
Creating Interaction
Techniques by
Demonstration

Brad A. Myers
University of]bronto*

Peridot is an experimental user interface manage-

ment system, or UIMS, that can create graphical, highly
interactive user interfaces. A previous article'
presented an overview of Peridot, concentrating on how
the static displays (the presentation) ofthe user interfaces
are created. This article describes how the dynamics of
the user interface can be specified by demonstration.
The full description of Peridot and the research that led
to its development is also available.2 Peridot, which

0272-1716/87/0900-0051$01.00(e. 1987 IEEE

'The author is now with Carnegie Mellon University.

September 1987 51

stands for programming by example for real-time inter-
face design obviating typing, is implemented in Interlisp-
D on a Xerox DandeTiger (1109) workstation.
The central approach of Peridot is to allow the

designer of the user interface to design and implement
direct-manipulation user interfaces3'4 in a direct-
manipulation manner. The designer need not do any
programming in the conventional sense, since all com-
mands and actions are given graphically. The general
strategy of Peridot is to allow the designer to draw the
screen display that the end user will see, and then to per-
form actions just as the end user would-for example, by
moving a mouse, pressing its buttons, turning a knob, or
toggling a switch. The results are immediately visible
and executable on the screen and can be edited easily.
The designer gives examples of typical values for
parameters and actions, and Peridot automatically
guesses (or infers) how they should be used in the general
case.
Because any inferencing system will occasionally

guess wrong, Peridot uses three strategies to ensure cor-
rect inferences. First, Peridot always asks the designer
if guesses are correct. Second, the results of the infer-
ences can be seen and executed immediately. Finally, the
inferences can be undone if they are wrong. The inter-
face can be edited easily, and the changes will be visible
immediately. In addition, Peridot creates efficient code
so that the final interface can be used in actual applica-
tion programs.
As shown in a previous paper,1 this technique allows

the presentation aspects of the interface to be created by
nonprogrammers in a very natural manner. Peridot may
even be simple enough for end users to modify their user
interfaces with. This article describes how these ideas
have been extended to allow the dynamics of the inter-
action to be programmed by demonstration, which is
harder because of the dynamic and temporal nature of
the interactions.
To control the dynamics, all parts of the interaction

that can change at runtime are attached to active values.
These are like variables except that the associated pic-
ture is updated immediately when the value changes.
Input devices and application programs can set active
values at any time to modify the picture. Active values
also form the link between the application program and
the user interface.
Throughout this article the term "designer" is used for

the person creating user interfaces (and therefore using
Peridot). "User," or "end user," means the person using
the interface created by the designer.

Background and related work
Because programming user interfaces is difficult and

expensive, there has been a growing effort to create tools,
called user interface management systems,5`7 to help
with the task. Many early (and some current) UIMSs

require the designer to specify the interfaces in a textual,
formal programming-style language. This procedure
proved useful and appropriate for textual command
languages8 but difficult and clumsy for graphical,
direct-manipulation interfaces,9 and designers have
been reluctant to use it.'O Therefore, a number of
UIMSs allow the designer to use more graphical styles.
Examples include Menulay," Trillium,12 and GRINS.13
These are, for the most part, still limited to using graphi-
cal techniques for specifying the placement of pieces of
the picture and interaction techniques (for example,
where menus are located and what type of light button
to place where). Some systems, such as Squeak,14 allow
interaction techniques to be specified textually; but as far
as we know, no previous system attempts to allow the
dynamics of the actual input devices and the interaction
techniques themselves to be programmed in a graphical,
nontextual manner.

In trying a new approach to these problems, Peridot
uses techniques from visual programming and example-
based programming with plausible inferencing.15 "Vis-
ual programming" refers to systems that allow the spec-
ification of programs using graphics. Some of these
systems, such as Rehearsal World,"6 have succeeded in
making programs more visible and understandable and
therefore easier for novices to create.
Example-based programming systems allow the pro-

grammer to use examples of input and output data dur-
ing programming. Some of these systems use "plausible
inferencing," which means that they try to guess gener-
alizations or explanations from specific examples.17
Systems of this type are generally called "programming
by example."'15 Some systems that allow the program-
mer to develop programs using specific examples do not
use inferencing. 18-20 For example, SmallStar18 allows
users to write programs for the Xerox Star office work-
station by simply performing the normal commands and
adding control flow afterward. Peridot uses inferencing
to try to make some of the complex parts of interface
design automatic, such as specifying the control flow.
Another important component of Peridot is con-

