
Dallas, August 18-22 Volume 20, Number 4, 1986

Creating Highly-Interactive and Graphical User Interfaces
by Demonstration

Brad A. Myers
and

William Buxton

Dynamic Graphics Project
Computer Systems Research Institute

University of Toronto
Toronto, Ontario, M5S 1A4

Canada

ABSTRACT

It is very t ime-consuming and expensive to create the
graphical, highly-interact ive styles of user interfaces that
are increasingly common. User Interface Management
Systems (UIMSs) at tempt to make the creation of user
interfaces easier, but most existing UIMSs cannot create
the low-level interaction techniques (pop-up, pull-down and
fixed menus, on-screen "l ight buttons", scroll-bars, ela-
borate feedback mechanisms and animations, etc.) that are
frequently used. This paper describes Peridot, a system
that automatically creates the code for these user inter-
faces while the designer demonstrates to the system how
the interface should look and work. Peridot uses rule-
based inferencing so no programming by the designer is
required, and Direct Manipulat ion techniques are used to
create Direct Manipulat ion interfaces, which can make full
use of a mouse and other input devices. This allows
extremely rapid protetyping of user interfaces.

CR Categories and Subject Descriptors: D.1.2 [Program-
ming Techn iques] : Automatic Programming; D.2.2
[Sof tware Engineer ing] : Tools and Techniques - User
Interfaces; 1.2.2 [Art i f ic ial In te l l igence] : Automatic Pro-
gramming - Program Synthesis; 1.3.6 [C o m p u t e r Graph-
ics]: Methodology and Techniques.

General Terms: Human Factors.

Additional Key Words and Phrases: Programming by
Example, Visual Programming, User Interface Design,
User Interface Management Systems, Graphical User
Interfaces, Direct Manipulation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 A C M 0-89791-196-2/86/008/0249 $00.75

1. Introduction
This paper discusses Peridot, a new User Interface

Management System (UIMS) currently under development,
that can create graphical, highly interactive user inter-
faces. Peridot stands for P_rogramming by Example for
Real-time Interface Design Obviat ing _Typing. It is imple-
mented in Interlisp-D [Xerox 83] on a Xerox DandeTiger
(1109) workstation, and allows the user interface designer
to create user interfaces by demonstrating what the user
interface should look like and how the end user will
interact with it. This approach frees designers from hav-
ing to do any programming in the conventional sense, and
allows them to design the user interface in a very natura l
manner. The general strategy of Peridot is to allow the
designer to draw the screen display tha t the end user will
see, and to perform actions jus t as the end user would,
such as moving a mouse, or pressing a mouse button or
keyboard key. The system attempts to guess (or infer) the
relationship of that action to existing elements of the user
interface based on context, and asks the designer i f the
guess is correct. If so, a piece of cede is generated by the
system tha t will handle this action for the end user. If
incorrect, other reasonable guesses are tried, or the
designer can explicitly specify the relationship.

The guesses are encoded as simple condition-action
rules, and the generated code is put into small parameter-
ized procedures to help ensure a structured design of the
result ing system. The screen displays and interactions
depend on the values of the parameters to the procedures.
The procedures created by Peridot can be called from appli-
cation programs or used in other user interface procedures
created by demonstration.

Many user interface designers now draw, typically on
paper, scenarios (or "story boards") of how the user inter-
face (UI) will look and act. Unfortunately, it is difficult to
get a feeling for how a system works from the paper
descriptions, and customers of the user interface are not
able to invest igate how the system will work. Peridot
enhances the design process by supporting extremely rapid
prototyping with li t t le more effort than drawing the
scenarios on paper. In addition, the user interfaces pro-
duced by Peridot are expected to be efficient enough for use
in the actual end systems.

Another motivation for this style of specifying user
interfaces is that i t should be possible to allow non-
programmers to design and implement the interfaces. This
will allow professional UI designers (sometimes called
"User Interface Architects" [Foley 84]) and possibly even
end users, to design and modify user interfaces with little

249

S I G G R A P H '86
I

training and without conventional programming. Virtu-
ally all textual UI specification methods are too compli-
cated and program-like to be used by non-programmers
[Buxton 83].

The Direct Manipulation style of user interfaces
[Shneiderman 83][Hutchins 86], where the user typically
uses a mouse to select and manipulate objects on the
screen, has become very popular (and possibly even
predominant) for modern computer systems. Unfor-
tunately, there are virtually no tools available to help
develop the low level interaction techniques that support
these interfaces, so almost all are laboriously programmed
using conventional programming languages. It is well
documented in the literature how expensive this process is
[Williams 83][Smith 82]. This limits the amount of proto-
typing possible, and therefore the quality of the interfaces.
Existing tools to help build user interfaces, called User
Interface Management Systems (UIMSs) [Thomas
83][Olsen 84][Pfaff 85], have not provided a powerful and
flexible way to conveniently generate the interaction tech-
niques for these styles of interfaces. In particular, few sys-
tems have allowed Direct Manipulation techniques to be
used to create the interfaces [Shneiderman 86].

All UIMSs are restricted in the forms of user inter-
faces they can generate [Tanner 85]. Peridot is only aimed
at graphical, Direct Manipulation interfaces. For example,
Peridot should be able to create interfaces like those of the
Apple Macintosh [Williams 84]. Peridot does not help with
textual command interfaces or with the coding of the
semantics of the application. The set of interfaces it will
produce is rich enough, however, to be very interesting and
of practical use for commercial systems.

In summary, the goals of Peridot are that:

1) interaction techniques for Direct Manipulation
interfaces should be supported,

2) the system should be easy to use for the designer
and require little or no training,

3) the designer should not have to write programs,

4) the interface should be visible at all times as it is
developed and changes should be immediately
apparent,

5) the behavior of the interface should also be
created in a Direct Manipulation manner and it
should run in real time (points 4 and 5 provide
for extremely rapid prototyping), and

6) the system should create run-time code that is
efficient enough for use in actual application
programs.

This paper presents the design and implementation of
the demonstrational aspects of Peridot. A longer report
providing more detail and covering other aspects is in
preparation [Myers prep]. Throughout this paper, the term
"designer" is used for the person creating user interfaces
(and therefore using Peridot). The term "user" (or "end
user") is reserved for the person using the interface created
by the designer.

