
Lecture 26:
Constraints and Data Bindings

05-431/631 Software Structures for User
Interfaces (SSUI)
Fall, 2022

© 2021 Brad Myers 1

Logistics
 Last regular lecture!
 Student group presentations

Thursday+Friday
 Everyone is expected to attend both in person

 Please fill out the class questionnaire:
https://www.surveymonkey.com/r/SSUI2022Fall-Final

© 2021 Brad Myers 2

https://www.surveymonkey.com/r/SSUI2022Fall-Final

Constraints
 Relationships defined once and maintained by the

system
 Useful for keeping parts of the graphics together.
 Also for passing values around
 Typically expressed as arithmetic or code

relationships among variables.
 Variables are often the properties of objects (left, color)

 Types:
 "Dataflow" constraints; Choices:

 Single-Output vs. Multi-output
 Types: One-way, Multi-way, Simultaneous equations, Incremental,

Special purpose
 Cycles: supported or not

 Others: AI systems, scheduling systems, etc.

3© 2021 Brad Myers

Historical Note: “Active Values”
 Old Lisp systems had active values
 Attach procedures to be called when changed

 Similar to today’s “Listeners” or “Observer
pattern”

 Like the “inverse” of constraints
 Procedures are attached to values which change

instead of values where needed
 Push vs. Pull

 Inefficient because all downstream values are
re-evaluated, possibly many times
 E.g., when x and y values change

4© 2021 Brad Myers

Important Historical
Constraint Systems
 Alan Borning’s ThingLab (1979)
 Spreadsheets (~1979)
 Peridot (1987) (Myers)
 Garnet & Amulet (1989, 1994) (Myers)
 Graphics and “data bindings”

 DeltaBlue (1990) (Freemen-Benson)
 SkyBlue (1994) (Michael Sannella)

 subarctic (Hudson) (1991)
 Gleicher’s (1993)
 …

© 2021 Brad Myers 5

Some Constraint Systems Today
 Apple constraints for “Auto Layout”
 Toolkit and windows “layout managers”/”geometry

managers” (lecture 10)
 “data bindings”

 Usually one-to-one two-way connections
 Adobe Flex, AngularJS

 Google’s AngularJS (before v2)
 Most AutoDesk (CAD) products, e.g., Fusion 360 for 2D &

geometric
 Ember. http://emberjs.com/

 MVC, “Computed Values” of properties
 KnockoutJS. http://knockoutjs.com/

 “Declarative Bindings”, “Dependency Tracking”
 Research: Stephen Oney’s ConstraintJS https://from.so/

(2012)

© 2021 Brad Myers 6

http://emberjs.com/
https://guides.emberjs.com/release/components/component-state-and-actions/
http://knockoutjs.com/
https://from.so/Myers_et_al-UIST2012-ConstraintJS_Programming_Interactive_Behaviors_for_the_Web_by_Integrating_Constraints_and_States

Angular Data Bindings
 Tie DOM properties to other values
 Can be one-way or two-way
 Use [] to bind from source to view.
 Use () to bind from view to source.
 Use [()] to bind

in a two way
sequence of
view to source
to view.

© 2021 Brad Myers 7

https://angular.io
/guide/binding-
syntax

https://angular.io/guide/architecture-
components#data-binding

https://angular.io/guide/binding-syntax
https://angular.io/guide/architecture-components#data-binding

One Way Constraints
 Simplest form of constraints
 D = F(I1, I2, ... In)
 Often called formulas since like spreadsheets
 Can be other dependencies on D

CurrentSliderVal = mouse.X - scrollbar.left
scrollbar.left = window.left + 200
scrollbar.visible = window.has_focus

8© 2021 Brad Myers

Data flow graph
 Nodes for variables (values) grouped into

objects
 Lines for data flow for the constraints
 Reverse direction of lines for “dependencies”
 E.g., A = B+5
 B’s value flows to A

