Lecture 26:
Constraints and Data Bindings

 \
05-431/631 Software Structures for User
Interfaces (SSUI)

Fall, 2022

© 2021 Brad Myers

.
)
Human-Computer Interaction Institute

Logistics

e Last regular lecture!

e Student group presentations
Thursday+Friday

e Everyone is expected to attend both in person

e Please fill out the class questionnaire:
https://www.surveymonkey.com/r/SSUI2022Fall-Final

© 2021 Brad Myers 2

https://www.surveymonkey.com/r/SSUI2022Fall-Final

Constraints

e Relationships defined once and maintained by the
system

e Useful for keeping parts of the graphics together.
e Also for passing values around
e Typically expressed as arithmetic or code
relationships among variables.
e Variables are often the properties of objects (left, color)
e [ypes:

e "Dataflow" constraints: Choices:
Single-Output vs. Multi-output

Types: One-way, Multi-way, Simultaneous equations, Incremental,
Special purpose
Cycles: supported or not

e Others: Al systems, scheduling systems, etc.

© 2021 Brad Myers 3

|\
Human-Computer Interaction Institute N

Historical Note: “Active Values”

e Old Lisp systems had active values
e Attach procedures to be called when changed

e Similar to today’s “Listeners” or “Observer
pattern”
e Like the “inverse” of constraints

e Procedures are attached to values which change
instead of values where needed

e Push vs. Pull

e Inefficient because_ all downst_ream values are
re-evaluated, possibly many times

e E.g., when x and y values change

© 2021 Brad Myers 4

Important Historical]

Constraint Systems

e Alan Borning’s ThingLab (1979)
e Spreadsheets (~1979)
e Peridot (1987) (Myers)

e Garnet & Amulet (1989, 1994) (Myers)
e Graphics and “data bindings”

e DeltaBlue (1990) (Freemen-Benson)
e SkyBlue (1994) (Michael Sannella)

e subarctic (Hudson) (1991)
e Gleicher’'s (1993)

© 2021 Brad Myers 5

)
Human-Computer Interaction Institute w

Some Constraint Systems Today

Apple constraints for “Auto Layout”

Toolkit and windows “layout managers”/’"geometry
managers” (lecture 10)

“data bindings”

e Usually one-to-one two-way connections
e Adobe Flex, AngulardS

e Google’s AngulardS (before v2)
e Most AutoDesk (CAD) products, e.g., Fusion 360 for 2D &

geometric

Ember. http://emberijs.com/

e MVC, “Computed Values” of properties
KnockoutJS. http://knockoutjs.com/

e “Declarative Bindings”, “Dependency Tracking”

I(?esea)rch: Stephen Oney’s ConstraintJS hitps://from.so/
2012

© 2021 Brad Myers 6

http://emberjs.com/
https://guides.emberjs.com/release/components/component-state-and-actions/
http://knockoutjs.com/
https://from.so/Myers_et_al-UIST2012-ConstraintJS_Programming_Interactive_Behaviors_for_the_Web_by_Integrating_Constraints_and_States

Angular Data Bindings

e Tie DOM properties to other values

e Can be one-way or two-way

e Use [] to bind from source to view.
e Use () to bind from view to source.

e Use [()] to bind
In a two way
sequence of
view to source
to view.

https://anqular.io

/quide/binding-
syntax

N

Type

Interpolation
Property
Attribute
Class

Style

Event

Two-way

Syntax

{{expression}

¥

DOM

[target]="expression”
pression”

bind-target="ex

(target)="sta

teme
temen

on-target="sta

nt"

£

LNANOAWID

https://anqular.io/quide/architecture-

components#data-binding

Category

One-way
from data source

to view target

One-way
from view target
to data source

Two-way

https://angular.io/guide/binding-syntax
https://angular.io/guide/architecture-components#data-binding

|\
Human-Computer Interaction Institute w

One Way Constraints

e Simplest form of constraints

e D=F(I1,12, ... In)

e Often called formulas since like spreadsheets
e Can be other dependencies on D

CurrentSliderVal = mouse.X - scrollbar.left
scrollbar.left = window.left + 200
scrollbar.visible = window.has focus