2. Background and Related Work
Tanner and Buxton [Tanner 85] present a model of

User Interface Management Systems that identifies a
number of separate parts (see Figure 1). Peridot is aimed
mainly at the "module builder" aspects, but it also covers
the "system glue" and "run-time support" components.

pre-Processor Run-Time ! Post-Processor

LMOdul¢ / / U[. / / Log /
ibr~n/ , /D~n"'o~/ / ri le /

@
Figure 1.

Model for User Interface Management Systems (from [Tanner
85]).

The "module builder" creates a library of specific
interaction techniques. Some systems, such as the Macin-
tosh ToolBox [Apple 85] and the routines that come with
most modern window managers [Myers 84][Tesler 81], are
essentially the library portion by itself. Using a library
has the advantage that the final UI will look and act simi-
larly to other UIs created using the same library, but
clearly the styles of interaction available are limited to
those provided. In addition, the libraries themselves are
often expensive to create: A few UIMSs, such as Syngraph
[O|sen 83] and Squeak [Cardelli 85], are designed to help
with the creation of the interaction techniques that make
up the library, but the indirect and ahstract methods used
by these programs have proved difficult to use. Peridot
attemots to make this process more direct.

Many (probably most) UIMSs concentrate on combin-
ing ("gluing") the modules together after they have been
created, since it is often non-trivial to write the programs
that coordinate the interaction techniques. This is evi-
denced by the need for the MacApp system to help write
programs that use the Macintosh ToolBox. Some, such as
Menulay [Buxton 83] and Trillium [Henderson 86], allow
the designer to see the design as it is created, but most
require that the specification be in a textual language (e.g.
[Hayes 85][Jacob 85]). Although a number of modern
UIMSs allow the layout of the screen to be specified in a
Direct Manipulation manner, virtually all still require the
interaction to be specified in an abstract, indirect way,
such as using state transition networks. Peridot allows
Direct Manipulation to be used for both.

The power in Peridot comes from the use of a new
approach to user interface design. The principles of Pro-
gramming by Example and Visual Programming have been
adapted to allow the designer to demonstrate the desired
user interface graphically. These principles are defined,
and a comprehensive taxonomy of existing systems that
use them is presented, in [Myers 86]. "Visual Program-
ming" (VP) refers to systems that allow the specification of
programs using graphics. "Programming by Example"
(PBE) systems attempt to infer programs from examples of
the data that the program should process. This inferenc-
ing is either based on examples of input-output pairs
[Shaw 75][Nix 86], or traces of program execution [Bauer
78][Biermann 76b]. Some systems that allow the program-
mer to develop programs using specific examples do not

250

D a l l a s , A u g u s t 1 8 - 2 2 V o l u m e 20 , N u m b e r 4, 1 9 8 6

use inferencing [Halbert 81 and 84][Lieberman 82][Smith
77]. For example, Smal lStar [Halbert 84] allows users to
write programs for the Xerox Star office workstation by
simply performing the normal commands and adding con-
trol flow afterwards. Visual Programming systems, such
as Rehearsal World [Gould 84], have been successful in
making programs more visible and understandable and
therefore easier to create by novices.

Peridot differs from these UIMSs and programming
systems in that i t applies Programming by Example and
Visual Programming to the specific domain of graphical
user interface specification. Tinker [Lieberman 82] has
similar aims, but it does not provide inferencing, and code
is specified in a conventional, textual manner in LISP.
Early inferencing systems were ra ther unsuccessful since
they often guessed the wrong program and it was difficult
for the programmer to check the results without
thoroughly studying the code [Biermann 76a]. In limited
domains, PBE has been more successful, for example, for
editing in the Edit ing by Example system [Nix 86]. Other
systems that are relevant to the design of Peridot are
those, such as [Pavlidis 85], that try to "beautify" pictures
by inferring relationships among the picture elements
(such as parallel and perpendicular) and modifying the pic-
ture to incorporate them.

3. Sample of Peridot in A c t i o n

The best way to demonstrate how easy it is to create a
user interface with Peridot is to work through an example.
Due to space limitations, we will take a simple interaction:
a menu of strings. The operations discussed in this exam-
ple will be further explained in the following sections.
First, however, we present the Peridot screen.

When using Peridot, the designer sees three windows
and a menu (see Figure 2). The menu, which is on the left,
is used to give commands to Peridot. The window at the
top shows the name of the current procedure, the name of
its arguments, and examples of typical values for those
arguments. The window in the center shows what the user
will see as a result of this procedure (the end user inter-
face), and the window at the bottom is used for prompting
the designer and for messages. For debugging Peridot
itself (and for the very few designers that will be
interested), the system can be configured to display the
generated code in a fourth window. Current ly this code is
presented in LISP, but creating a more readable form is
possible in the future. The displayed procedure and the
picture are always kept consistent, so if the picture is
edited, the code is changed, and when the code changes,
the picture is also updated. It is not necessary for the
designer to view or use the code to perform any operations
in Peridot.

Figure 3 shows the steps that can be used to create a
procedure that handles a menu with a grey drop shadow.
First, the designer types the name for the procedure,
("MyMenu"), the name for the parameters ("Items"), and an
example of a typical value for each parameter (the list:
("Replace", "Move", "Copy", "Delete", "Delete All", "Help", "Abort",
"Undo", "Exit")). Next, the designer draws a grey box for the
shadow and then a black box for the background slightly
offset from it (see Figure 3a). These commands are given
using the Peridot command menu and a mouse. The sys-
tem guesses tha t the black box should be the same size as
the grey one and at an offset of 7 in X and Y. The
designer confirms that this is correct. Next, (in Figure 3b)

: : , ' + ' . : ; . , , . . : . : , 2 , . , ' . : . : . • , - . . , . . , . . : : , • , , . . , . , : , , . : , , , , , , , : , ; , , ; . , , , 4 . . , : . : + , , : . : , : . : . : , ; . . . , . . , : , : , + : + : . : , , :

':~:"~ii~iiii ~iii:i!i!!!i!i!i;i:!i:i~i:;i!;~:!:~::

5trir,~]

[] P~ ' " '

: oL,~,,~ II
~naao~ ':': ::::i::'F:"

[] un.leer 1 lr~e
a:

i!':iiiii;i!;i.:i !:i!

i!i!;!;!:!;!i!: :i i:iii~
:iiiiiiiiiii:i?ii¢>~:ili ~ ,.......,.....

