms) [*]
if newval != v.value

v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

Part 2: only evaluate variables
when value requested (lazy
eval)

© 2021 - Scott Hudson and Brad Myers 57

UpdateIfPending(v,Parms):
pendingIn = false //any incoming pending?
For each incoming dep edge E do

pendingIn |= E.pending
E.pending = false

if pendingIn
newVal = V.eqn(Parms) [*]
if newval != v.value

v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

Part 2: only evaluate variables
when value requested (lazy
eval)

Can do lazy evaluation
here

© 2021 - Scott Hudson and Brad Myers 58

Example

© 2021 - Scott Hudson and Brad Myers 59

Example

Change Here © 2021 - Scott Hudson and Brad Myers 60

Example
Mark out of date

© 2021 - Scott Hudson and Brad Myers 61

Example
Eval this

© 2021 - Scott Hudson and Brad Myers 62

Example

© 2021 - Scott Hudson and Brad Myers 63

Example

© 2021 - Scott Hudson and Brad Myers 64

Example

Don’t need to
eval any of these! (Not out-of-date)© 2021 - Scott Hudson and Brad Myers 65

Example

© 2021 - Scott Hudson and Brad Myers 66

Example

© 2021 - Scott Hudson and Brad Myers 67

Example

(Trivial) eval
© 2021 - Scott Hudson and Brad Myers 68

Example

Eval

© 2021 - Scott Hudson and Brad Myers 69

Example

Eval

© 2021 - Scott Hudson and Brad Myers 70

Example
Eval

© 2021 - Scott Hudson and Brad Myers 71

Example Done

© 2021 - Scott Hudson and Brad Myers 72

Example

Notice we can do that
1000 times and these
never get evaluated
because they aren’t needed

© 2021 - Scott Hudson and Brad Myers 73

Rewind

Suppose this value didn’t change
© 2021 - Scott Hudson and Brad Myers 74

Example 2

No pending marks placed here
© 2021 - Scott Hudson and Brad Myers 75

Example 2
Skip eval
(and no outgoing
pending marks)

© 2021 - Scott Hudson and Brad Myers 76

Example 2
Skip eval

© 2021 - Scott Hudson and Brad Myers 77

Example 2 Done

Didn’t have to eval these

© 2021 - Scott Hudson and Brad Myers 78

Algorithm is “partially optimal”
 Optimal in set of equations evaluated [*]
 Under fairly strong assumptions

 Does non-optimal total work [x]
 “Touches” more things than optimal set during

Mark_OOD phase
 Fortunately simplest / fastest part

 Very close to theoretical lower bound
 No better algorithm known

© 2021 - Scott Hudson and Brad Myers 79

Good asymptotic result, but
also very practical
 Minimal amount of bookkeeping
 Simple and statically allocated
 Only local information

 Operations are simple
 Also has very simple extension to handling

pointers and dynamic dependencies

© 2021 - Scott Hudson and Brad Myers 80

Multi-way implementation
 Use a “planner” algorithm to assign a

direction to each undirected edge of
dependency graph

 Now have a one-way problem

© 2021 - Scott Hudson and Brad Myers 81

The DeltaBlue incremental
planning algorithm
 Assume “constraint hierarchies”
 Strengths of constraints
 Important to allow more control when over or

under constrained
 Force all to be over constrained, then relax weakest

constraints
 Substantially improves predictability

 Restriction: acyclic (undirected) dependency
graphs only

© 2021 - Scott Hudson and Brad Myers 82

A plan is a set of edge
directions
 Assume we have multiple methods for

enforcing a constraint
 One per (output) variable
 Picking method sets edge directions

 Given existing plan and change to
constraints, find a new plan

© 2021 - Scott Hudson and Brad Myers 83

Finding a new plan
 For added constraints
 May need to break a weaker constraint

(somewhere) to enforce new constraint
 For removed constraints
 May have weaker unenforced constraints that can

now be satisfied

© 2021 - Scott Hudson and Brad Myers 84

Finding possible constraints
to break when adding a new
one
 For some variable referenced by new

constraint
 Find an undirected path from var to a variable

constrained by a weaker constraint (if any)
 Turn edges around on that path
 Break the weaker constraint

