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Logistics
 Last regular lecture!
 Student group presentations 

Thursday+Friday
 Everyone is expected to attend both in person

 Please fill out the class questionnaire: 
https://www.surveymonkey.com/r/SSUI2022Fall-Final
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Constraints
 Relationships defined once and maintained by the 

system 
 Useful for keeping parts of the graphics together. 
 Also for passing values around
 Typically expressed as arithmetic or code 

relationships among variables. 
 Variables are often the properties of objects (left, color) 

 Types: 
 "Dataflow" constraints; Choices: 

 Single-Output vs. Multi-output 
 Types: One-way, Multi-way, Simultaneous equations, Incremental, 

Special purpose 
 Cycles: supported or not 

 Others: AI systems, scheduling systems, etc.
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Historical Note: “Active Values”
 Old Lisp systems had active values
 Attach procedures to be called when changed

 Similar to today’s “Listeners” or “Observer 
pattern”

 Like the “inverse” of constraints
 Procedures are attached to values which change 

instead of values where needed
 Push vs. Pull

 Inefficient because all downstream values are 
re-evaluated, possibly many times
 E.g., when x and y values change
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Important Historical
Constraint Systems
 Alan Borning’s ThingLab (1979)
 Spreadsheets (~1979)
 Peridot (1987) (Myers)
 Garnet & Amulet (1989, 1994) (Myers) 
 Graphics and “data bindings”

 DeltaBlue (1990) (Freemen-Benson)
 SkyBlue (1994) (Michael Sannella)

 subarctic (Hudson) (1991)
 Gleicher’s (1993)
 …
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Some Constraint Systems Today
 Apple constraints for “Auto Layout”
 Toolkit and windows “layout managers”/”geometry 

managers” (lecture 10)
 “data bindings”

 Usually one-to-one two-way connections
 Adobe Flex, AngularJS

 Google’s AngularJS (before v2)
 Most AutoDesk (CAD) products, e.g., Fusion 360 for 2D & 

geometric
 Ember. http://emberjs.com/

 MVC, “Computed Values” of properties
 KnockoutJS. http://knockoutjs.com/

 “Declarative Bindings”, “Dependency Tracking”
 Research: Stephen Oney’s ConstraintJS https://from.so/

(2012)
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Angular Data Bindings
 Tie DOM properties to other values
 Can be one-way or two-way
 Use [] to bind from source to view.
 Use () to bind from view to source.
 Use [()] to bind

in a two way
sequence of
view to source
to view.

© 2021 Brad Myers 7

https://angular.io
/guide/binding-
syntax

https://angular.io/guide/architecture-
components#data-binding

https://angular.io/guide/binding-syntax
https://angular.io/guide/architecture-components#data-binding


One Way Constraints
 Simplest form of constraints 
 D = F(I1, I2, ... In)
 Often called formulas since like spreadsheets 
 Can be other dependencies on D

CurrentSliderVal = mouse.X - scrollbar.left
scrollbar.left = window.left + 200
scrollbar.visible = window.has_focus
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Data flow graph
 Nodes for variables (values) grouped into 

objects
 Lines for data flow for the constraints
 Reverse direction of lines for “dependencies”
 E.g., A = B+5
 B’s value flows to A

 A’s value depends on B

 Often need back-pointers too to clean up 
when change
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One Way Constraints
CurrentSliderVal = mouse.X - scrollbar.left
scrollbar.left = window.left + 200
scrollbar.visible = window.has_focus
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One Way Constraints, cont.
 Not just for numbers: mycolor = x.color
 Implementations: 

1. Just re-evaluate all required equations every 
time a value is requested 
 least storage, least overhead 
 Equations may be re-evaluated many times when 

not changed. (e.g, scrollbar.left when mouse 
moves) 

 cycles:
file_position = F1(scrollbar.Val)
scrollbar.Val = F2(file_position)

 Objects may jitter – change X and then change Y
 Cannot detect when values change (to optimize 

redraw)
2. More efficient algorithms are available
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Garnet / Amulet
Constraint Solving
 Default: one-way, data flow constraints with 

variables in the dependencies, support for 
cycles, and multiple changes before solving
 Efficient enough for ubiquitous use
 Garnet text button widget contained 43 constraints 

internally, and the Lapidary graphical interface builder 
contained 16,700 constraints