ILor,~<#Jl'~ ~eE(ll~ LO be l e f t f l u sneo ~ t t h e t . ~ , or B i J , , ~se3
, ~pp] y I h l ~ r u l e? (Yes o r NO) no

~#hlt~t~l~4 used t o del)end on Uqe pos l t lOn o f Bla¢~ese,#
b . t .aw i t doe th t ,

S¢,vuhl 51ackege~ be changed t,~ del)end on ~hlEeOJ847 ,ye~
l ype tlH~bet l o t i 'e , : [COlOr t ex tu re ~485e

: "h ":: : ' ; : ; : : : ,

F i g u r e 2.

F i g u r e 3a.

. . , , , , , .
, . , , , . , ,
::::::::
,:,;,:,;

. . , , , , , ,

user Interaetiot
Whit. e8264~ ~.eem=- t.o be a : s u b - a r e a o f

B] a c k 0 2 6 3 f i t t . i n g i n s i d e w i L h a b o r d e r
 i iiiili o , o a , , a,-oon .
:.:.:.:.: ~ p p l y t h i s r u l e ? y e s
!!!!!!!!!

:i:~:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i!i~i!i!i~i;i!i~i!i~i~i~i!i!i~i~i~i~i~i~i:i~i~

F i g u r e 3b.

251

I S I G G R A P H '86

It.eros = " R e p l a c e ~1ove Copy D e] e t . e [

R e p l a c e
Move

~_User Intel, actiol
. A p p l y t h i s r u l e ? y e s
S t r i r , g F r o m S e l e c t 0 2 6 6 seems t o be c e n t e r e d

FLUSH b e l o w S t r i n g F r o [n S e l e c t 8 2 6 5 .
. A p p l y t h i s r u l e ? y e s

Figure 3c.

terns = " R e p l a c e Move Copy D e l e t e [

R e p l a c e
t4ove
Copy

D e l e t e
D e l e t e A l l

H e l p
~ b o r t
Undo
E x i t .

. A p p l y t . h i s r u l e ? y e s
The l a s L t.wo s t a t e m e n t s seem t o be p a r t .

o f an i t e r a t i o n o v e r ' I t e M s ' ,
. R e p l a c e w i t h an i t e r a t i o n
. s t a t e m e n t ? y e s

R e p l a c e
~love
Copy

D e l e t e
~".~De l e t e A1

H e l p
A b o r t

~I Undo,
E x i t .

.iiiiIThe s i z e o f ~ h i t . e 8 2 6 4 s e e , i s t o - - . h e
!:::::!l~:ame ,as ~ike sum o f t h e s i z e s o f t h e
i! i ! i ! i lStaCked ~ t r i r g s i n s i d e i t .
!!!i!!l A p p l y t h i s r u l e ? ~]es
i : i : i : i IReverse ~ h i t e 8 2 6 ~ l and B l a c k B 2 6 3 7 y e s

- - , , , , i : i : i : i ~
Figure 3e.

•i•!•!•!•!•!:!•i•i:i•i••i:i•!:i•i•!•!•i•!•!•!•!•!•!•!•!•i••••i•i••••••••••••••:•••••:•.••••••••••••••••:•••.••.••.•..•..••.••.

I t .ea ls = " R e p l a c e h love L-:opy D e l e t e " " [

~ | R e p l a c : e

i!! 11

Black.0286 seert].s to be tihe same posir_.ion
and h e i g h t s as t h e o b j e c t u n d e r t .he mouse
b u t sortie c iphe r w i d t h ,
. A p p l y t h i s r u l e ? y e s
B l a c k 0 2 8 6 seems t.o h a v e t .he same w i d t . h
ar id LEFT p o s i t i o n as ~%i t .e@264,
. A p p l y t . h i s r u l e ? y e s

Figure 3d. F igure 3f.

A sequence of frames during the definition of a menu interaction technique. (The pictures
for 3b-3f have been expanded to be more readable.) [n 3a, the shadow and background are
drawn (and the system infers that they should be the same size). In 3b, a white area is
nested inside the background, and in 3c the first two elements of the parameter are copied
to the top of the white rectangle. Peridot notices that they are stacked vertically, and that
they are part of an iteration. The rest of the iteration is executed in 3d. The size of the
white rectangle is then changed to be just big enough to include all the strings and the sys-
tem changes the black and grey rectangles accordingly 3e. In 3f, the interaction is being
defined using the "simulated mouse."

252

Dallas, August 18-22 Volume 20, Number 4, 1986

a white box inside the black one is drawn, and the system
adjusts it to be a constant 4 pixels all around, after
confirmation from the designer. Next, (in Figure 3c) the
first item in the argument ('"Replace") is copied to the top of
the white rectangle, and the system asks if it should be
centered at the top. Peridot makes this assumption
because the string was placed approximately centered in
the box, as shown in Figure 3c. If the string had been
placed left-justified in the box instead, then Peridot would
have asked if the string should be left-justified. The sys-
tem asks the designer to confirm every assumption because
sometimes the placing is ambiguous. Next, the second
string, "Move", is copied below "Replace" and the system
guesses that it is also centered. Since the first two ele-
ments of a list have been placed on the screen, the system
guesses that the entire list might be desired, so it asks the
designer if there should be an iteration to display all ele-
ments of the list. After the designer confirms this (in Fig-
ure 3d), the system executes the rest of the i teration and
changes the cede to be a loop. Finally, (in Figure 3e) the
designer adjusts the size of the white rectangle to be
approximately the size of the strings, and the system asks
if the rectangle should be adjusted to fit exactly around all
the strings. The sizes of the black and grey rectangles are
then automatically adjusted to be proportional to the size
of the white rectangle. This completes the presentation
aspects of the menu (Figure 3e). It should be remembered
that the code being generated does not depend on the
specific example values for the parameter; any list of
strings will work correctly.