 A’s value depends on B

 Often need back-pointers too to clean up
when change

© 2021 Brad Myers 9

A = 15 B = 10

A = 15 B = 10

One Way Constraints
CurrentSliderVal = mouse.X - scrollbar.left
scrollbar.left = window.left + 200
scrollbar.visible = window.has_focus

10© 2021 Brad Myers

Window

…
left = 50

top = 5

scrollbar

…
left = f3() = 250

top = 835

has_focus = truevisible = f2() = true

mouse

X = 267

Y = 840

CurrentSliderVal = f1() =17

One Way Constraints, cont.
 Not just for numbers: mycolor = x.color
 Implementations:

1. Just re-evaluate all required equations every
time a value is requested
 least storage, least overhead
 Equations may be re-evaluated many times when

not changed. (e.g, scrollbar.left when mouse
moves)

 cycles:
file_position = F1(scrollbar.Val)
scrollbar.Val = F2(file_position)

 Objects may jitter – change X and then change Y
 Cannot detect when values change (to optimize

redraw)
2. More efficient algorithms are available

11
© 2021 Brad Myers

Garnet / Amulet
Constraint Solving
 Default: one-way, data flow constraints with

variables in the dependencies, support for
cycles, and multiple changes before solving
 Efficient enough for ubiquitous use
 Garnet text button widget contained 43 constraints

internally, and the Lapidary graphical interface builder
contained 16,700 constraints

 Also can bring in alternative solvers
 Brad Vander Zanden’s multi-way solver

[Vander Zanden 1996]
 “Animation Constraints” [Myers 1996]

 Snippets of video for Garnet and Amulet
constraints

© 2021 Brad Myers 12

https://youtu.be/wc8A0woo0X4?t=106
https://youtu.be/J3MRifpaCOI?list=PL3856C8FlIWfr_tX8CMUhOJvl34ylClgb&t=164

Garnet / Amulet Default
Algorithm

 Variables in the dependencies
 Example: D = p^.left + A
 Important innovation in Garnet we

invented, now ubiquitous
 Supports feedback objects

 outlineRect.left = selectedObject^.left …

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

 Supports loops: D = Max(components^)
 Only evaluates needed part of conditionals

width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

 Requires the dependencies be dynamically determined

© 2021 Brad Myers 13

D=f()=? p = obj1

A = 15

obj1

left = 12

top = 5

obj2

left = 22

top = 15

Garnet / Amulet Default
Algorithm

 Variables in the dependencies
 Example: D = p^.left + A
 Important innovation in Garnet we

invented, now ubiquitous
 Supports feedback objects

 outlineRect.left = selectedObject^.left …

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

 Supports loops: D = Max(components^)
 Only evaluates needed part of conditionals

width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

 Requires the dependencies be dynamically determined

© 2021 Brad Myers 14

D=f()=27 p = obj1

A = 15

obj1

left = 12

top = 5

obj2

left = 22

top = 15

Garnet / Amulet Default
Algorithm

 Variables in the dependencies
 Example: D = p^.left + A
 Important innovation in Garnet we

invented, now ubiquitous
 Supports feedback objects

 outlineRect.left = selectedObject^.left …

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

 Supports loops: D = Max(components^)
 Only evaluates needed part of conditionals

width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

 Requires the dependencies be dynamically determined

© 2021 Brad Myers 15

D=f()=37 p = obj2

A = 15

obj1

left = 12

top = 5

obj2

left = 22

top = 15

Examples of Expressing Constraints
 Garnet:
(create-instance NIL opal:line

(:points '(340 318 365 358))
(:grow-p T)
(:x1 (o-formula (first (gvl :points))))
(:y1 (o-formula (second (gvl :points))))
(:x2 (o-formula (third (gvl :points))))
(:y2 (o-formula (fourth (gvl :points)))))

 Amulet:
Am_Define_Formula (int, height_of_layout) {
int h = (int)Am_Height_Of_Parts(self) + 2 *

((int)self.Get(Am_TOP_OFFSET));
return h < 75 ? 75 : h;

}

am_empty_dialog = Am_Window.Create("empty_dialog_window")
.Set (Am_LEFT_OFFSET, 5) // used in width_of_layout
.Set (Am_TOP_OFFSET, 5) // used in height_of_layout
.Set (Am_WIDTH, width_of_layout)
.Set (Am_HEIGHT, height_of_layout)

...