© 2021 Brad Myers 8

Data flow graph

e Nodes for variables (values) grouped into
objects
e Lines for data flow for the constraints

e Reverse direction of lines for “"dependencies’
e E.g,A=B+5)) X
B’s value flows to A G]' el
A’s value depends on B (A= 12 — B=10 |

e Often need back-pointers too to clean up
when change

© 2021 Brad Myers 9

One Way Constraints

CurrentSliderVal = mouse.X - scrollbar.left
scrollbar.left = window.left + 200
scrollbar.visible = window.has focus

© 2021 Brad Myers

|\
Human-Computer Interaction Institute N

One Way Constraints, cont.

e Not just for numbers: mycolor = x.color

e Implementations:

1. Just re-evaluate all required equations every
time a value is requested

least storage, least overhead

Equations may be re-evaluated many times when
not changed. (e.g, scrollbar.left when mouse
moves)

cycles:
file_position = F1(scrollbar.Val)
scrollbar.Val = F2(file_position)

Objects may jitter — change X and then change Y
Cannot detect when values change (to optimize
redraw)

2. More efficient algorithms are available

© 2021 Brad Myers

11

Garnet / Amulet e @)

Constraint Solving

e Default: one-way, data flow constraints with
variables in the dependencies, support for
cycles, and multiple changes before solving
e Efficient enough for ubiquitous use

e Garnet text button widget contained 43 constraints
internally, and the Lapidary graphical interface builder
contained 16,700 constraints

e Also can bring in alternative solvers

e Brad Vander Zanden’s multi-way solver
[Vander Zanden 1996]

e “Animation Constraints” [Myers 1996]

e Snippets of video for Garnet and Amulet
constraints

© 2021 Brad Myers 12

https://youtu.be/wc8A0woo0X4?t=106
https://youtu.be/J3MRifpaCOI?list=PL3856C8FlIWfr_tX8CMUhOJvl34ylClgb&t=164

Garnet / Amulet Default -~~~ @

e Variables in the dependencies -
N O

Example: D = p/left + A
Important innovation in Garnet we fobj1 obj2)

invented, now ubiquitous -

Supports feedback objects
N ~/

o outlineRect.left = selectedObject”.left ... -
N ~/

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

Supports loops: D = Max(components”)

Only evaluates needed part of conditionals
width = if otherpart.value > tolerance

then expensive computation

else otherpart.width

Requires the dependencies be dynamically determined

© 2021 Brad Myers 13

Garnet / Amulet Default =@
Algorithm

e Variables in the dependencies
e Example: D = p/left + A

e Important innovation in Garnet we
invented, now ubiquitous

e Supports feedback objects
o outlineRect.left = selectedObject”.left ...

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

e Supports loops: D = Max(components?)

e Only evaluates needed part of conditionals
width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

e Requires the dependencies be dynamically determined

© 2021 Brad Myers 14

Garnet / Amulet Default =@
Algorithm

e Variables in the dependencies
e Example: D = p/left + A

e Important innovation in Garnet we fobj1 Q
invented, now ubiquitous

e Supports feedback objects

o outlineRect.left = selectedObject”.left ... -
N ~/

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

e Supports loops: D = Max(components?)

e Only evaluates needed part of conditionals
width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

e Requires the dependencies be dynamically determined

© 2021 Brad Myers 15

.
)
Human-Computer Interaction Institute

Examples of Expressing Constraints
e Garnet:

(create-instance NIL opal:line
(:points ' (340 318 365 358))
:grow-p T)

:x1 (o-formula (first (gvl :points)

o~ o~ o~ o~ o~

()))
:yl (o-formula (second (gvl :points))))
:x2 (o-formula (third (gvl :points))))
:y2 (o-formula (fourth (gvl :points)))))
e Amulet:
Am Define Formula (int, height of layout) ({
int h = (int)Am Height Of Parts(self) + 2 *

((int) self.Get (Am_TOP OFFSET)) ;
return h < 75 ? 75 : h;
}

am_empty dialog = Am Window.Create ("empty dialog window")
.Set (Am_LEFT OFFSET, 5) // used in width of layout

.Set (Am _TOP OFFSET, 5) // used in height of layout

.Set (Am WIDTH, width of layout)

.Set (Am HEIGHT, height of layout)

© 2021 Brad Myers 16

Other One-Way Variations

e Multiple outputs
e (D1,D2,...Dm)=F(I1, 12, ... In)
e Side-effects in the formulas
e useful for creating objects
e when happen?
e what if create new objects with new constraints
e cycles cannot be detected
e Constant formula elimination
e To decrease the size used by constraints

© 2021 Brad Myers 17

Two-Way (Multi-way) Constraints

From ThingLab (~1979)

e Alan Borning. “Defining Constraints Graphically,” Human Factors in Computing
Systems. Boston, MA, Apr, 1986. pp. 137-143. Proceedings SIGCHI'86.