straints, which are relationships among objects and data
that must hold even when the objects are manipulated.
Peridot uses two kinds of constraints. Graphical con-
straints, the kind used in ThingLab" and related sys-
tems,22'23 relate one graphic object to another. Data
constraints ensure that a graphical object has a particu-
lar relationship to a data value; these are used in the Pro-
cess Visualization System,24 which was influenced by
"triggers" and "alerters" in database management sys-
tems. 25 They are also similar to the "control" values in
GRINS" except that they are programmed by example
instead of textually and can be executed immediately
without waiting for compilation.
In Peridot, data constraints are associated with active

values, which have been used in artificial intelligence
simulation environments.26'27

52 IEEE CG&A

ICharac-t erMode s = (eod I ta 1 i c Under 1 i r e I r-ier tec-tr ike Th rOU'tig i

CurrentProperties - " Bold" "IUnderl ine" Outi inre
1oto -~(2 NJIL

(-39 -12 NIL NIL NIL..
Command-s -

Circle"''''.13ale 1 .#5. l,,1
EAd i t -P i c.t.Lt- e
MOUJSEDependent3
RectanLgle
Run - Pr occ d u reItalic
"str ing FrrmSe 1e rt

',':'Ac,-Re~turnst-St~mt. sSb :

'|' hdrCp-1C'Dr:wFrlC: | tlUnder line '

C h an g Foni ri Fnt. 1 I i ne

Cond it ional I

E,-'< ort ''.,,,,. .~~~~~~~~~~I n et.rst- em
I
i xicIti

r''1OEMUSE E ..x..ept iorn3 Strik~e Th-rough...............l,

Remi8:ll'tttdttid :&'ado: t r 1 1a3AJR initia1c Cin-ze tr,ahco i,'

R"rei i te a Iuc edur e ado"

.,.T , l circle [BlackCirceO'1i (marked with an N) seems to r

k.r,.,,,,...he in the center of The WhPite circle [hitte.CircleO2-](marked.
WRT

beinlthceter ofrule? (hYes Noror Quit.) esice'-80 mre

X.

...,,,.,,,,,,,,,,,,,,,App ..

X...

Figure 1. The three Peridot windows (the parameter window at the top is divided into two parts) and the
Peridot command menu (left).

Peridot in action
A concrete example is the best way to demonstrate

how easy creating a user interface is with Peridot. Space
limitations require that some of the details be left out, but
further explanations of the process appear in subsequent
sections and in other articles.",2
When creating a procedure by demonstration using

Peridot, the designer first types in the parameters to the
procedure, any active values needed, and an example of
a typical value for each. Peridot then creates three win-
dows and a menu and puts the parameters and active
values in the upper window (see Figure 1). The menu, at
the left, is used to give commands to Peridot. The win-
dow in the center shows what the user will see as a result

of this procedure (the end-user interface), and the win-
dow at the bottom is used for messages and prompts.
Figure 2 shows the steps for creating a scroll bar that

displays both the part of a file that is visible in a window
and the percentage of the file visible. First, in (a) the back-
ground graphics are created. In (b) the designer creates
a grey bar that is as tall as the surrounding rectangle. This
will be used to indicate that the entire file is visible, and
the designer gives a Peridot command to have the height
remembered. Then in (c) the designer makes the bar two
pixels high and uses the same command to tell Peridot
that this height is the other extreme. Peridot prompts for
the active value that the height change should depend on
(ScrollPercent in this case) and then asks the designer for
the values that correspond to the two graphical extremes

September 1987 53

CharslInFile =5036

320 12s*8 NIL T NIL
Scrol1Per centrt 20
.'hereInrFi1e 3521

I IA III (C.

;.;I.;;

....

i,,d'
ItcSO (e)1

Figure 2. Steps during the creation of a scroll bar
using Peridot. In (a) the background graphics have
been created. The grey bar will represent percentage
of file visible in the window. The two extremes of the
full file (b) and none of the file (c) are demonstrated.
The height of the bar will depend on the active value
ScrollPercent, which ranges from 100 to 0. Next, two
other extremes are demonstrated-the end of the file
visible (d) and the beginning of the file visible (e). The
active value WhereInFile controls this indicator. The
designer then uses the simulated mouse (f) to demon-
strate that the bar should follow the mouse when the
middle button is down.