16© 2021 Brad Myers

Other One-Way Variations
 Multiple outputs
 (D1, D2, ... Dm) = F(I1, I2, ... In)

 Side-effects in the formulas
 useful for creating objects
 when happen?
 what if create new objects with new constraints
 cycles cannot be detected

 Constant formula elimination
 To decrease the size used by constraints

© 2021 Brad Myers 17

Two-Way (Multi-way) Constraints
 From ThingLab (~1979)

 Alan Borning. “Defining Constraints Graphically,” Human Factors in Computing
Systems. Boston, MA, Apr, 1986. pp. 137-143. Proceedings SIGCHI'86.

 Constraints are expressions with multiple variables
 Any may be modified to get the right values
 Example: A.right = A.left + A.width - 1
 Often requires programmer

to provide methods for
solving the constraint in
each direction:
A.left = A.right - A.width + 1
A.width = A.right - A.left + 1

 Useful if mouse expressed
as a constraint

18© 2021 Brad Myers

Two-Way implementations
 Requires a planning step to decide which way to solve

 Many systems compute plans and save them around since usually
change same variable repeatedly

 In general, have a graph of dependencies, find a path
through the graph

 How control which direction is solved?
CurrentSliderVal = mouseX - scrollbar.left
 "Constraint hierarchies" = priorities

 constants, interaction use "stay" constraints with high priority
 Dynamically add and remove constraints

 Brad Vander Zanden's "QuickPlan" solver
 Handles multi-output, multi-way cyclic constraints in O(n2) time

instead of exponential like previous algorithms

19© 2021 Brad Myers

Simultaneous Equations
 Required for parallel, perpendicular lines;

tangency, etc.
 Also for aggregate's size
 Numerical (relaxation)

or symbolic techniques
 Thinglab bridge (1979)

(cite)

20© 2021 Brad Myers

https://constraints.cs.washington.edu/ui/thinglab-tr.pdf

Incremental
 Michael Gleicher's PhD thesis, 1994
 Only express forward computations
 Tries to get reverse by incrementally

changing the forward computation in the right
direction using
derivatives.

 Supports interactions
otherwise not possible

 Produces smooth
animations

21© 2021 Brad Myers

Animation Constraints in
Amulet
 Implemented using Amulet's constraint

mechanism
 When slot set with a new value, restores old

value, and animates from old to new value
 Usually, linear interpolation
 For colors, through either HSV or RGB space
 For visibility, various special effects between

TRUE and FALSE
 Demo

22© 2021 Brad Myers

Other Forms of Constraints
 For UI work, typically express in form of

equations
 Often just data-copying (equality): this.x = that.x
 For graphics, usually arithmetic required:
 this.x = that.x + that.w + 5

 5 pixels to the right
 this.x = that.x + that.w/2 - this.w/2

 centered
 this.w = 10 + max (child[i].x + child[i].w)

 10 larger than children

© 2021 - Scott Hudson and Brad Myers 23

Implementation Note
 Implementation details (the rest of these

slides) will not be on the final test

© 2021 Brad Myers 24

Dependency graphs for
Implementation
 Useful to look at a system of constraints as a

“dependency graph”
 graph showing what depends on what
 two kinds of nodes (bipartite graph)
 variables (values to be constrained)
 constraints (equations that relate)

© 2021 - Scott Hudson and Brad Myers 25

Dependency graphs
Example: A = f(B, C, D)

Edges are dependencies

A
B
C
D

f

© 2021 - Scott Hudson and Brad Myers 26

Dependency graphs
Dependency graphs chain together:

X = g(A, Y)

A
B
C
D

fX

Y

g

© 2021 - Scott Hudson and Brad Myers 27

Kinds of constraint systems
 Actually lots of kinds, but 3 major varieties used in

UI work
 one-way, multi-way, numerical (less use)
 reflect kinds of limitations imposed
 Reminder: Angular has both one-way and multi-way

 One-Way constraints
 must have a single variable on LHS
 information only flows to that variable

 can change B,C,D system will find A
 can’t do reverse (change A …)

© 2021 - Scott Hudson and Brad Myers 28

One-Way constraints
Results in a directed dependency graph:
A = f(B,C,D)

Normally require dependency graph
to be acyclic
 cyclic graph means cyclic definition

A
B
C
D

f
NOTE: These
arrows are in
the dataflow
direction. Not
dependency

© 2021 - Scott Hudson and Brad Myers 29

One-Way constraints
 Problem with one-way:

introduces an asymmetry
 this.x = that.x + that.w + 5
 can move “that” (change that.x)

but can’t move “this”

© 2021 - Scott Hudson and Brad Myers 30

Multi-way constraints
Don’t require info flow only to the left in
equation
 can change A and have system find B,C, and/or D

Not as hard as it might seem
 most systems require you to explicitly factor the

equations for them
 provide B = g(A,C,D), etc.

 I believe this is true for Angular two-way bindings
– have to supply a function for each “way” unless
equality

© 2021 - Scott Hudson and Brad Myers 31

A = f(B,C,D)

Multi-way constraints
 Modeled as an undirected dependency graph

 No longer have asymmetry

© 2021 - Scott Hudson and Brad Myers 32

Multi-way constraints
But all is not rosy
 most efficient algorithms require that dependency

graph be a tree (acyclic undirected graph)

A
B
C
D

fX

Y

g

© 2021 - Scott Hudson and Brad Myers 33

Multi-way constraints
But: A = f(B,C,D) & X = h(D,A)

Not OK because it has a cycle (not a tree)

A
B
C
D

fX h

© 2021 - Scott Hudson and Brad Myers 34

Another important issue
 A set of constraints can be:
 Over-constrained
 No valid solution that meets all constraints

 Under-constrained
 More than one solution
 sometimes infinite numbers

© 2021 - Scott Hudson and Brad Myers 35

Over- and under-constrained
 Over-constrained systems
 solver will fail
 isn’t nice to do this in interactive systems
 typically need to avoid this
 need at least a “fallback” solution

© 2021 - Scott Hudson and Brad Myers 36

Over- and under-constrained
 Under-constrained
 many solutions
 system has to pick one
 may not be the one you expect
 example: constraint: point stays at midpoint of line

segment
 move end point, then?

© 2021 - Scott Hudson and Brad Myers 37

Over- and under-constrained
 Under-constrained
 example: constraint: point stays at midpoint of line

segment
 move end point, then?
 Lots of valid solutions
 move other end point
 collapse to one point
 etc.

© 2021 - Scott Hudson and Brad Myers 38

Over- and under-constrained
 Good news is that one-way is never over- or

under-constrained (assuming acyclic)
 system makes no arbitrary choices
 pretty easy to understand

© 2021 - Scott Hudson and Brad Myers 39

Over- and under-constrained
 Multi-way can be either over- or under-

constrained
 have to pay for extra power somewhere
 typical approach is to over-constrain, but have a

mechanism for breaking / loosening constraints in
priority order
 one way: “constraint hierarchies”

© 2021 - Scott Hudson and Brad Myers 40

Over- and under-constrained
 Multi-way can be either over- or under-

constrained
 unfortunately system still has to make arbitrary

choices
 generally harder to understand and control

© 2021 - Scott Hudson and Brad Myers 41

Implementing constraints
 Algorithm for one-way systems
 Need bookkeeping for variables
 For each keep:

value - the value of the var
eqn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg

© 2021 - Scott Hudson and Brad Myers 42

Implementing constraints
 Algorithm for one-way systems
 Need bookkeeping for variables
 For each keep:

value - the value of the var
eqn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg

Incoming
Edges

© 2021 - Scott Hudson and Brad Myers 43

Naïve algorithm
For each variable v do
evaluate(v)

evaluate(v):
Parms = empty
for each DepVar in v.dep do

Parms += evaluate(DepVar)
v.value = v.eqn(Parms)
return v.value

© 2021 - Scott Hudson and Brad Myers 44

Why is this not a good plan?