Constraints are expressions with multiple variables
Any may be modified to get the right values
Example: A.right = A.left + A.width - 1

Often requires programmer [Thingtab BrowserEC

m‘ TR W

to provide methods for N e ﬁ?fﬁﬁ?ﬁﬂi
solving the constraint in Pointonting | valves | constrain [BRI
each direction: Rectangle Wi Quadrilatera
A.left = A.right - A.width + 1

A.width = A.right - A.left + 1

Useful if mouse expressed
as a constraint

© 2021 Brad My

|\
Human-Computer Interaction Institute N

Two-Way implementations

Requires a planning step to decide which way to solve

e Many systems compute plans and save them around since usually
change same variable repeatedly

In general, have a graph of dependencies, find a path
through the graph

How control which direction is solved?
CurrentSliderVal = mouseX - scrollbar.left

e "Constraint hierarchies" = priorities
constants, interaction use "stay" constraints with high priority

e Dynamically add and remove constraints

Brad Vander Zanden's "QuickPlan" solver

e Handles multi-output, multi-way cyclic constraints in O(n?) time
instead of exponential like previous algorithms

© 2021 Brad Myers 19

Simultaneous Equations

e Required for parallel, perpendicular lines;
tangency, etc.

e Also for aggregate's size

e Numerical (relaxation) coinnalone e~ fancer
J Mm onstrodn Load

15 save file fmerge Poune

or symbolic techniques E“M“WM

e Thinglab bridge (1979)
(cite) AN S A

2.46 246

“2.58 160 1.88 T2.58
VALV AV
26! 2.61
4.93

A

© 2021 Brad Myers Figure 2.31 - A bridge under load

https://constraints.cs.washington.edu/ui/thinglab-tr.pdf

|\
Human-Computer Interaction Institute w

Incremental

e Michael Gleicher's PhD thesis, 1994
e Only express forward computations

e Tries to get reverse by incrementally
changing the forward computation in the right

direction using
derivatives. O

e Supports interactions | Q. E#F
otherwise not possible

e Produces smooth
animations

Animation Constraints in ===
Amulet

e Implemented using Amulet's constraint
mechanism

e \When slot set with a new value, restores old
value, and animates from old to new value

e Usually, linear interpolation
e For colors, through either HSV or RGB space

e For visibility, various special effects between
TRUE and FALSE

e Demo

© 2021 Brad Myers 22

|\
Human-Computer Interaction Institute N

Other Forms of Constraints

e For Ul work, typically express in form of
equations

e Often just data-copying (equality): this.x = that.x

e For graphics, usually arithmetic required:

this.x = that.x + thatw + 5
5 pixels to the right

this.x = that.x + that.w/2 - this.w/2
centered

this.w = 10 + max (child[i].x + child[i].w)
10 larger than children

© 2021 - Scott Hudson and Brad Myers 23

Implementation Note

e Implementation details (the rest of these
slides) will not be on the final test

© 2021 Brad Myers 24

Dependency graphs for ===
Implementation

e Useful to look at a system of constraints as a
“dependency graph”
e graph showing what depends on what

e two kinds of nodes (bipartite graph)
variables (values to be constrained)
constraints (equations that relate)

© 2021 - Scott Hudson and Brad Myers 25

Dependency graphs

Example: A = (B, C, D)

B
A -C

Edges are dependencies D

© 2021 - Scott Hudson and Brad Myers 26

\)
Human-Computer Interaction Institute N

Dependency graphs
Dependency graphs chain together:
X=9g(AY)
B
X A e
| D
Y

© 2021 - Scott Hudson and Brad Myers 27

|\
Human-Computer Interaction Institute N

Kinds of constraint systems

e Actually lots of kinds, but 3 major varieties used in
Ul work
e one-way, multi-way, numerical (less use)
e reflect kinds of limitations imposed
e Reminder: Angular has both one-way and multi-way

e One-Way constraints

e must have a single variable on LHS

e information only flows to that variable
can change B,C,D system will find A
can’t do reverse (change A ...)