 Also can bring in alternative solvers
 Brad Vander Zanden’s multi-way solver

[Vander Zanden 1996]
 “Animation Constraints” [Myers 1996]

 Snippets of video for Garnet and Amulet
constraints
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Garnet / Amulet Default 
Algorithm

 Variables in the dependencies
 Example: D = p^.left + A
 Important innovation in Garnet we

invented, now ubiquitous 
 Supports feedback objects

 outlineRect.left = selectedObject^.left …

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

 Supports loops: D = Max(components^)
 Only evaluates needed part of conditionals

width = if otherpart.value > tolerance 
then expensive computation
else otherpart.width

 Requires the dependencies be dynamically determined
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Garnet / Amulet Default 
Algorithm

 Variables in the dependencies
 Example: D = p^.left + A
 Important innovation in Garnet we

invented, now ubiquitous 
 Supports feedback objects

 outlineRect.left = selectedObject^.left …

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

 Supports loops: D = Max(components^)
 Only evaluates needed part of conditionals

width = if otherpart.value > tolerance 
then expensive computation
else otherpart.width

 Requires the dependencies be dynamically determined
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Garnet / Amulet Default 
Algorithm

 Variables in the dependencies
 Example: D = p^.left + A
 Important innovation in Garnet we

invented, now ubiquitous 
 Supports feedback objects

 outlineRect.left = selectedObject^.left …

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

 Supports loops: D = Max(components^)
 Only evaluates needed part of conditionals

width = if otherpart.value > tolerance 
then expensive computation
else otherpart.width

 Requires the dependencies be dynamically determined
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Examples of Expressing Constraints
 Garnet:
(create-instance NIL opal:line

(:points '(340 318 365 358))
(:grow-p T)
(:x1 (o-formula (first (gvl :points)))) 
(:y1 (o-formula (second (gvl :points))))
(:x2 (o-formula (third (gvl :points))))
(:y2 (o-formula (fourth (gvl :points)))))

 Amulet:
Am_Define_Formula (int, height_of_layout) {
int h = (int)Am_Height_Of_Parts(self) + 2 * 

((int)self.Get(Am_TOP_OFFSET));
return h < 75 ? 75 : h;

}

am_empty_dialog = Am_Window.Create("empty_dialog_window")
.Set (Am_LEFT_OFFSET, 5) // used in width_of_layout
.Set (Am_TOP_OFFSET, 5) // used in height_of_layout
.Set (Am_WIDTH, width_of_layout)
.Set (Am_HEIGHT, height_of_layout)

...
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Other One-Way Variations
 Multiple outputs
 (D1, D2, ... Dm) = F(I1, I2, ... In) 

 Side-effects in the formulas 
 useful for creating objects 
 when happen? 
 what if create new objects with new constraints 
 cycles cannot be detected 

 Constant formula elimination 
 To decrease the size used by constraints
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Two-Way (Multi-way) Constraints 
 From ThingLab (~1979)

 Alan Borning.  “Defining Constraints Graphically,” Human Factors in Computing 
Systems. Boston, MA,  Apr, 1986. pp. 137-143. Proceedings SIGCHI'86. 

 Constraints are expressions with multiple variables 
 Any may be modified to get the right values 
 Example: A.right = A.left + A.width - 1
 Often requires programmer

to provide methods for
solving the constraint in
each direction:
A.left = A.right - A.width + 1
A.width = A.right - A.left + 1

 Useful if mouse expressed
as a constraint
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Two-Way implementations
 Requires a planning step to decide which way to solve 

 Many systems compute plans and save them around since usually 
change same variable repeatedly 

 In general, have a graph of dependencies, find a path 
through the graph 

 How control which direction is solved?
CurrentSliderVal = mouseX - scrollbar.left
 "Constraint hierarchies" = priorities 

 constants, interaction use "stay" constraints with high priority 
 Dynamically add and remove constraints 

 Brad Vander Zanden's "QuickPlan" solver 
 Handles multi-output, multi-way cyclic constraints in O(n2) time 

instead of exponential like previous algorithms

19© 2021 Brad Myers



Simultaneous Equations 
 Required for parallel, perpendicular lines; 

tangency, etc. 
 Also for aggregate's size 
 Numerical (relaxation)

or symbolic techniques
 Thinglab bridge (1979)

(cite)
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Incremental
 Michael Gleicher's PhD thesis, 1994 
 Only express forward computations 
 Tries to get reverse by incrementally 

changing the forward computation in the right 
direction using
derivatives. 