© 2021 - Scott Hudson and Brad Myers 85

Key to finding path:
“Walkabout Strengths”
 Walkabout strength of variable indicates

weakest constraint “upstream” from that
variable
 Weakest constraint that could be revoked to allow

that variable to be controlled by a different
constraint

© 2021 - Scott Hudson and Brad Myers 86

Walkabout strength
 Walkabout strength of var V currently defined

by method M of constraint C is:
 Min of C.strength and walkabout strengths of

variables providing input to M

© 2021 - Scott Hudson and Brad Myers 87

DeltaBlue planning
 Given WASs of all vars
 (WalkAbout Strength)

 To add a constraint C:
 Find method of C whose output var has weakest

WAS and is weaker than C
 If none, constraint can’t be satisfied

 Revoke constraint currently defining that var
 Attempt to reestablish that constraint recursively
 Will follow weakest WAS

 Update WASs as we recurse

© 2021 - Scott Hudson and Brad Myers 88

DeltaBlue Planning
 To remove a constraint C
 Update all downstream WASs
 Collect all unenforced weaker constraints along

that path
 Attempt to add each of them (in strength order)

© 2021 - Scott Hudson and Brad Myers 89

DeltaBlue Evaluation
 A DeltaBlue plan establishes an evaluation

direction on each undirected dependency
edge

 Based on those directions, can then use a
one-way algorithm for actual evaluation

© 2021 - Scott Hudson and Brad Myers 90

References
 Optimal one-way algorithm

http://doi.acm.org/10.1145/117009.117012
Note: constraint graph formulated differently
 Edges in the other direction
 No nodes for functions (not bipartite graph)

 DeltaBlue
http://doi.acm.org/10.1145/76372.77531

© 2021 - Scott Hudson and Brad Myers 91

http://doi.acm.org/10.1145/117009.117012
http://doi.acm.org/10.1145/76372.77531

	Lecture 26:�Constraints and Data Bindings
	Logistics
	Constraints
	Historical Note: “Active Values”
	Important Historical�Constraint Systems
	Some Constraint Systems Today
	Angular Data Bindings
	One Way Constraints
	Data flow graph
	One Way Constraints
	One Way Constraints, cont.
	Garnet / Amulet�Constraint Solving
	Garnet / Amulet Default Algorithm
	Garnet / Amulet Default Algorithm
	Garnet / Amulet Default Algorithm
	Examples of Expressing Constraints
	Other One-Way Variations
	Two-Way (Multi-way) Constraints
	Two-Way implementations
	Simultaneous Equations
	Incremental
	Animation Constraints in Amulet
	Other Forms of Constraints
	Implementation Note
	Dependency graphs for Implementation
	Dependency graphs
	Dependency graphs
	Kinds of constraint systems
	One-Way constraints
	One-Way constraints
	Multi-way constraints
	Multi-way constraints
	Multi-way constraints
	Multi-way constraints
	Another important issue
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Implementing constraints
	Implementing constraints
	Naïve algorithm
	Why is this not a good plan?
	Exponential Wasted Work
	Exponential Wasted Work
	Exponential Wasted Work
	Simple algorithm for one-way�(Embed evaluation in topsort)
	Simple algorithm for one-way
	Still a lot of wasted work
	An efficient incremental algorithm
	Part one (of two)
	Part one (of two)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Rewind
	Example 2
	Example 2
	Example 2
	Example 2
	Algorithm is “partially optimal”
	Good asymptotic result, but also very practical
	Multi-way implementation
	The DeltaBlue incremental planning algorithm
	A plan is a set of edge directions
	Finding a new plan
	Finding possible constraints to break when adding a new one
	Key to finding path: �“Walkabout Strengths”
	Walkabout strength
	DeltaBlue planning
	DeltaBlue Planning
	DeltaBlue Evaluation
	References