© 2021 - Scott Hudson and Brad Myers 28

|\
Human-Computer Interaction Institute N

One-Way constraints

Results in a directed dependency graph:
A =1(B,C,D)

B NOTE: These
arrows are in

A‘ the dataflow
‘C direction. Not
dependency

Normally require dependency graph

to be acyclic
e cyclic graph means cyclic definition

© 2021 - Scott Hudson and Brad Myers 29

Human-Computer Interaction Institute

One-Way constraints

e Problem with one-way:
introduces an asymmetry

e this.x =that.x + thatw + 5

e can move “that” (change that.x)
but can’'t move “this”

© 2021 - Scott Hudson and Brad Myers 30

|\
Human- Computer Interaction Institute N

Multi-way constraints A = (B,C,D)

Don’t require info flow only to the left in
equation
e can change A and have system find B,C, and/or D

Not as hard as it might seem
e most systems require you to explicitly factor the
equations for them
provide B = g(A,C,D), etc.
e | believe this is true for Angular two-way bindings

— have to supply a function for each “way” unless
equality

© 2021 - Scott Hudson and Brad Myers 31

\)
Human-Computer Interaction Institute N

Multi-way constraints

e Modeled as an undirected dependency graph

e No longer have asymmetry

© 2021 - Scott Hudson and Brad Myers 32

\)
Human- Computer Interaction Institute N

Multi-way constraints

But all is not rosy

e most efficient algorithms require that dependency
graph be a tree (acyclic undirected graph)

B
X A -C

| :

© 2021 - Scott Hudson and Brad Myers 33

\)
Human-Computer Interaction Institute N

Multi-way constraints

But: A = f(B,C,D) & X = h(D,A)

X A -C
D

Not OK because it has a cycle (not a tree)

© 2021 - Scott Hudson and Brad Myers 34

\)
Human-Computer Interaction Institute N

Another important issue

e A set of constraints can be:
e Over-constrained
No valid solution that meets all constraints

e Under-constrained

More than one solution
= sometimes infinite numbers

© 2021 - Scott Hudson and Brad Myers 35

\)
Human-Computer Interaction Institute N

Over- and under-constrained

e Over-constrained systems
e solver will fail
e isn’'t nice to do this in interactive systems

e typically need to avoid this
need at least a “fallback” solution

© 2021 - Scott Hudson and Brad Myers 36

\)
Human- Computer Interaction Institute N

Over- and under-constrained

e Under-constrained

many solutions
system has to pick one
may not be the one you expect

example: constraint: point stays at midpoint of line
segment
move end point, then?

© 2021 - Scott Hudson and Brad Myers 37

\)
Human-Computer Interaction Institute N

Over- and under-constrained

e Under-constrained

e example: constraint: point stays at midpoint of line
segment
move end point, then?

Lots of valid solutions
= move other end point
= collapse to one point
= efc.

© 2021 - Scott Hudson and Brad Myers 38

\)
Human- Computer Interaction Institute N

Over- and under-constrained

e Good news is that one-way is never over- or
under-constrained (assuming acyclic)

e system makes no arbitrary choices
e pretty easy to understand

© 2021 - Scott Hudson and Brad Myers 39

|\
Human-Computer Interaction Institute N

Over- and under-constrained

e Multi-way can be either over- or under-
constrained
e have to pay for extra power somewhere

e typical approach is to over-constrain, but have a
mechanism for breaking / loosening constraints in
priority order

one way: “constraint hierarchies”

© 2021 - Scott Hudson and Brad Myers 40

\)
Human- Computer Interaction Institute N

Over- and under-constrained

e Multi-way can be either over- or under-
constrained

e unfortunately system still has to make arbitrary
choices

e generally harder to understand and control

© 2021 - Scott Hudson and Brad Myers 41

\)
Human-Computer Interaction Institute N

Implementing constraints

e Algorithm for one-way systems
e Need bookkeeping for variables

e For each keep:
value - the value of the var
egn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg

© 2021 - Scott Hudson and Brad Myers 42

.
)
Human-Computer Interaction Institute

Implementing constraints

e Algorithm for one-way systems
e Need bookkeeping for variables

e For each keep:
value - the value of the var
egn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg

© 2021 - Scott Hudson and Brad Myers 43

Human-Computer Interaction Institute

Naive algorithm

For each variable v do
evaluate(v)

evaluate(v):
Parms = empty
for each Depvar 1n v.dep do
Parms += evaluate(Depvar)
v.value = v.egn(Parms)
return v.value

© 2021 - Scott Hudson and Brad Myers 44

Why is this not a good plan?