To specify the interaction (behavior) of the user inter-
face for the menu, the designer uses an icon that
represents the mouse. First, this "simulated mouse" is
moved over one of the menu items, and then the designer
draws a black rectangle over that i tem in INVERT draw-
ing mode (see Figure 3f). Peridot infers that the box
should be the same height and Y position as the string,
and the same width and X position as the white box. The
designer then moves the simulated mouse off to the side
and erases the black rectangle. Peridot infers that the box
should be erased when the mouse is no longer over an
object. The designer can perform this action on another
string, or explicitly specify an iteration, and the code that
handles highl ight ing is completed. Now the designer
"presses" one of the simulated mouse's buttons and
specifies, using a Peridot command, that the object under
the mouse is returned. From this, the system infers that
the procedure should be exited upon button press. The
MyMenu procedure is now complete.

Although the textual description of the designer's
actions is clumsy, only about ten actions had to be per-
formed to create this procedure (plus confirming Peridot's
12 guesses). Once created, the picture or interaction can
be edited, and the menu can used as part of other user
interfaces.

4. General Principles of Peridot

One problem with all demonstrational systems is that
the user's actions are almost always ambiguous. The sys-
tem cannot usually know why the person did a particular
action. This is especially true when the system attempts
to infer a general case from a particular example. For
instance, when an item is selected, does the user mean
that particular item, an item with a similar name, an item
at that particular place on the screen, an item with the

same type as the selected one, or an item with some other
property? Early inferencing systems attempted to solve
this problem by guessing and requiring the user to go back
later and check the generated code. Non-inferencing sys-
tems, such as Halbert's system for the Xerox STAR works-
tation [Halbert 81 and 84], require the user to explicitly
specify why objects were chosen. Peridot, on the other
hand, tries to guess what the designer intends by an
action, but, to avoid the problems of earlier systems, it
always asks the designer if each guess is correct. It is
expected that the guesses will usually be correct, which
will save the designer from having to specify a great deal
of extra detail and from having to know a programming
language to express those details. In addition, it is easy to
check for errors since the results of all actions and infer-
ences are always immediately visible on the screen.

Any graphical user interface is composed of two parts:
the presentation or layout, which defines what pictures are
on the screen, and the interaction or behavior, which deter-
mines how these pictures change with user actions. As
shown in the previous example, these are specified
separately in Peridot. The pictures that Peridot currently
supports are: rectangles filled with various grey shades,
text strings, filled circles, and static pictures drawn with
other programs (e.g. icon@.

Peridot uses inferencing in three different ways.
First, it tries to infer how various objects in the scene are
related graphically. When the designer draws an object, it
usually has some implied relation with other objects that
have already been drawn. For example, a box might be
nested inside another box, or a text string centered at the
top of a box. If the picture was simply a static background
that never changed, it would not be important for the sys-
tem to notice these relationships. In Peridot, however, the
pictures usually depend on the parameters to the pro-
cedure that generate them. For example, the size of the
box around a menu might depend on the number of items
in the menu and the width of the largest item. Peridot
must therefore infer the meaningful relationships among
objects from the drawings that the designer produces. This
object-object inferencing is described in section 5.1.

The second type of inferencing used by Peridot is to
try to guess when control structures are needed. For
example, when the designer displays the first two elements
of a list, Peridot infers that the entire list should be
displayed and will generate an iteration. Conditionals are
also inferred for special cases and exceptions. For exam-
ple, a check-mark might be displayed to show the current
value of a set of choices (as in Figure 2). Iterations and
conditionals are discussed in sections 5.2 and 5.3 respec-
tively.

The final type of inferencing used by Peridot is to try
to guess when actions should happen during the execution
of an interaction. For example, a highlight bar might be
displayed when the left mouse button goes down. This
type of inferencing is described in section 6.

i Straight and curved lines, and individual pixels should be easy to add
in the future, if needed.

253

S I G G R A P H '86

5. Specifying the Presenta t ion of a User Interface

When specifying the presentation of a user interface,
the designer is mainly interested in placing graphics on
the screen. During this process, however, Peridot is con-
stantly watching the objects to see what object-object rela-
tionships there are, and whether some objects drawn would
properly be part of an iteration or conditional.

The designer may draw an object on top of another
object. Depending on the drawing function in use, the
second object may obscure parts of the first object. This is
obvious in Figure 3e, where the black rectangle obscures
some of the grey rectangle, the white rectangle obscures
part of the black one, and the text obscures part of the
white one. For this reason, Peridot never changes the
order for drawing objects (although the designer is allowed
to do this, of course). The calculation order may be
changed, however, if a property of an object to be drawn
later is needed. For example, in Figure 3e, the width of
the strings are needed to calculate the width of the white
rectangle even though the rectangle must be drawn first.
Peridot insures that the calculation is done in the correct
order before the drawing commences.

5.L Inferring Object-Object Relationships
The object-object relationships that are inferred deal

with the position and size properties of the objects. The
other properties (color, value, font, etc.) are assumed to be
constant unless the designer explicitly specifies that they
should depend on some other object or parameter. In the
example of section 3 above, the colors of the rectangles
were constant, but the values for the strings were expli-
citly specified to depend on the parameter "Items" (by select-
ing "Replace" and "Move" in the parameter window and using
the "StringFromSelect" menu command).

Each object-object relationship that can be inferred is
represented in Peridot as a simple condition-action rule.
Each rule has a test that determines if the relationship is
appropriate (the condition), a message to be used to ask
the designer whether the rule should be applied, and an
action to cause the objects to conform to the rule. The
Appendix lists some sample rules from Peridot. The rules
are currently expressed in LISP so the designer will not be
able to add new rules. It is very easy, however, for a LISP
programmer to modify the rule set.