(here, 100 and 0). Peridot then automatically creates a lin-
ear interpolation that modifies the height of the bar on
the basis of the value of ScrollPercent, as shown in (d).
Similarly, the designer moves the grey box to the bottom
of the bar (d) and then to the top (e) and specifies that this
corresponds to the active value WhereInFile showing the
position in the file. When asked, the designer specifies
that WhereInFile varies from the value of the parameter
CharsInFile down to 1. These two active values can then
be set independently or at the same time by an applica-
tion.

Next, the designer moves the simulated mouse (which
represents the real mouse) over the grey box and presses
the middle button (Figure 2f). Since the box has already
been defined to move in y with an active value, Peridot
infers that the mouse should control this action while its
middle button is down. Of course, for this and all other
inferences, the designer is queried to ensure that the
guess is correct. If it is not, Peridot investigates other pos-

sibilities. When the mouse is used to update the graphics,
the active values are also set and an application will be
notified if appropriate. Now this piece of the interaction
can be executed immediately with either the real or
simulated mouse.

Overview
All UIMSs are restricted in the forms of user interface

they can generate.28 Peridot is aimed only at graphical,
highly interactive interfaces that do not use the keyboard.
It is clear, however, that Peridot will not be able to cre-
ate every possible mouse-based type of interaction.
Nevertheless, it does have sufficient coverage to create
interfaces like those of the Apple Macintosh29 as well as
some entirely new interfaces, and it is much easier to cre-
ate these interfaces using Peridot than with other exist-
ing methods.

Peridot tries to let the designer specify the input device
actions mostly by demonstration. The goal is to let the
designer simply move the devices the same way the end
user would, and Peridot will create the code to handle
the actions. For this to work, the system must infer how
the specific actions on the example data should be gener-
alized to handle any appropriate end-user data. In addi-
tion, exceptions and error cases must be handled.
An important consideration for any demonstrational

system is how much should be done by demonstration
and how much by conventional specification. It is
usually much easier to implement the specification tech-
nique in UIMSs, and in some cases demonstration may
actually be harder for the designer to use. This happens
when the designer knows how the system should act and
believes it would be much easier simply to specify the
actions than laboriously demonstrate them. For exam-
ple, to demonstrate by example whether an action should
toggle, set, or clear a value, the designer must demon-
strate the action twice. The first demonstration, over a
set value, will cause the value to be cleared for the func-
tion toggle, stay set for set, and be cleared for clear. The
second demonstration, over a cleared value, will cause
the value to be set for the function toggle, be cleared for
set, and stay cleared for clear. To specify which should
happen, the designer need only choose toggle, set, or
clear, which will probably be much quicker. In other
cases, however, the number of possible choices is so large
that it would be more difficult to use specification. This
has been the case for most aspects of the presentation of
user interfaces (the static pictures).1
To make Peridot as easy to use as possible, the specifi-

cation method is allowed whenever there is a small num-
ber of easily delineated choices. Demonstration is
considered the primary method, however, since it is
more novel and difficult to provide, and thus more
interesting in a research context. Demonstrational
methods are more difficult for the dynamic interactions
than for static pictures, since issues of when operations
should happen are involved (not just what should hap-

IEEE CG&A

--i

....

(f ",

54

pen), and the ephemeral nature of the actions makes it
harder to select the ones to which operations apply.

Active values
The key to easy specification of the way input devices

are handled is to provide appropriate communication
mechanisms between them and the graphics displays
they manipulate. Peridot uses active values for this con-
trol, and they have proved powerful, efficient to imple-
ment, and easy for the designer to use. Active values are
also used to connect the user interfaces with application
programs.
Active values are like variables in that they can be

accessed and set by any program or input device. They
can have arbitrary values of any type. Whenever they are
set, all objects that depend on them are immediately
updated. The user interface designer can create as many
active values as needed and give them arbitrary names.
Typically, each part of the interface that can change at
runtime will be controlled by an active value, as shown
in Figure 2, where ScrollPercent and WhereInFile vary
continuously in a specified range.