© 2021 - Scott Hudson and Brad Myers 45

W)
Human-Computer Interaction Institute N

Exponential Wasted Work

NOTE: These
arrows are in
the dataflow
direction. Not
dependency

© 2021 - Scott Hudson and Brad Myers 46

Exponential Wasted Work

@@ o 3"

© 2021 - Scott Hudson and Brad Myers 47

Exponential Wasted Work

Breadth first does not fix this

@@ o 2"

No fixed order works for all graphs

Must respect topological ordering of
graph (do in reyerse topsort order)

L]
L\
ion Institute

Simple algorithm for one-V\;g;;md
(Embed evaluation in topsort)

e After any change:
// reset all the marks
for each variable Vv do

V.done = false

// make each var up-to-date
for each variable Vv do
evaluate(V)

© 2021 - Scott Hudson and Brad Myers 49

W)
Human-Computer Interaction Institute w

Simple algorithm for one-way

evaluate(V):
1t (!v.done)

V.done = true

Parms = empty

for each Depvar i1n V.dep do
‘Parms += evaluate(Depvar)

V.value = V.eqgn(Parms)
return V.value

© 2021 - Scott Hudson and Brad Myers 50

|\
Human- Computer Interaction Institute N

Still a lot of wasted work

e Typically only change small part of system,
but this algorithm evaluates all variables
every time

e Also evaluates variables even if nothing they
depend on has changed, or system never
needs value

e e.g., with non-strict functions such as boolean ops
and conditionals

© 2021 - Scott Hudson and Brad Myers 51

An efficient incremental s)
algorithm

e Add bookkeeping

e For each variable: OODMark
“Out Of Date mark”

Indicates variable may be out of date with respect to
its constraint

e For each dependency edge: pending

Indicates that variable depended upon has changed,
but value has not propagated across the edge

© 2021 - Scott Hudson and Brad Myers 52

|\
Human-Computer Interaction Institute N

Part one (of two)

When variable (or constraint)
changed, call MarkOOD() at point
of change

© 2021 - Scott Hudson and Brad Myers 53

Part one (of two)

When variable (or constraint)

changed, call MarkOOD() at point
of change

MarkooD(v) :
1f !v.0ODMark
v.00DMark = true

for each depv depending upon v do
MarkooD (depV)

© 2021 - Scott Hudson and Brad Myers 54

Part 2: only evaluate variables™ ™ @
when value requested (lazy
eval)

Evaluate(v):

1f v.O0ODMark
v.00DMark = false
Parms = empty
for each depvar i1n Vv.dep do
Parms += Evaluate(depvar)

UpdateIfPending(v,Parms)
return v.value

© 2021 - Scott Hudson and Brad Myers 55

Part 2: only evaluate variables™ ™ @

when value requested (lazy
eval)

Evaluate(v):

1f v.O0ODMark
v.00DMark = false
Parms = empty
for each depvar in Vv.dep do
Parms += Evaluate(depvar)

UpdateIfPending(v,Parms)
return v.value

© 2021 - Scott Hudson and Brad Myers 56

Part 2: only evaluate variabies ™ @
when value requested (lazy
eval)

UpdateIfPending(v,Parms):
pendi ngln = false //any incoming pending?
For each incoming dep edge E do
pendingIn |= E.pending
E.pending = false

1f pendingIn
newval = V.eqn(Parms) [*]
1f newval != v.value
v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

© 2021 - Scott Hudson and Brad Myers 57

Part 2: only evaluate variables ™ @
when value requested (lazy
eval)

UpdateIfPending(v,Parms):
pendingIn = false //any incoming pending?
For each incoming dep edge E do

pendingIn |= E.pending
E.pending = false

1t pendingIn
newval = V.eqgn(Parms [*]
1f newval != v.value
v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