Since the rules specify very low level relationships
(e.g. that a string should be centered inside a box), there
appear to be a small number of rules required to handle
existing interfaces. In an informal survey of a number of
Direct Manipulation interfaces, about 50 rules seemed to
be sufficient. In order to allow for human imprecision,
however, some leeway must be given to the designer as to
the placement and size of objects, so the drawings will not
be exact. For example, the designer may want one box to
be inside another box with a border of 3 pixels all around,
but actually draw it with a border of 5 on one side and 2
on another. Therefore the tests in Peridot for whether to
apply a particular rule have thresholds of applicability.
Unfortunately, this means that the same drawing may
pass more than one test. The conflict resolution strategy is
simply to order the tests based on restrictiveness (the most
demanding tests are first) and based on the heuristically
determined likelihood of their being appropriate. This ord-
ering is changed based on the types of the objects being
tested, since, for example, it is much more likely for a text
string to be centered at the top of a box than for another
box to be.

i
[Sho~ :~ize I
I ',~ h c,,,,, P o s i t i c,t~ I
I r,lo v e 0 b i e c: t I

~i!!!.!~!~!i~i!i~i!!!!!i!i!!!!!!E:~!~!r..i.i~!~i~!~!~!~!~!~!~!~~r1~.~ Pre',~'ic, u~.: !
I Re,it, I
I Re-irlir. ia l iz~ I

Figure 4.
The g r e y r e c t a n g l e is the same he ight and Y pos i t ion a s the
string "Exit" and the same width and X position as the white
rectangle.

When the designer draws an object and a rule's test
succeeds, Peridot queries the designer whether to apply the
rule using the rule's message (see the lower window in Fig-
ures 3a-3~. If the system has guessed wrong, the designer
answers "no" and the system will try to find a different
rule that applies. If the system is correct, the designer
may still want to modify parameters of the rule. For
example, the system may decide that a box is inside
another box with a border of 13 pixels all around, and the
designer may decide to use 15 pixels instead. Of course, it
may be the case that no rule is found or that the appropri-
ate rule is skipped because the designer has been too
sloppy in the original drawing and the rule's test fails. In
this case, the designer will usually modify the drawing so
that the test will succeed, but it is also possible to expli-
citly pick a rule to apply.

Most rules in Peridot relate one object to one other
existing object 2. The designer can explicitly specify two
objects to apply rules to, but normally the relationships are
inferred automatically when an object is created. In this
case, the other (existing) object is found by searching
through all the other objects in a certain order. When
defining the presentation of the user interface, the order is:
(1) the selected object (the designer can explicitly select an
object to apply the rules to), (2) the previous object that
was created, and (3) the objects in the vicinity of the new
object. When defining the interaction portion of the user
interface, the order for checking is: (1) the selected object,
(2) the object under the simulated pointing devices (see
section 6), and (3) the objects in the vicinity of the new
object. The system stops searching when an object and a
rule are found that completely specifies all of the positional
and shape properties of the new object.

Occasionally some of an object's properties may
depend on one object and other properties depend on a
different object. For example, the highlight bar in a menu
may have the same height and "y" value as the string, but
the same width and "x" as the surrounding box (see Figure
4). To handle this case, there are rules in Peridot that
only define some of the properties of objects. These rules
are marked as "incomplete" so that Peridot knows to try
additional rules on other objects to handle the rest of the
properties (in the Appendix, rule "Rect-same-size" is
incomplete).

2There are a smal l n u m b e r of special rules tha t test a group of objects.
This is necessary, for example, to m a k e the size of a box depend on the
sum of the sizes of all the i tems inside it.

254

Dallas, August 18-22 Vo{ume 20, Number 4, 1986

Peridot will infer relationships among objects no
mat ter how they are created. Therefore, the same rules
will be applied whether an object is created from scratch,
by copying some other object, or by transforming an exist-
ing object. Since Peridot generalizes from the results of the
operations, and not traces of the actions l ike many previ-
ous Programming by Example systems, it provides much
more flexibility to the designers and allows user interfaces
to be easily edited. For example, if the designer makes an
error when drawing an object or wants to change an exist-
ing object, he can simply correct it and Peridot will
automatical ly apply the rules to the new version.

The relationships that Peridot infers can be thought of
as constraints [Borning 79][Olsen 85] between the two
objects. Although the relationships are inferred in one
direction (e.g. object R2 depends on object R1), the reverse
dependency is also remembered so the relationships can be
automatical ly reversed, if necessary. For instance, the
width of the white rectangle in the example of section 3
originally depended on the width of the black rectangle
(Figure 3b). When it is later changed to depend on the
width of the widest string (Figure 3e), Peridot automati-
cally reverses the constraint with the black rectangle so
black rectangle's width depends on the white rectangle,
and similarly for the grey and black rectangles.

Usually, the first object tested is the correct one to
apply rules to and the first rule whose test succeeds covers
all of the properties of the object. Even when multiple com-
parisons are required, however, the rule checking occurs
without any noticeable delay. If the delay were to increase
in the future, this would still not be a problem since the
rules are checked at design t ime (not when the user inter-
face is used by end users), so some delays are acceptable.
The advantage of using inferencing rather than requiring
the designer to explicitly specify the relationships is that
much less knowledge is required by the designer. This is
because the designer does not have to know how to choose
which of the 50 possible relationships apply and what the
parameters to those relationships are.

5.2. Inferring Iterations

A recognized problem with all Direct Manipulat ion
systems is tha t repetit ive actions are tedious. For exam-
ple, if a procedure takes a list of strings to be displayed,
the designer does not want to have to individually demon-
strate where to display each one. Therefore, Peridot
watches the designer's actions to try to infer when two pre-
vious actions might be part of a loop. If they appear to be,
i t queries the designer as to whether a loop is intended. If
so, the statements are replaced with a loop statement, and
the rest of the loop is executed. As an example, if the
designer copies the first two strings from a list of strings
and displays them stacked vertically (as in Figure 3c),
Peridot asks the designer if the rest of the strings should
be displayed in the same manner. If the designer agrees,
Peridot calculates how to display the rest of the strings in
a similar manner as the first two (as in Figure 3d) and the
code for the procedure is automatical ly changed.

Clearly, this assumes tha t the objects will be related
in some l inear fashion, and it will not handle some types of
layouts. For example, i t will not handle the items of the
menu being spaced exponentially, or only displaying every
third menu item. Our claim is that these unusual layouts
are extremely rare in real user interfaces and Peridot will
have good coverage without them.

Currently, Peridot infers iterations when the first two
elements of a list are displayed 3. Other objects may also
be involved in the iteration, however. For example, in Fig-
ure 2, there are black boxes and white boxes for each
string taken from the list. Peridot therefore will also
include these in the iteration.