Different kinds of control using active values are
shown in Figures 1 and 3. In Figure 1 the active value
CurrentProperties contains a list of the names that are
designated by a dot. In Figure 3 seven active values con-
trol a window that can scroll vertically or horizontally,
move, or change size.
An important advantage of active values is that they

allow the application to deal in its own units (O to 100 and
1 to CharsInFile in Figure 2, and the string names of the
font properties in Figure 1) and remain totally indepen-
dent ofhow these values are represented graphically or
how they are set by input devices. The graphics can be
changed arbitrarily, and the application code is not
affected.

Exceptional values
An important consideration is what to do when an

active value is set outside its expected limits. This is obvi-
ously most important when the active value is set by an
input device, but it can also have a hand in preventing
application programs from setting values incorrectly. An
application can supply a procedure that will support
gridding and more complex types of semantic feedback
(where the application must be involved in the inner
feedback loop). Alternatively, one of Peridot's built-in
range-checking routines can be used. The designer
chooses what to do when the value is out of range:

1. Raise an error exception.
2. Peg the value to the nearest legal value (MIN or

MAX).
3. Wrap the value around to the other extreme (MOD).
4. Allow the value to go outside the range.

Peridot lets the designer explicitly specify what happens

S.
.5.* A A A A .5 .5 A AA A A .5 .5

l IllflhIIII0hIIIIlhINII
:i3zeOfWindow - (250 198
Positioni0fWindow (25 30
PercentShownX - 37
PercentSho'4nY -- 27
PlaceInPicX - 100
PlaceInPicY - 45
StopControl - NIL
Mouse - (-39 -12 tNIL NIL NIL