© 2021 - Scott Hudson and Brad Myers 45

Exponential Wasted Work

© 2021 - Scott Hudson and Brad Myers

NOTE: These
arrows are in
the dataflow
direction. Not
dependency

46

Exponential Wasted Work

1 3 279 3n

© 2021 - Scott Hudson and Brad Myers 47

Exponential Wasted Work
Breadth first does not fix this

No fixed order works for all graphs
Must respect topological ordering of
graph (do in reverse topsort order)

1 2 84 2n

© 2021 - Scott Hudson and Brad Myers 48

Simple algorithm for one-way
(Embed evaluation in topsort)
After any change:
// reset all the marks

for each variable V do

V.done = false

// make each var up-to-date

for each variable V do

evaluate(V)
© 2021 - Scott Hudson and Brad Myers 49

Simple algorithm for one-way
evaluate(V):
if (!V.done)
V.done = true

Parms = empty

for each DepVar in V.dep do
Parms += evaluate(DepVar)

V.value = V.eqn(Parms)

return V.value

© 2021 - Scott Hudson and Brad Myers 50

Still a lot of wasted work
 Typically only change small part of system,

but this algorithm evaluates all variables
every time

 Also evaluates variables even if nothing they
depend on has changed, or system never
needs value
 e.g., with non-strict functions such as boolean ops

and conditionals

© 2021 - Scott Hudson and Brad Myers 51

An efficient incremental
algorithm
 Add bookkeeping
 For each variable: OODMark
 “Out Of Date mark”
 Indicates variable may be out of date with respect to

its constraint
 For each dependency edge: pending
 Indicates that variable depended upon has changed,

but value has not propagated across the edge

© 2021 - Scott Hudson and Brad Myers 52

Part one (of two)
When variable (or constraint)
changed, call MarkOOD() at point
of change

MarkOOD(v): [x]
if !v.OODMark
v.OODMark = true
for each depV depending upon v do
MarkOOD(depV)

© 2021 - Scott Hudson and Brad Myers 53

Part one (of two)
When variable (or constraint)
changed, call MarkOOD() at point
of change

MarkOOD(v):
if !v.OODMark
v.OODMark = true
for each depV depending upon v do
MarkOOD(depV)

Outgoing
Edges

© 2021 - Scott Hudson and Brad Myers 54

Part 2: only evaluate variables
when value requested (lazy
eval)
Evaluate(v):
if v.OODMark
v.OODMark = false

Parms = empty

for each depVar in V.dep do
Parms += Evaluate(depVar)

UpdateIfPending(v,Parms)

return v.value

© 2021 - Scott Hudson and Brad Myers 55

Part 2: only evaluate variables
when value requested (lazy
eval)
Evaluate(v):
if v.OODMark
v.OODMark = false

Parms = empty

for each depVar in V.dep do
Parms += Evaluate(depVar)

UpdateIfPending(v,Parms)

return v.value

Incoming
Edges

© 2021 - Scott Hudson and Brad Myers 56

UpdateIfPending(v,Parms):
pendingIn = false //any incoming pending?
For each incoming dep edge E do

pendingIn |= E.pending
E.pending = false

if pendingIn
newVal = V.eqn(Parms) [*]
if newval != v.value

v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

Part 2: only evaluate variables
when value requested (lazy
eval)