© 2021 - Scott Hudson and Brad Myers 58

\)
Human-Computer Interaction Institute w

Example

© 2021 - Scott Hudson and Brad Myers 59

)
Human-Computer Interaction Institute w

Example

N

Change Here © 2021 - Scott Hudson and Brad Myers 60

)
Human-Computer Interaction Institute N

Example

Mark out of date

N

© 2021 - Scott Hudson and Brad Myers 61

)
Human-Computer Interaction Institute w

Example

Eval this

© 2021 - Scott Hudson and Brad Myers 62

)
Human-Computer Interaction Institute w

© 2021 - Scott Hudson and Brad Myers 63

)
Human-Computer Interaction Institute w

© 2021 - Scott Hudson and Brad Myers 64

)
Human-Computer Interaction Institute N

Example

N

Don’t need to
eval any of these! (Not gut-of:date)....... s

)
Human-Computer Interaction Institute w

Example

N

© 2021 - Scott Hudson and Brad Myers 66

)
Human-Computer Interaction Institute w

Example

N

© 2021 - Scott Hudson and Brad Myers 67

)
Human-Computer Interaction Institute N

Example

(Trivial) eval

© 2021 - Scott Hudson and Brad Myers 68

)
Human-Computer Interaction Institute N

© 2021 - Scott Hudson and Brad Myers 69

)
Human-Computer Interaction Institute N

© 2021 - Scott Hudson and Brad Myers 70

)
Human-Computer Interaction Institute N

Eval

© 2021 - Scott Hudson and Brad Myers 71

)
Human-Computer Interaction Institute N

Example

Done

© 2021 - Scott Hudson and Brad Myers 72

)
Human-Computer Interaction Institute N

Example

Notice we can do that
1000 times and these
never get evaluated
because they aren’t needed

© 2021 - Scott Hudson and Brad Myers 73

)
Human-Computer Interaction Institute N

Rewind

N

Suppose this value didn’t change

© 2021 - Scott Hudson and Brad Myers 74

)
Human-Computer Interaction Institute N

Example 2

N

No pending marks placed here

© 2021 - Scott Hudson and Brad Myers 75

)
Human-Computer Interaction Institute w

Example 2

Skip eval
(and no outgoing\
pending marks)

N

© 2021 - Scott Hudson and Brad Myers 76

Humaécltzliulte)r Ingm\c;igllnstitute N
Example 2

© 2021 - Scott Hudson and Brad Myers 77

)
Human-Computer Interaction Institute N

Example 2 Done

Didn’t have to eval these

N

© 2021 - Scott Hudson and Brad Myers 78

Algorithm is “partially optimal”

e Optimal in set of equations evaluated [*]‘
e Under fairly strong assumptions

e Does non-optimal total work [X]

e “Touches” more things than optimal set during
Mark OQOD phase

Fortunately simplest / fastest part
e Very close to theoretical lower bound
e No better algorithm known

© 2021 - Scott Hudson and Brad Myers 79

Good asymptotic result, but=@
also very practical

e Minimal amount of bookkeeping
e Simple and statically allocated
e Only local information

e Operations are simple

e Also has very simple extension to handling
pointers and dynamic dependencies

© 2021 - Scott Hudson and Brad Myers 80

\)
Human-Computer Interaction Institute N

Multi-way implementation

e Use a "planner” algorithm to assign a
direction to each undirected edge of
dependency graph

e Now have a one-way problem

© 2021 - Scott Hudson and Brad Myers 81

The DeltaBlue incremental~=="{
planning algorithm

e Assume “constraint hierarchies”
e Strengths of constraints

e Important to allow more control when over or
under constrained

Force all to be over constrained, then relax weakest
constraints

Substantially improves predictability

e Restriction: acyclic (undirected) dependency
graphs only

© 2021 - Scott Hudson and Brad Myers 82

A plan is a set of edge "= @
directions

e Assume we have multiple methods for
enforcing a constraint

e One per (output) variable
e Picking method sets edge directions

e Given existing plan and change to
constraints, find a new plan

© 2021 - Scott Hudson and Brad Myers 83

|\
Human-Computer Interaction Institute N

Finding a new plan

e For added constraints

e May need to break a weaker constraint
(somewhere) to enforce new constraint

e For removed constraints

e May have weaker unenforced constraints that can
now be satisfied

© 2021 - Scott Hudson and Brad Myers 84

Finding possible constraints: -
to break when adding a new
one

e For some variable referenced by new
constraint

e Find an undirected path from var to a variable
constrained by a weaker constraint (if any)