1..... 111111111|1111111 1111111111111111111111111lll

'..X........¢

:::'.:.....'..'.'.'-........... . :3 LL

~~~~~~~~~~~~~~~~....................

.......... .. .. . ............ ...........

Figure 3. A complex interface created entirely by
Peridot. The window can move or change size, and the
picture pan scroll either vertically or horizontally.
This is controlled by seven active values. An applica-
tion procedure is called to display the picture and cal-
culate the percentage displayed in the window, but all
other manipulations are handled by Peridot and were
defined by demonstration.

(the default is "allow") and, in some cases, automatically
infers the constraint.

Application notification
Another important consideration is when to notify an

application program if an active value changes. This
comes into play mainly when the value is changed by
input devices, but an application procedure can also be
used to tie certain active values together to provide
semantic feedback. As an example, Figure 4 shows a
graphical potentiometer for setting grey shades. The end
user can move the diamond with the mouse. The posi-
tion of the diamond and the number in the left box are
tied directly to the active value SliderValue using linear
interpolation, but the halftone representation ofthe cor-

September 1987

..........I ........ - - -------------- -- - ......

plagjlwwa.

55



Figure 4. Multiple views ofa graphical slider. The dia-
mond and the numerical percentage (left) depend on
one active value. The box on the right is shaded auto-
matically on the basis of the halftone color calculated
by an application procedure attached to the active
value.

every increment during mouse tracking or other input
device handling.

Peridot provides several options for when an applica-
tion is notified:

1. Whenever the value is set (including when it is set
to its existing value); this is useful as a trigger.

2. Whenever the value changes.
3. Whenever the value changes by more than some

threshold.
4. When an interaction is complete (for example,

when the mouse button is released after moving the
diamond in Figure 4).

5. Never.

These choices are specified explicitly. The threshold
choice (number 3) is useful for increasing efficiency (so
that the application is not notified too often), and it is use-
ful for controlling animations using the system-provided
active value for the clock (for example, blinking or mov-

ing at a specific speed).
Application procedures attached to active values are

also used to extend the operations that Peridot supports.
If some kind of interaction or special effect is not
provided, then a very short procedure can usually be
written to perform the action by querying and setting
active values.
The implementation of active values is very efficient2

(the affected objects are computed at design time) and
can be optimized for whatever operating system is in use.

They do not require any complex constraint satisfaction
techniques or much more computation than would be
needed if the various actions were coded by hand.

Figure 5. The simulated mouse with its left button
down is being used to program a menu of strings by
demonstration. The black rectangle (now over Copy)
will follow the mouse while the left button is held
down.

responding grey shade is calculated using an

application-provided procedure. The conversion func-
tion is called whenever the SliderValue value changes, so

the color in the box on the right will always be correct.
Note that this allows the application program to have

fine-grain control over the interface. Most other UIMSs
provide only coarse-grain control, so they cannot han-
dle this type of semantic feedback. The application can
control feedback, default values, and error detection and
recovery at a low level, and active values are efficient
enough to allow application procedures to be called for

Input devices
Each input device is attached to its own active value.

For example, the mouse has an active value called Mouse,
which is a list of five items: the x position of the mouse,
the y position, and a Boolean for each of the three but-
tons.* A button box would be represented as a set of
Booleans-one for each button.

*Of course, some systems may provide more or fewer items for the mouse. The
connection between the hardware devices and their active values is written in
conventional Lisp code.

IEEE CG&A

Slide To Select Grey Shade:

[E1[ f~~I IA I I
Slide To Select GrSey Shade:

Slide To Select Grey Shade:

Sl1ide To Hel1erts Gamet Shade:

1E10 1 , d[

56



a

tEnahlerie ieI IInabled
auto repeat

dark background
block cursor
margin bell
key click

XON/XOFF
wraparound
ewl ine
parity
printer

local echo
screen saver
two page
smooth scroll

-I-:nblM isabledl
auto repeat

dark background
lock cursor

margin bell
key click
XON/XOFF
wraparound
newline
parity
printer
local echo
screen saver
two page

smooth scroll

- -: - I

rjQQ1 QQQaQ
0

4

41

4i5

C

Figure 6. The response to the mouse action is limited only by the creativity ofthe designer. In (a) four arrows
move with the mouse; in (b) text items move left and right; and in (c) number-pad buttons pretend to move
in three dimensions.

Clearly, the mechanisms described in the previous sec-

tion can be used to attach the input devices' active values
to active values controlling the graphics. The techniques