© 2021 - Scott Hudson and Brad Myers 57

UpdateIfPending(v,Parms):
pendingIn = false //any incoming pending?
For each incoming dep edge E do

pendingIn |= E.pending
E.pending = false

if pendingIn
newVal = V.eqn(Parms) [*]
if newval != v.value

v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

Part 2: only evaluate variables
when value requested (lazy
eval)

Can do lazy evaluation
here

© 2021 - Scott Hudson and Brad Myers 58

Example

© 2021 - Scott Hudson and Brad Myers 59

Example

Change Here © 2021 - Scott Hudson and Brad Myers 60

Example
Mark out of date

© 2021 - Scott Hudson and Brad Myers 61

Example
Eval this

© 2021 - Scott Hudson and Brad Myers 62

Example

© 2021 - Scott Hudson and Brad Myers 63

Example

© 2021 - Scott Hudson and Brad Myers 64

Example

Don’t need to
eval any of these! (Not out-of-date)© 2021 - Scott Hudson and Brad Myers 65

Example

© 2021 - Scott Hudson and Brad Myers 66

Example

© 2021 - Scott Hudson and Brad Myers 67

Example

(Trivial) eval
© 2021 - Scott Hudson and Brad Myers 68

Example

Eval

© 2021 - Scott Hudson and Brad Myers 69

Example

Eval

© 2021 - Scott Hudson and Brad Myers 70

Example
Eval

© 2021 - Scott Hudson and Brad Myers 71

Example Done

© 2021 - Scott Hudson and Brad Myers 72

Example

Notice we can do that
1000 times and these
never get evaluated
because they aren’t needed

© 2021 - Scott Hudson and Brad Myers 73

Rewind

Suppose this value didn’t change
© 2021 - Scott Hudson and Brad Myers 74

Example 2

No pending marks placed here
© 2021 - Scott Hudson and Brad Myers 75

Example 2
Skip eval
(and no outgoing
pending marks)

© 2021 - Scott Hudson and Brad Myers 76

Example 2
Skip eval

© 2021 - Scott Hudson and Brad Myers 77

Example 2 Done

Didn’t have to eval these

© 2021 - Scott Hudson and Brad Myers 78

Algorithm is “partially optimal”
 Optimal in set of equations evaluated [*]
 Under fairly strong assumptions

 Does non-optimal total work [x]
 “Touches” more things than optimal set during

Mark_OOD phase
 Fortunately simplest / fastest part

 Very close to theoretical lower bound
 No better algorithm known

© 2021 - Scott Hudson and Brad Myers 79

Good asymptotic result, but
also very practical
 Minimal amount of bookkeeping
 Simple and statically allocated
 Only local information

 Operations are simple
 Also has very simple extension to handling

pointers and dynamic dependencies

© 2021 - Scott Hudson and Brad Myers 80

Multi-way implementation
 Use a “planner” algorithm to assign a

direction to each undirected edge of
dependency graph

 Now have a one-way problem

© 2021 - Scott Hudson and Brad Myers 81

The DeltaBlue incremental
planning algorithm
 Assume “constraint hierarchies”
 Strengths of constraints
 Important to allow more control when over or

under constrained
 Force all to be over constrained, then relax weakest

constraints
 Substantially improves predictability

 Restriction: acyclic (undirected) dependency
graphs only

© 2021 - Scott Hudson and Brad Myers 82

A plan is a set of edge
directions
 Assume we have multiple methods for

enforcing a constraint
 One per (output) variable
 Picking method sets edge directions

 Given existing plan and change to
constraints, find a new plan

© 2021 - Scott Hudson and Brad Myers 83

Finding a new plan
 For added constraints
 May need to break a weaker constraint

(somewhere) to enforce new constraint
 For removed constraints
 May have weaker unenforced constraints that can

now be satisfied

© 2021 - Scott Hudson and Brad Myers 84

Finding possible constraints
to break when adding a new
one
 For some variable referenced by new

constraint
 Find an undirected path from var to a variable

constrained by a weaker constraint (if any)
 Turn edges around on that path
 Break the weaker constraint