e Turn edges around on that path
e Break the weaker constraint

© 2021 - Scott Hudson and Brad Myers 85

Key to finding path: o)
“Walkabout Strengths”

e Walkabout strength of variable indicates
weakest constraint “upstream” from that
variable

e Weakest constraint that could be revoked to allow
that variable to be controlled by a different
constraint

© 2021 - Scott Hudson and Brad Myers 86

Walkabout strength

e Walkabout strength of var V currently defined
by method M of constraint C is:

e Min of C.strength and walkabout strengths of
variables providing input to M

© 2021 - Scott Hudson and Brad Myers 87

DeltaBlue planning

e Given WASSs of all vars
e (WalkAbout Strength)

e [0 add a constraint C:

e Find method of C whose output var has weakest
WAS and is weaker than C

If none, constraint can’t be satisfied
e Revoke constraint currently defining that var

e Attempt to reestablish that constraint recursively
Will follow weakest WAS

e Update WASSs as we recurse

© 2021 - Scott Hudson and Brad Myers 88

DeltaBlue Planning

e Toremove a constraint C
e Update all downstream WASSs
e Collect all unenforced weaker constraints along

that path
e Attempt to add each of them (in strength order)

© 2021 - Scott Hudson and Brad Myers 89

|\
Human-Computer Interaction Institute N

DeltaBlue Evaluation

e A DeltaBlue plan establishes an evaluation
direction on each undirected dependency
edge

e Based on those directions, can then use a
one-way algorithm for actual evaluation

© 2021 - Scott Hudson and Brad Myers 90

References

e Optimal one-way algorithm
http://doi.acm.org/10.1145/117009.117012
Note: constraint graph formulated differently

e Edges in the other direction
e No nodes for functions (not bipartite graph)

e DeltaBlue
http://doi.acm.org/10.1145/76372.77531

© 2021 - Scott Hudson and Brad Myers 91

http://doi.acm.org/10.1145/117009.117012
http://doi.acm.org/10.1145/76372.77531

	Lecture 26:�Constraints and Data Bindings
	Logistics
	Constraints
	Historical Note: “Active Values”
	Important Historical�Constraint Systems
	Some Constraint Systems Today
	Angular Data Bindings
	One Way Constraints
	Data flow graph
	One Way Constraints
	One Way Constraints, cont.
	Garnet / Amulet�Constraint Solving
	Garnet / Amulet Default Algorithm
	Garnet / Amulet Default Algorithm
	Garnet / Amulet Default Algorithm
	Examples of Expressing Constraints
	Other One-Way Variations
	Two-Way (Multi-way) Constraints
	Two-Way implementations
	Simultaneous Equations
	Incremental
	Animation Constraints in Amulet
	Other Forms of Constraints
	Implementation Note
	Dependency graphs for Implementation
	Dependency graphs
	Dependency graphs
	Kinds of constraint systems
	One-Way constraints
	One-Way constraints
	Multi-way constraints
	Multi-way constraints
	Multi-way constraints
	Multi-way constraints
	Another important issue
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Implementing constraints
	Implementing constraints
	Naïve algorithm
	Why is this not a good plan?
	Exponential Wasted Work
	Exponential Wasted Work
	Exponential Wasted Work
	Simple algorithm for one-way�(Embed evaluation in topsort)
	Simple algorithm for one-way
	Still a lot of wasted work
	An efficient incremental algorithm
	Part one (of two)
	Part one (of two)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Rewind
	Example 2
	Example 2
	Example 2
	Example 2
	Algorithm is “partially optimal”
	Good asymptotic result, but also very practical
	Multi-way implementation
	The DeltaBlue incremental planning algorithm
	A plan is a set of edge directions
	Finding a new plan
	Finding possible constraints to break when adding a new one
	Key to finding path: �“Walkabout Strengths”
	Walkabout strength
	DeltaBlue planning
	DeltaBlue Planning
	DeltaBlue Evaluation
	References