 Supports interactions
otherwise not possible 

 Produces smooth
animations 
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Animation Constraints in 
Amulet
 Implemented using Amulet's constraint 

mechanism 
 When slot set with a new value, restores old 

value, and animates from old to new value 
 Usually, linear interpolation 
 For colors, through either HSV or RGB space 
 For visibility, various special effects between 

TRUE and FALSE 
 Demo
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Other Forms of Constraints
 For UI work, typically express in form of 

equations
 Often just data-copying (equality): this.x = that.x
 For graphics, usually arithmetic required:
 this.x = that.x + that.w + 5  

 5 pixels to the right
 this.x = that.x + that.w/2 - this.w/2

 centered
 this.w = 10 + max (child[i].x + child[i].w)

 10 larger than children
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Implementation Note
 Implementation details (the rest of these 

slides) will not be on the final test
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Dependency graphs for 
Implementation
 Useful to look at a system of constraints as a 

“dependency graph”
 graph showing what depends on what
 two kinds of nodes (bipartite graph)
 variables (values to be constrained)
 constraints (equations that relate)
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Dependency graphs
Example: A = f(B, C, D)

Edges are dependencies

A
B
C
D

f
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Dependency graphs
Dependency graphs chain together:

X = g( A, Y)

A
B
C
D

fX

Y

g
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Kinds of constraint systems
 Actually lots of kinds, but 3 major varieties used in 

UI work 
 one-way, multi-way, numerical (less use)
 reflect kinds of limitations imposed
 Reminder: Angular has both one-way and multi-way

 One-Way constraints
 must have a single variable on LHS
 information only flows to that variable

 can change B,C,D system will find A
 can’t do reverse (change A …)

© 2021 - Scott Hudson and Brad Myers 28



One-Way constraints
Results in a directed dependency graph: 
A = f(B,C,D)

Normally require dependency graph 
to be acyclic
 cyclic graph means cyclic definition

A
B
C
D

f
NOTE: These 
arrows are in 
the dataflow
direction. Not
dependency
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One-Way constraints
 Problem with one-way: 

introduces an asymmetry
 this.x = that.x + that.w + 5
 can move “that” (change that.x)

but can’t move “this”
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Multi-way constraints
Don’t require info flow only to the left in 
equation
 can change A and have system find B,C, and/or D

Not as hard as it might seem
 most systems require you to explicitly factor the 

equations for them
 provide B = g(A,C,D), etc.

 I believe this is true for Angular two-way bindings 
– have to supply a function for each “way” unless 
equality
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Multi-way constraints
 Modeled as an undirected dependency graph

 No longer have asymmetry
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Multi-way constraints
But all is not rosy
 most efficient algorithms require that dependency 

graph be a tree (acyclic undirected graph)

A
B
C
D

fX

Y

g
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Multi-way constraints
But: A = f(B,C,D) & X = h(D,A)

Not OK because it has a cycle (not a tree)

A
B
C
D

fX h
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Another important issue
 A set of constraints can be:
 Over-constrained
 No valid solution that meets all constraints