described under the subsection "exceptional values" are

used to restrict the values to certain limits, and the appli-
cation will be notified when appropriate.

If this were all that was provided, however, then code
would have to be written for each mouse dependency to
cover all the requirements. The main problem is that
interaction techniques need to be activated only under
certain conditions. For example, a typical menu has a

black rectangle that follows the mouse (Figure 5), but
only while the mouse button is held down over the menu.
When the mouse button is released, the current value is
returned.
When specifying interactions of this type, Peridot uses

a postfix-style sequence. First, the designer creates the

graphics that should appear (the black rectangle in the
menu, for example) and then specifies that it should
depend on the mouse. The actual graphics that respond
to the mouse actions are totally under the control of the
designer. For example, in Figure 6a the four arrows move
with the mouse; in Figure 6b the text items move left and
right when the mouse button is pressed over them; and
in Figure 6c the numbers appear to move in three dimen-
sions.
The simulated mouse' is used to show what should

happen, since the real mouse is used for giving Peridot
commands. For the menu, the designer moves the simu-
lated mouse over the black rectangle and shows the left
button down. Peridot then confirms that the action
should happen on left button down. On the basis of the
position of the simulated mouse, Peridot next determines
whether the action should happen when the mouse is

September 1987

[I
auto repeat

block cursor
margin bell

XON/XOFF
wraparound
newline

printer
local echo
screen saver

smooth scroll

dark background

key click

parity

two page

I'

auto repeat
dark background
block cursor
margin bell

key click
XON/XilFF

wraparound
newline
parity

printer
local echo
screen saver
two page
smooth scroll

0
L

57



Figure 7. A menu in which some of the items are ille-
gal. The grey items cannot be selected with the mouse.

(1) over a particular object (for example, the diamond in
Figure 4), (2) over one of a set of objects (any of the strings
in the menu-generalizing from Figure 5 where the
mouse is over a particular item: Copy), or (3) anywhere
on the screen. If the simulated button is down, Peridot
assumes that the operation should happen continuously
while the button is pressed. If the simulated button is
pressed and released, the action will happen once when
the button goes down. It is also possible to demonstrate
that the action should happen once when the button is
released, continuously while the button is up, or only
after the mouse button has been pressed several times
(for example, a double click).
Exception areas, where the interaction is not allowed,

can be defined by demonstration. In Figure 7, for exam-
ple, the black rectangle will not go over any of the names
shaded in grey. Of course, the graphic presentation of the
illegal items is determined totally by the designer and is
independent of the exception mechanism. The value to
use for the active value when the mouse is over an excep-

tion item, as well as the value used when the mouse goes

outside the object's boundaries, can be specified by the
designer.
The property-sheet interaction (Figure 1) is demon-

strated much like the menu. The example value for the
controlling active value is used to determine whether
multiple items are allowed (as for the property sheet) or

only one is allowed (as for the menu). The slider (Figure

4) is programmed the same way as the scroll bar (Figure
2). After each piece of the interaction is designed, it can
be run immediately, using either the actual devices (by
going into "run mode") or the simulated devices.
An interesting advantage of the demonstrational tech-

nique is that Peridot can infer what part of the object
should be attached to the mouse during dragging on the
basis of where the mouse was placed (Figure 8). Peridot
checks to see if the designer placed the mouse in the cen-
ter, at a corner, or in the middle of one side, and it asks
the designer to confirm the inferred position.
Combining the clock active value and the above oper-

ations allows the designer to demonstrate that something
should happen a certain amount of time after an action.
For example, this can be used to specify the MacWrite-
style scrolling, where the document starts scrolling con-
tinuously if the mouse button is held down for more than
one second over an arrow. (A special feature of Peridot
allows the wait interval to be demonstrated by pressing
the mouse buttons rather than by specifying the time
numerically, thus providing a demonstrational interface
to time.)
Multiple mouse-button clicks (double click, triple click,

etc.) and other input techniques can also be programmed
by demonstration. If the designer presses the simulated
mouse button several times, Peridot infers that multiple
clicking is desired. To program a touch tablet or slider,30
the designer simply attaches the desired object proper-

ties (size, for example) to the value from the input devices,
possibly after filtering the values using a special
application-defined procedure.
An important side effect of using active values for

creating interactions is that multiple input devices oper-
ating in parallel30 can be handled easily, whereas they