5.3. Inferring Conditionals

Conditionals are important in user interfaces for
specifying exceptions and special cases. As an example of
an exception, a procedure might display a list of strings
vertically. However, if one of the strings is a list, then the
first element of the list might be the string to be displayed,
and the rest of the list might be a sublist to select from
after this element is selected. With special cases, the
designer wants something extra to happen when certain
conditions are met. For example, a check mark may signal
the current value from a set of choices, as in Figure 2.

For conditionals, the designer needs a way to specify
what to look for to signal the condition (the "IF" part) and
what action or actions to perform (the "THEN" part). Peri-
dot supports this by having the designer specify the gen-
eral case as described above, and giving the "Conditional"
command to Peridot. The designer then selects the item
that is an exception or special case. For an exception,
Peridot tries to infer why it is different, and for a special
case, it tries to infer when the graphic should occur. The
conditions tha t are noticed are:

• one value has a different type (e.g. a list versus an
atom, or a number rather than a string),

• one is an empty string, or

• numerical properties such as equal to, greater
than, or less than zero.

Alternatively, the designer can specify that the value
of a parameter should determine whether the conditional
should apply. For example, the parameter CurrentMode in
Figure 2 determines when to display the check mark.

After Peridot knows the "IF" part, it then allows the
designer to demonstrate the "THEN" part, if it is not
already displayed, using the same techniques as for any
other picture.

Natural ly , after a conditional s ta tement is specified,
Peridot re-executes the code to insure that the picture is
consistent with the new procedure. This causes any addi-
t ional places where the condition applies to be displayed
correctly, which should help the designer spot any errors
in the conditional.

6. S p e c i f y i n g the Interact ion for a User Interface

One of Peridot's pr imary innovations is to allow the
interaction portion of a user interface to be specified by
demonstration. This operates in a similar manner to the
presentation component. The major change is the addition
of input devices which can determine when actions should
take place and the parameters for those actions.

~It will be easy to also allow the designer to explicitly specify t ha t an
i teration should occur for some integer n u m b e r of t imes, where the in-
teger may be constant or depend on the value of some variable.

255

S I G G R A P H '86

(a) (b)
Figure 5.

A simulated "mouse" pointing device with three buttons. The
device can be moved by pointing at the "nose" (using a real
pointing device), and the buttons can be toggled by pressing over
them. In (b), the center button is pressed over the word "re-
place".

Ideally, the designer would simply use the various
input devices in the same manner as the end user, but this
has three main problems. First, all of the end user's dev-
ices may not be available to the designer (for example, in
designing the user interface for a flight simulator).
Second, some of the input devices are also used for giving
commands to Peridot, so disambiguating actions meant for
Peridot from those that the end user will perform is
difficult. Third, it may be difficult to keep the input device
in the correct state (e.g. with a button held down or at a
certain location) for the entire time it takes to specify the
actions. Therefore, Peridot uses s imulated devices by hav-
ing a small icon for each input device (see Figure 5). The
designer can move these and toggle "buttons" to indicate
what the end user will do with the real input devices.

In addition, it is necessary to have a mode in which
the designer can demonstrate what will happen using the
actual input devices. Although often more clumsy, this is
necessary when there are time dependencies, such as with
double-clicking or with animations that should happen at a
particular speed 4. In this case, there will be "start watch-
ing" and "stop watching" commands to tell Peridot when
actions signify what the end user will do and when they
are Peridot commands.

When specifying the interaction portion of the user
interface, the designer typically moves a simulated input
device or changes the status of one of its buttons, and then
performs some operation, such as moving an object or
drawing a new object. Peridot then creates a conditional
statement that is triggered when the input device state or
position changes. Of course, there will always be ambigui-
ties (e.g. is the new position significant because it is over
an object or because it is no longer over the previous
object?) so the designer is always queried to confirm
Peridot's guess. Iterations (e.g. perform this until a button
is hit), exceptions, and special cases are all be supported
for controlling the interaction.

Just as what the end user sees is always visible to the
designer, what the end user will do can also be executed at
any time. The designer simply enters execution mode, and
the procedure so far is executed. The designer can either
use the simulated or the real devices while in execution
mode.

7. Current Status

The design and implementation of Peridot are not
complete as of the time of this writing (May, 1986). The
inferencing mechanisms in Peridot are working, and the
presentation component is mostly complete: object-object
inferencing is working, iterations are inferred, as shown in
Figures 2 and 3, and conditionals are designed but not
implemented, although they are expected to be a straight-
forward extension. For the interaction component, the
correct inferences are being made, but the code generation
is not implemented.

8. Future Work

In addition to finishing the implementation of the
parts of Peridot that are described here, other aspects of
Peridot will be developed. Connections with application
programs will use "active values," which behave like con-
tinuously evaluated procedures. These can be updated by
either the interface or the application and the other will be
immediately notified so it can make the appropriate
updates.

The designer can easily edit the presentation of an
interface after it has been created, but it is a difficult
unsolved problem how to allow editing of the interaction
component. To support multiple input devices operating in
parallel [Buxton 86], multiple processing for procedures
and constraints will be added. In addition, multiprocessing
and constraints should allow animations and complex echo-
ing and feedback to be specified using Peridot. Peridot will
also be tested with a number of different user interface
designers to ensure that the same guesses about relation-
ships apply to different people.

9. Conclusions

Although not yet completed, Peridot already is capa-
ble of producing a variety of graphical, highly interactive
user interfaces. Both the presentation (layout) and
interaction (behavior) of these Direct Manipulation inter-
faces can be created in an extremely natural, Direct Mani-
pulation manner. For example, Peridot can now create
light buttons (as in Figure 2), menus (Figure 3), and toggle
switches. Automatic inferencing is used to free the
designer from having to specify most of the properties of
objects. Constant feedback through queries, and continu-
ously making the results of actions visible, helps insure
that all inferences are correct. When fully implemented,
Peridot should be able to handle the user interfaces of
state-of-the-art graphical programs, such as those on the
Apple Macintosh and other Direct Manipulation systems,
including Peridot's own user interface. Extremely rapid
prototyping should be possible, as well as generation of the
actual code used in the final user interfaces. Peridot
should also be easy enough to use so that even end users
will be able to modify the user interfaces of programs. In
its present form, Peridot has already demonstrated that
the application of rule-based inferencing and Programming
by Example techniques to User Interface Management Sys-
tems has tremendous potential.