 Under-constrained
 More than one solution
 sometimes infinite numbers
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Over- and under-constrained
 Over-constrained systems
 solver will fail
 isn’t nice to do this in interactive systems
 typically need to avoid this
 need at least a “fallback” solution
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Over- and under-constrained
 Under-constrained
 many solutions
 system has to pick one
 may not be the one you expect
 example: constraint: point stays at midpoint of line 

segment
 move end point, then?
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Over- and under-constrained
 Under-constrained
 example: constraint: point stays at midpoint of line 

segment
 move end point, then?
 Lots of valid solutions
 move other end point
 collapse to one point
 etc.
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Over- and under-constrained
 Good news is that one-way is never over- or 

under-constrained (assuming acyclic)
 system makes no arbitrary choices
 pretty easy to understand
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Over- and under-constrained
 Multi-way can be either over- or under-

constrained
 have to pay for extra power somewhere
 typical approach is to over-constrain, but have a 

mechanism for breaking / loosening constraints in 
priority order
 one way: “constraint hierarchies”
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Over- and under-constrained
 Multi-way can be either over- or under-

constrained
 unfortunately system still has to make arbitrary 

choices
 generally harder to understand and control 
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Implementing constraints
 Algorithm for one-way systems
 Need bookkeeping for variables
 For each keep:

value - the value of the var
eqn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg
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Implementing constraints
 Algorithm for one-way systems
 Need bookkeeping for variables
 For each keep:

value - the value of the var
eqn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg

Incoming 
Edges
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Naïve algorithm
For each variable v do
evaluate(v)

evaluate(v):
Parms = empty
for each DepVar in v.dep do

Parms += evaluate(DepVar)
v.value = v.eqn(Parms)
return v.value
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Why is this not a good plan?
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Exponential Wasted Work

© 2021 - Scott Hudson and Brad Myers

NOTE: These 
arrows are in 
the dataflow
direction. Not
dependency
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Exponential Wasted Work

1 3 279 3n
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Exponential Wasted Work
Breadth first does not fix this

No fixed order works for all graphs
Must respect topological ordering of 
graph (do in reverse topsort order)

1 2 84 2n
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Simple algorithm for one-way
(Embed evaluation in topsort)
After any change:
// reset all the marks

for each variable V do

V.done = false

// make each var up-to-date

for each variable V do

evaluate(V)
© 2021 - Scott Hudson and Brad Myers 49



Simple algorithm for one-way
evaluate(V):
if (!V.done)
V.done = true

Parms = empty

for each DepVar in V.dep do
Parms += evaluate(DepVar)

V.value = V.eqn(Parms)

return V.value
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Still a lot of wasted work
 Typically only change small part of system, 

but this algorithm evaluates all variables 
every time

 Also evaluates variables even if nothing they 
depend on has changed, or system never 
needs value 
 e.g., with non-strict functions such as boolean ops 

and conditionals
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An efficient incremental 
algorithm
 Add bookkeeping
 For each variable: OODMark
 “Out Of Date mark”
 Indicates variable may be out of date with respect to 

its constraint
 For each dependency edge: pending
 Indicates that variable depended upon has changed, 

but value has not propagated across the edge
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Part one (of two)
When variable (or constraint) 
changed, call MarkOOD() at point 
of change

MarkOOD(v):                   [x]
if !v.OODMark
v.OODMark = true
for each depV depending upon v do
MarkOOD(depV)
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Part one (of two)
When variable (or constraint) 
changed, call MarkOOD() at point 
of change

MarkOOD(v):
if !v.OODMark
v.OODMark = true
for each depV depending upon v do
MarkOOD(depV)

Outgoing 
Edges
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Part 2: only evaluate variables 
when value requested (lazy 
eval)
Evaluate(v):
if v.OODMark
v.OODMark = false

Parms = empty 

for each depVar in V.dep do
Parms += Evaluate(depVar)

UpdateIfPending(v,Parms)

return v.value
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Part 2: only evaluate variables 
when value requested (lazy 
eval)
Evaluate(v):
if v.OODMark
v.OODMark = false

Parms = empty 

for each depVar in V.dep do
Parms += Evaluate(depVar)

UpdateIfPending(v,Parms)

return v.value

Incoming 
Edges
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UpdateIfPending(v,Parms):
pendingIn = false  //any incoming pending?
For each incoming dep edge E do

pendingIn |= E.pending
E.pending = false

if pendingIn
newVal = V.eqn(Parms)      [*]
if newval != v.value

v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

Part 2: only evaluate variables 
when value requested (lazy 
eval)
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UpdateIfPending(v,Parms):
pendingIn = false  //any incoming pending?
For each incoming dep edge E do

pendingIn |= E.pending
E.pending = false

if pendingIn
newVal = V.eqn(Parms)      [*]
if newval != v.value

v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

Part 2: only evaluate variables 
when value requested (lazy 
eval)