are very difficult to implement in conventional systems.
For example, the designer can easily tie the position of
an object to the mouse, and its size to a knob operated
with the other hand-allowing both to operate concur-

rently. In addition, it requires no extra effort to have mul-
tiple interactions that use the same device (such as

multiple mouse menus) available to the end user at the
same time, since Peridot ensures that all activated tech-
niques are watching for their appropriate input.

Editing interactions
Editing static pictures is very easy, since they can be

selected and respecified easily. Selecting dynamic and
ephemeral things such as interactions is harder, however,
because they typically do not have visual representations
on the screen. Some systems have required the user to
learn a textual representation for the actions to allow
editing,"8 but this is undesirable.

Peridot allows interactions to be edited several ways.

First, an interaction can be re-demonstrated, and Peridot
will ask whether the new interaction should replace the
old one or run in parallel. Since individual interactions

IEEE CG&A

.EditorP Fun-ctionI

Cut

Search
Head File

Format

Looks

58



are small, this should not be a large burden. A complex
interaction, such as a menu or scroll bar, typically is con-
structed from a number of small interactions, each of
which takes only a few seconds to define. The second
way to edit interactions is to select an active value and
request that the interactions affecting it be removed.

Evaluation
It is very difficult to quantify formally the range of user

interfaces that Peridot can create, since there is no com-

prehensive taxonomy of interaction techniques. Infor-
mally, Peridot's range can be described by example: It
can create menus of almost any form (with single or mul-
tiple items selected), property sheets, light buttons, radio
buttons, scroll bars, two-dimensional scroll boxes,
percent-done progress indicators, graphical potentiom-
eters, sliders, iconic and title-line controls for windows,
dynamic bar charts, and many other interfaces. Thus,
Peridot can create almost all of the Apple Macintosh
interface, as well as many new interfaces such as those
using multiple input devices concurrently. Peridot also
created its own user interface. The ideas in Peridot could
be extended easily to handle the keyboard and other
types of input devices.
To evaluate how easy Peridot is to use, 10 people used

the system for about two hours each. Five were

experienced programmers and five were nonprogram-

mers with some experience using a mouse. The results
of this experiment were very encouraging. After about
an hour and a half of guided use, the subjects were able
to create a menu of their own design unassisted. This
demonstrates that one basic goal of Peridot has been met:
Nonprogrammers can use it to create user interfaces.

In addition, programmers will appreciate using
Peridot to define graphical parts of user interfaces
because it is so much faster and more natural than con-

ventional programming. As a small, informal experi-
ment, six expert programmers implemented a particular
menu using their favorite hardware and software envi-
ronments. Some wrote the menu by hand and others
modified existing code. With Peridot, the time needed to
create the menu ranged from 4 to 15 minutes, but pro-
gramming took between 50 and 500 minutes.2 Thus,
using Peridot appears to be significantly faster.

Conclusions
Peridot successfully demonstrates that it is possible to

program a large variety of mouse and other input-device
interactions by demonstration. The use of active values
supports multiprocessing and makes the linking to appli-
cation programs straightforward, fast, and natural; and
it supports semantic feedback easily. Interfaces created

September 1987

Figure 8. An object might be attached to the mouse in
various places for dragging: bottom-left, center, or

center of right side.

with Peridot can be tried out immediately (with or with-
out the application program), and the code generated is
efficient enough to be used in actual end applications.
This allows extremely rapid prototyping of direct-
manipulation interfaces.
By providing the ability to use explicit specification

and demonstrational methods, Peridot allows the
designer to use the most appropriate techniques for
creating the user interfaces. The novel use of demonstra-
tional (programming-by-example) methods makes a large
class of previously hard-to-create interaction techniques
easy to design, implement, and modify. In addition,
Peridot makes it easy to investigate many new techniques
that have never been used before and in this way may

help designers discover the next generation of exciting
user interfaces.

Acknowledgments
First, I want to thank Xerox Canada, Inc., for the dona-

tion of the Xerox workstations and Interlisp environ-
ment. This research was also partially funded by the
National Science and Engineering Research Council of
Canada. For help and support with this article, I would
especially like to thank my advisor, Bill Buxton, and also
Bernita Myers, Peter Rowley, and Ron Baecker.

References
1. B.A. Myers and W. Buxton, "Creating Highly Interactive and

Graphical User Interfaces by Demonstration," Computer Graphics
(Proc. SIGGRAPH 86), Aug. 1986, pp. 249-258.

2. B.A. Myers, Creating User Interfaces by Demonstration, doctoral