~It is also intended in the future to allow designers to specify t iming
dependencies by constraining actions to a clock as in Rehearsal World
[Gould 84].

256

Dallas, August 18-22 Volume 20, Number 4, 1986

Appendix: S a m p l e r u l e s

This appendix shows the form of three rules used in
Peridot. The rules are shown in a LISP-like form, with the
a r i thmet i c presented in the normal infix nota t ion to make
it more readable. The TEST pa r t de termines whe ther the
rule should be applied, the MSG is used to ask the designer
for confirmation, the ACTION enforces the rule, and the
SPECIFIES field tells which of the graphica l properties of
the object are covered by the rule. The actual rules in
Peridot a re s l ight ly more complicated.

Rect-same:
TEST: (AND ((abs (Rl.left - R2.1eft)) < THEEEHHOLD)

((abs (Rl.bottom - R2.bottom)) < THRESEHOLD)
((abs (Rl.width - R2,wldth)) < THRESHHOLD)
((abs (Rl.height - R2.height)) < THRESHHOLD))

MSC: (CONCAT Rl.name
seems to be the same size and position as "

R2 .name ".")
ACTION: (SETQ R2.feft "Fetch Rl.left")

(SETQ R2.hottom "Fetch Rl.bottom")
($ETQ R2.width "Fetch Rl.width")
(SETQ R2.height "Fetch Rl.height")

SPECIFIES; ALL

Rect-same-slze-with-same-of f set :
TEST: (AND ((abs (Rl.left - R2.left)) < BigTHRESHHOLO)

((abs (Rl.bottom - R2.bottom)) < EigTHRESHHOLD)
((abs (El.wldth - R2.width)) < SmalITNRESHHOLD)
((abs (El.height - R2.height)) < SmaliTHRESNHOLD)
((abs ((abs (Rl.teft - R2.teft)) -

(abs (Rl.bottom - E2.bottom)))) < $maIITHRESHHOLD))
MSC: (CONCAT Rl.name " seems to be the same $1ze a| "

R2.name " and at • constant offset of "
(SETQ offset (ave ((ab| (El.left - R2.1eft)) -

(•bs (El.bottom - R2.bottom)))))
,,.,,)

ACTION; (SETQ R2.1eft (CONCAT "Fetch Rl,left + " offset))
(SETQ R2.bottom (CONCAT "Fetch Rl.bottom ÷ " offset))
(SETQ R2.width "Fetch Rl.width")
(EETQ R2.height "Fetch Rl.height")

SPECIFIES: ALL

Rect-same-size :
TEST; (AND ((abs (Ri.wldth - R2.width)) < THRESHHOLO)

((abs (Rl.height - R2.height)) < THRESHHOLD))
MSC: (CONCAT El.name " seems to be the same size as "

R2.name " but in an unrelated place,")
ACTION: (SETQ R2.width "Fetch Rl.width")

(SETQ R2.height "Fetch El.height")
$FECIFIES: (width height)

ACKNOWLEDGEMENTS

First, we want to thank Xerox Canada, Inc. for the dona-
tion of the Xerox workstations and Interlisp environment. This
research was also partially funded by the National Science and
Engineering Research Council (NSERC) of Canada. For help
and support with this paper, we would like to thank the SIG-
GRAPH referees, and Bernita Myers, Peter Rowley, Ralph Hill,
and Ron Baecker.

REFERENCES

[Apple 85] Apple Computer, Inc. Inside Macintosh. Addison-
Wesley, 1985.

[Bauer 78] Michael Anthony Bauer. A Basis for the Acquisition
of Procedures. PhD Thesis, Department of Computer Sci-
ence, University of Toronto. 1978. 310 pages.

[Biermann 76a] Alan W. Biermann. "Approaches to Automatic
Programming," Advances in Computers, Morris Rubinoff
and Marshall C. Yovitz, eds. Vol. 15. New York: Academic
Press, 1976. pp. 1-63.

[Biermann 76b] Alan W. Biermann and Ramachandran Krish-
naswamy. "Constructing Programs from Example Computa-
tions," IEEE Transactions on Software Engineering. Vol.
SE-2, no. 3. Sept. 1976. pp. 141-153.

[Borning 79] Alan Borning. Thinglab--A Constraint-Oriented
Simulation Laboratory. Xerox Palo Alto Research Center
Technical Report SSL-79-3. July, 1979. 100 pages.

[Buxton 83] W. Buxton, M.R. Lamb, D. Sherman, and K.C.
Smith. "Towards a Comprehensive User Interface Manage-
ment System," Computer Graphics: SIGGRAPH'83 Confer-
ence Proceedings. Detroit, Mich. Vol. 17, no. 3. July 25-29,
1983. pp. 35-42.

[Buxton 86] William Buxton and Brad Myers. "A Study in Two-
Handed Input," Proceedings SIGCHI'86: Human Factors in
Computing Systems. Boston, MA. April 13-17, 1986.

[Cardelli 85] Luca Cardelli and Rob Pike. "Squeak: A Language
for Communicating with Mice," Computer Graphics: SIG-
GRAPH'85 Conference Proceedings. San Francisco, CA. Vol.
19, no. 3. July 22-26, 1985. pp. 199-204.

[Foley 84] James D. Foley. "Managing the Design of User-
Computer Interfaces," Proceedings of the Fifth Annual
NCGA Conference and Exposition. Anaheim, CA. Vol. If.
May 13-17, 1984. pp. 436-451.

[Gould 84] Laura Gould and William Finzer. Programming by
Rehearsal. Xerox Palo Alto Research Center Technical
Report SCL-84-1. May, 1984. 133 pages. A short version
appears in Byte. Vol. 9, no. 6. June, 1984.

[Halbert 81] Daniel C. Halbert. An Example of Programming by
Example. Masters of Science Thesis. Computer Science
Division, Dept. of EE&CS, University of California, Berke-
ley and Xerox Corporation Office Products Division, Palo
Alto, CA. June, 1981.55 pages.