Can do lazy evaluation 
here
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Example
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Example

Change Here © 2021 - Scott Hudson and Brad Myers 60



Example
Mark out of date
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Example
Eval this
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Example

© 2021 - Scott Hudson and Brad Myers 63



Example
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Example

Don’t need to 
eval any of these! (Not out-of-date)© 2021 - Scott Hudson and Brad Myers 65



Example
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Example
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Example

(Trivial) eval
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Example

Eval
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Example

Eval
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Example
Eval
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Example Done
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Example

Notice we can do that 
1000 times and these 
never get evaluated
because they aren’t needed
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Rewind

Suppose this value didn’t change
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Example 2

No pending marks placed here
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Example 2
Skip eval 
(and no outgoing 
pending marks)
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Example 2
Skip eval 
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Example 2 Done 

Didn’t have to eval these
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Algorithm is “partially optimal”
 Optimal in set of equations evaluated    [*]
 Under fairly strong assumptions 

 Does non-optimal total work [x]
 “Touches” more things than optimal set during 

Mark_OOD phase
 Fortunately simplest / fastest part

 Very close to theoretical lower bound 
 No better algorithm known 
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Good asymptotic result, but 
also very practical
 Minimal amount of bookkeeping
 Simple and statically allocated
 Only local information

 Operations are simple
 Also has very simple extension to handling 

pointers and dynamic dependencies
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Multi-way implementation
 Use a “planner” algorithm to assign a 

direction to each undirected edge of 
dependency graph

 Now have a one-way problem
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The DeltaBlue incremental 
planning algorithm
 Assume “constraint hierarchies”
 Strengths of constraints
 Important to allow more control when over or 

under constrained
 Force all to be over constrained, then relax weakest 

constraints
 Substantially improves predictability

 Restriction: acyclic (undirected) dependency 
graphs only
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A plan is a set of edge 
directions
 Assume we have multiple methods for 

enforcing a constraint
 One per (output) variable 
 Picking method sets edge directions

 Given existing plan and change to 
constraints, find a new plan
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Finding a new plan
 For added constraints
 May need to break a weaker constraint 

(somewhere) to enforce new constraint
 For removed constraints
 May have weaker unenforced constraints that can 

now be satisfied
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Finding possible constraints 
to break when adding a new 
one
 For some variable referenced by new 

constraint
 Find an undirected path from var to a variable 

constrained by a weaker constraint (if any)
 Turn edges around on that path
 Break the weaker constraint
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Key to finding path: 
“Walkabout Strengths”
 Walkabout strength of variable indicates 

weakest constraint “upstream” from that 
variable
 Weakest constraint that could be revoked to allow 

that variable to be controlled by a different 
constraint
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Walkabout strength
 Walkabout strength of var V currently defined 

by method M of constraint C is:
 Min of C.strength and walkabout strengths of 

variables providing input to M
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DeltaBlue planning
 Given WASs of all vars
 (WalkAbout Strength)

 To add a constraint C:
 Find method of C whose output var has weakest 

WAS and is weaker than C
 If none, constraint can’t be satisfied

 Revoke constraint currently defining that var
 Attempt to reestablish that constraint recursively
 Will follow weakest WAS 

 Update WASs as we recurse
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DeltaBlue Planning
 To remove a constraint C
 Update all downstream WASs
 Collect all unenforced weaker constraints along 

that path
 Attempt to add each of them (in strength order)
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DeltaBlue Evaluation
 A DeltaBlue plan establishes an evaluation 

direction on each undirected dependency 
edge

 Based on those directions, can then use a 
one-way algorithm for actual evaluation
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References
 Optimal one-way algorithm

http://doi.acm.org/10.1145/117009.117012
Note: constraint graph formulated differently 
 Edges in the other direction
 No nodes for functions (not bipartite graph)

 DeltaBlue
http://doi.acm.org/10.1145/76372.77531
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