dissertation, Dept. of Computer Science, Univ. of Toronto. Avail-

able as Tech. Report CSRI-196, Computer Systems Research Inst.

Technical Reports, Univ. of Toronto, Ontario, Canada, M5S lA1,
May 1987.

59

- ~ ~~~~~~~~~~~~~~ .-p

I I



3. B. Shneiderman, "Direct Manipulation: A Step Beyond Program-
ming Languages," Computer, Aug. 1983, pp. 57-69.

4. E.L. Hutchins, J.D. Hollan, and D.A. Norman, "Direct Manipula-
tion Interfaces," in User Centered System Design, D.A. Norman
and S.W. Draper, eds., Lawrence Erlbaum Associates, Hillsdale,
N.J., 1986, pp. 87-124.

5. "Graphical Input Interaction Technique (GIIT) Workshop Sum-
mary," in Computer Graphics, J.J. Thomas and G. Hamlin, eds.,
ACM SIGGRAPH, Jan. 1983, pp. 5-30.

6. D.R. Olsen, Jr., et al., "A Context for User Interface Management,"
CG&A, Dec. 1984, pp. 33-42.

7. User Interface Management Systems, G.R. Pfaff, ed., Springer-
Verlag, Berlin, 1985.

8. R.J.K. Jacob, "A State Transition Diagram Language for Visual Pro-
gramming," Computer, Aug. 1985, pp. 51-59.

9. B. Shneiderman, "Seven Plus or Minus Two Central Issues in
Human-Computer Interfaces," Proc. SIGCHI 86: Human Factors
in Computing Systems, ACM, New York, 1986, pp. 343-349.

10. D.R. Olsen, Jr., "Larger Issues in User Interface Management,"
Proc. ACM SIGGRAPH Workshop on Software Tools for User Inter-
face Development, reprinted in Computer Graphics, Apr. 1987, pp.
134-13 7.

11. W. Buxton et al., "Towards a Comprehensive User Interface Man-
agement System," Computer Graphics (Proc. SIGGRAPH 83), July
1983, pp. 35-42.

12. D.A. Henderson, Jr., "The Trillium User Interface Design Environ-
ment," Proc. SIGCHI 86: Human Factors in Computing Systems,
ACM, New York, 1986, pp. 221-227.

13. D.R. Olsen, Jr., E.P. Dempsey, and R. Rogge, "Input-Output Link-
age in a User Interface Management System," Computer Graphics
(Proc. SIGGRAPH 85), July 1985, pp. 225-234.

14. L. Cardelli and R. Pike, "Squeak: A Language for Communicating
with Mice," Computer Graphics (Proc. SIGGRAPH 85), July 1985,
pp. 199-204.

15. B.A. Myers, "Visual Programming, Programming by Example, and
Program Visualization: A Taxonomy," Proc. SIGCHI 86: Human
Factors in Computing Systems, ACM, New York, 1986, pp. 59-66.

16. L. Gould and W. Finzer, "Programming by Rehearsal," Tech.
Report SCL-84-1, Xerox Palo Alto Research Center, May 1984. A
short version appears in Byte, June 1984.

17. A.W. Biermann, "Approaches to Automatic Programming," in
Advances in Computers, Vol. 15, M. Rubinoff and M.C. Yovitz, eds.,
Academic Press, New York, 1976, pp. 1-63.

18. D.C. Halbert, Programming by Example, doctoral dissertation,
Computer Science Division, Dept. of EE & CS, Univ. of Califor-
nia, Berkeley, 1984. Also available as Tech. Report TR OSD-T8402,
Xerox Office Systems Division, Systems Development Dept., Dec.
1984.

19. H. Lieberman, "Constructing Graphical User Interfaces by Exam-
ple," Graphics Interface 82, Canadian Information Processing Soc.,
Toronto, Ontario, 1982, pp. 295-302.

20. D.C. Smith, Pygmalion: A Computer Program to Model and Stimu-
late Creative Thought, Birkhauser, Basel, Switzerland, 1977.

21. A. Borning, "Thinglab-A Constraint-Oriented Simulation
Laboratory," Tech. Report SSL-79-3, Xerox Palo Alto Research Cen-
ter, 1979.

22. R.A. Duisberg, "Animated Graphical Interfaces," Proc. SIGCHI 86:
Human Factors in Computing Systems, ACM, New York, 1986, pp.
131-136.

23. G. Nelson, "Juno, a Constraint-Based Graphics System," Computer
Graphics (Proc. SIGGRAPH 85), July 1985, pp. 235-243.

24. J.D. Foley and C.F. McMath, "Dynamic Process Visualization,"
CG&A, Mar. 1986, pp. 16-25.

25. O.P. Buneman and E.K. Clemons, "Efficiently Monitoring Rela-
tional Databases," ACM Trans. Database Systems, Sept. 1979, pp.
368-382.

26. C.V. Ramamoorthy, S. Shekhar, and V. Garg, "Software Develop-
ment Support for Al Programs," Computer, Jan. 1987, pp. 30-40.

27. M. Stefik, D.G. Bobrow, and K.M. Kahn, "Integrating Access-
Oriented Programming into a Multi-Paradigm Environment,"
IEEE Software, Jan. 1986, pp. 10-18.

28. PP. Tanner and WA.S. Buxton, "Some Issues in Future User Inter-
face Management System (UIMS) Development," in User Inter-
face Management Systems, G.R. Pfaff, ed., Springer-Verlag, Berlin,
1985, pp. 67-79.

29. G. Williams, "The Apple Macintosh Computer," Byte, Feb. 1984,
pp. 30-54.

30. W. Buxton and B. Myers, "A Study in Two-Handed Input," Proc.
SIGCHI 86: Human Factors in Computing Systems, ACM, New
York, 1986, pp. 321-326.

Brad Myers is a research computer scientist at
Carnegie Mellon University. From 1980 until
1983 he worked at PERQ Systems Corporation,
where he designed and implemented the Sap-
phire window manager and numerous PERQ
demonstrations for the SIGGRAPH equipment
exhibition.Hi sresearchinterests includeuser

interface management systems, user interfaces,
programming by example, visual programming,
interaction techniques, window management,

programming environments, debugging, and graphics.
Myers recently completed a PhD in computer science at the Uni-

versity of Toronto. He received the MS and BS degrees from the Mas-
sachusetts Institute of Technology while he was a research intern at
Xerox PARC. He is a member of SIGGRAPH, SIGCHI, ACM, and the
Computer Society of the IEEE.

Myers' address is Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA 15213-3890.

IEEE CG&A60