© 2021 - Scott Hudson and Brad Myers 85

Key to finding path:
“Walkabout Strengths”
 Walkabout strength of variable indicates

weakest constraint “upstream” from that
variable
 Weakest constraint that could be revoked to allow

that variable to be controlled by a different
constraint

© 2021 - Scott Hudson and Brad Myers 86

Walkabout strength
 Walkabout strength of var V currently defined

by method M of constraint C is:
 Min of C.strength and walkabout strengths of

variables providing input to M

© 2021 - Scott Hudson and Brad Myers 87

DeltaBlue planning
 Given WASs of all vars
 (WalkAbout Strength)

 To add a constraint C:
 Find method of C whose output var has weakest

WAS and is weaker than C
 If none, constraint can’t be satisfied

 Revoke constraint currently defining that var
 Attempt to reestablish that constraint recursively
 Will follow weakest WAS

 Update WASs as we recurse

© 2021 - Scott Hudson and Brad Myers 88

DeltaBlue Planning
 To remove a constraint C
 Update all downstream WASs
 Collect all unenforced weaker constraints along

that path
 Attempt to add each of them (in strength order)

© 2021 - Scott Hudson and Brad Myers 89

DeltaBlue Evaluation
 A DeltaBlue plan establishes an evaluation

direction on each undirected dependency
edge

 Based on those directions, can then use a
one-way algorithm for actual evaluation

© 2021 - Scott Hudson and Brad Myers 90

References
 Optimal one-way algorithm

http://doi.acm.org/10.1145/117009.117012
Note: constraint graph formulated differently
 Edges in the other direction
 No nodes for functions (not bipartite graph)

 DeltaBlue
http://doi.acm.org/10.1145/76372.77531

© 2021 - Scott Hudson and Brad Myers 91

http://doi.acm.org/10.1145/117009.117012
http://doi.acm.org/10.1145/76372.77531

	Lecture 26:�Constraints and Data Bindings
	Logistics
	Constraints
	Historical Note: “Active Values”
	Important Historical�Constraint Systems
	Some Constraint Systems Today
	Angular Data Bindings
	One Way Constraints
	Data flow graph
	One Way Constraints
	One Way Constraints, cont.
	Garnet / Amulet�Constraint Solving
	Garnet / Amulet Default Algorithm
	Garnet / Amulet Default Algorithm
	Garnet / Amulet Default Algorithm
	Examples of Expressing Constraints
	Other One-Way Variations
	Two-Way (Multi-way) Constraints
	Two-Way implementations
	Simultaneous Equations
	Incremental
	Animation Constraints in Amulet
	Other Forms of Constraints
	Implementation Note
	Dependency graphs for Implementation
	Dependency graphs
	Dependency graphs
	Kinds of constraint systems
	One-Way constraints
	One-Way constraints
	Multi-way constraints
	Multi-way constraints
	Multi-way constraints
	Multi-way constraints
	Another important issue
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Implementing constraints
	Implementing constraints
	Naïve algorithm
	Why is this not a good plan?
	Exponential Wasted Work
	Exponential Wasted Work
	Exponential Wasted Work
	Simple algorithm for one-way�(Embed evaluation in topsort)
	Simple algorithm for one-way
	Still a lot of wasted work
	An efficient incremental algorithm
	Part one (of two)
	Part one (of two)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Rewind
	Example 2
	Example 2
	Example 2
	Example 2
	Algorithm is “partially optimal”
	Good asymptotic result, but also very practical
	Multi-way implementation
	The DeltaBlue incremental planning algorithm
	A plan is a set of edge directions
	Finding a new plan
	Finding possible constraints to break when adding a new one
	Key to finding path: �“Walkabout Strengths”
	Walkabout strength
	DeltaBlue planning
	DeltaBlue Planning
	DeltaBlue Evaluation
	References