[Halbert 84] Daniel C. Halbert. Programming by Example. PhD
Thesis. Computer Science Division, Dept. of EE&CS,
University of California, Berkeley. 1984. Also: Xerox Office
Systems Division, Systems Development Department, TR
OSD-T8402, December, 1984. 83 pages.

[Hayes 85] Philip J. Hayes, Pedro A. Szekely, and Richard A.
Lerner. "Design Alternatives for User Interface Manage-
ment Systems Based on Experience with COUSIN,"
Proceedings SIGCHI'85: Human Factors in Computing Sys-
tems. San Francisco, CA. April 14-18, 1985. pp. 169-175.

[Henderson 86] D. Austin Henderson, Jr. "The Trillium User
Interface Design Environment," Proceedings SIGCHI'86:
Human Factors in Computing Systems. Boston, MA. April
13-17, 1986. pp. 221-227.

[Hutehins 86] Edwin L. Hutchins, James D. Hollan, and Donald
A. Norman. "Direct Manipulation Interfaces," User Cen-
tered System Design, Donald A. Norman and Stephen W.
Draper, eds. Hillsdale, New Jersey: Lawrence Erlbaum
Associates, 1986. pp. 87-124.

[Jacob 85] Robert J.K. Jacob. "A State Transition Diagram
Language for Visual Programming," IEEE Computer. Vol.
18, no. 8. Aug. 1985. pp. 51-59.

[Lieberman 82] Henry Lieberman. "Constructing Graphical User
Interfaces by Example," Graphics Interface, '82, Toronto,
Ontario, March 17-21, 1982. pp. 295-302.

[Myers 84] Brad A. Myers. "The User Interface for Sapphire,"
IEEE Computer Graphics and Applications. Vol. 4, no. 12,
December, 1984. pp. 13-23.

[Myers 86] Brad A. Myers. "Visual Programming, Programming
by Example, and Program Visualization; A Taxonomy,"
Proceedings SIGCHI'86: Human Factors in Computing Sys-
tems. Boston, MA. April 13-17, 1986. pp. 59-66.

[Myers prep] Brad A. Myers. Applying Visual Programming with
Programming by Example and Constraints to User Interface
Management Systems. PhD Thesis, Department of Com-
puter Science, University of Toronto, Toronto, Ontario,
Canada. In progress.

[Nix 86] Robert P. Nix. "Editing by Example," ACM Transac-
tions on Programming Languages and Systems. Vol. 7, no.
4. Oct. 1985. pp. 600-621.

[Olsen 83] Dan R. Olsen and Elizabeth P. Dempsey. "Syngraph:
A Graphical User Interface Generator," Computer Graphics:
SIGGRAPH'83 Conference Proceedings. Detroit, Mich. Vol.
17, no. 3. July 25-29, 1983. pp. 43-50.

[Olsen 84] Dan R. Olsen, Jr., William Buxton, Roger Ehrich,
David J. Kasik, James R. Rhyne, and John Sibert. "A Con-
text for User Interface Management," IEEE Computer
Graphics and Applications. Vol. 4, no. 2. Dec. 1984. pp. 33-
42.

257

m ~. S I G G R A P H '86

[Olsen 85] Dan R. Olsen, Jr., Elisabeth P. Dempsey, and Roy
Rogge. "Input-Output Linkage in a User Interface Manage-
ment System," Computer Graphics: SIGGRAPH'83 Confer-
ence Proceedings. San Francisco, CA. Vol. 19, no. 3. July
22-26, 1985. pp. 225-234.

[Pavlidis 85] Theo Pavlidis and Christopher J. Van Wyk. "An
Automatic Beautifier for Drawings and Illustrations," Com-
puter Graphics: SIGGRAPH'85 Conference Proceedings. San
Francisco, CA. Vol. 19, no. 3. July 22-26, 1985. pp. 225-234.

[Pfaff 85] Gunther R. Pfaff, ed. User Interface Management Sys-
tems. Berlin: Springer-Verlag, 1985. 224 pages.

[Shaw 75] David E. Shaw, William R. Swartout, and C. Cordell
Green. "Inferring Lisp Programs from Examples," Fourth
International Joint Conference on Artificial Intelligence.
Tbilisi, USSR. Sept. 3-8, 1975. Vol. 1. pp. 260-267.

[Shneiderman 83] Ben Shneiderman. "Direct Manipulation: A
Step Beyond Programming Languages," IEEE Computer.
Vol. 16, no. 8. Aug. 1983. pp. 57-69.

[Shneiderman 86] Ben Shneiderman. "Seven Plus or Minus Two
Central Issues in Human-Computer Interfaces," Proceed-
ings SIGCHI'86: Human Factors in Computing Systems.
(closing plenary address) Boston, MA. April 13-17, 1986.
pp. 343-349.

[Smith 77] David Canfield Smith. Pygmalion: A Computer Pro-
gram to Model and Stimulate Creative Thought. Basel,
Stuttgart; Birkhauser, 1977. 187 pages.

[Smith 82] David Canfield Smith, Charles Irby, Ralph Kimball,
Bill Verplank, and Erik Harslem. "Designing the Star User
Interface," Byte Magazine, April 1982, pp. 242-282.

[Tanner 85] Peter P. Tanner and William A.S. Buxton. "Some
Issues in Future User Interface Management System
(UIMS) Development," in User Interface Management Sys-
tems, Gunther R. Pfaff, ed. Berlin: Springer-Verlag, 1985.
pp. 67-79.

[Tesler 81] Larry Tesler. "The Smalltalk Environment," Byte
Magazine. August 1981, pp. 90-147.

[Thomas 83] James J. Thomas and Griffith Hamlin, eds.
"Graphical Input Interaction Technique (GIIT) Workshop
Summary." ACM/SIGGRAPH, Seattle, WA. June 2-4, 1982.
in Computer Graphics. Vol. 17, no. 1. Jan. 1983. pp. 5-30.

[Williams 83] Gregg Williams. "The Lisa Computer System,"
Byte Magazine, February 1983, pp. 33-50.

[Williams 84] Gregg Williams. ''The Apple Macintosh Com-
puter," Byte Magazine. February 1984. pp. 30-54.

[Xerox 83] Xerox Corporation. Interlisp Reference Manual.
Pasadena, CA. October, 1983.

258

