
Window Interfaces 

A Taxonomy of Window Manager User 
Interfaces 

Brad A. Myers 
Carnegie Mellon University 

This article presents a taxonomy for the user-visible 
parts of window managers. It is interesting that there 
are actually very few significant differences, and the 
differences can be classified in a taxonomy with fairly 
limited branching. This taxonomy should be useful in 
evaluating the similarities and differences of various 
window managers, and it will also serve as a guide for 
the issues that need to be addressed by designers of 
future window manager user interfaces. The advan- 
tages and disadvantages of the various options are also 
presented. Since many modern window managers 
allow the user interface to be customized to a large 
degree, it is important to study the choices available. 

A window manager is a software package that helps 
the user monitor and control different contexts by 
separating them physically onto different parts of one or 
more display screens. At its simplest, a window manager 
provides many separate terminals on the same screen, 
each with its own connection to a time-sharing com- 
puter. At its most advanced, a window manager supports 
many different activities, each of which uses many win- 
dows, and each window, in turn, can contain many 
different kinds of information including text, graphics, 
and even video. Window managers are sometimes imple- 
mented as part of a computer’s operating system and 
sometimes as a server that can be used if desired. They 

September 1988 0272-1;1618810900-0065s0100 198R l t E E  65 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



man> 
manl/ manY mmW 
man> cd manl 
mad>  
x.1 rcslzc.  1 
b l f f . l  w.1 
bltaap.1 xclock.1 
kcycmp. 1 xcolorr . 1 
pIkaplx.1 xdmo.1 
manl) 11 
t o t a l  181 
-rw-r--r-- 1 mlrc 
-w-r--r-- 1 mirc 
-w-r--r-- 1 mlrc 
-w-r--r-- 1 mirc 
-pw-p--p-- 1 mlsc 
-RJ-r--r-- 1 mlsc 
-w-r--r-- 1 mlsc 
-w-r--r-- 1 mlrc 
-rw-r--r-- 1 m i s t  
-w-r--r-- 1 mlsc 
-w-r--r-- 1 n i rc  
-w-r--r-- 
-w-r--r-- 

-w-r--r-- 

-w-r--r-- 
-w-r--r-- 

-w-).--r-- 

-pw-p--r-- 

-rw-p--p-- 
-w-r--r-- 
-rw-r--r-- 
-rw-r--r-- 
-w-r--r-- 
-w-r--r-- 

-w-r--r-- 
-rw-r--r-- 

-pw-r--p-- 

1 mlsc 
1 n l r c  
1 misc 
1 mlsc 
1 n l r c  
1 mlsc 
1 mlrc 
1 mlsc 
1 mlsc 
1 mlrc 
1 mlsc 
1 mlrc 
1 mlsc 
1 mlsc 
1 mlsc 
1 mltc 

xdpr. 1 
X d v l .  1 
xfax.1 
xfd.1 
xhost.1 

16591 Apr 
2188 Apr 

13633 Apr 
5648 Apr 
3516 Apr 
1539 Apr 

15276 Apr 
5145 Apr 
2421 Apr 
6711 FIpr 
1023 Apr 

xlmpv.1 xpr.1 xtrek.1 
x ln l t .1  xrefrerh.1 wd.1 
xload.1 xset.1 wlninfo.1 
x m . 1  xshcll .1 m.1 
xpcrfnon.1 xtcm.1 xuud.1 

2736 Apr 30 20:26 
1783 Apr 30 2O:X 
2671 Apr 30 20:26 
1526 Apr 30 20:26 
3805 Apr 30 20:26 
2311 Apr 30 20:26 
4360 Apr 30 20:26 

10720 Apr 30 20:26 
3472 Apr 30 20:26 
5002 Apr 30 20:26 
1053 Rpr 30 20:26 
2151 Apr 30 20:26 
6811 Rpr 30 20:26 

27590 FIpr 30 20:26 
742 Apr 30 20:26 

2367 A m  30 20:26 

OHodlfy(Tab1cCountcr. Table "Content.") 
R.(odIf~(FlgurcCountcr, Table "Contents") 

I haven't t r l c d  I t .  but I t  looks I l k c  I t  should U 

1 
L 

w-r--r-- 1 mlrc 4192 Apr 30 2O:X 
w-r--r-- 1 m l r c  9263 Apr 30 20:26 
rw-r--r-- 1 cllcc 2654 J u l  9 13:57 
ani> xud -out /trp/wd.dwllp 

Figure I. An example of a typical screen using the X window manager4 with overlapping windows. Some 
windows have title lines (the top-left window's says "xterm #2"). The background, where there are no win- 
dows, is gray. The small windows at the bottom are icons. 

can even be implemented by individual application pro- 
grams or programming environments. 

Window managers have become popular primarily 
because they allow separate activities to be put in phys- 
ically separate parts of the computer screen. The user of 
a computer is frequently shifting focus from one activity 
to another, including such small shifts as changing from 
editing one file in a text editor to editing another, and 
such large context shifts as changing from compiling a 
program to reading mail. 

Before window managers, people had to remembcr 
their various activities and how to switch back and forth. 
Window managers allow each activity to have its own 

separate area of the screen (its own "window"). Switch- 
ing from one windoiv to another is usually very simple. 
This physical separation is even more important when 
the operating system allows multiple actiLTities to oper- 
ate at the same time ("multiprocessing"). For example, 
in Unix, the user can compile one file at the same time 
a different file is being edited. On a conventional termi- 
nal, if the compiler process outputs any data, it is con- 
fusingly interspersed with the editor's display. If the two 
processes request input at the same time, the user may 
give the input to the wrong program. Window managers 
help with these problems by providing separate areas in 
which each process can perform input and output. 

ti6 I E E E Comp 11 t t'r G r a p h  I c, s R. Applic B t i o 11 s 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



Another advantage of window managers is that they 
provide a higher level interface to the mouse, keyboard, 
and screen, and therefore can support much higher qual- 
ity user interfaces. For example, the window managers 
on the Star’ and Macintosh’ help support the meta- 
phor that using the computer is like doing operations on 
a physical desk. This higher level interface can also make 
application code more portable from one machine to 
another, since the same window manager procedural 
interface can be provided on different machines. This 
was an important motivation for the development of the 
X window manager.4 

Today there are a large number of window managers 
in existence from many companies and research groups, 
and more are being created all the time. In surveying 
these window managers, it became clear that there are 
many similarities between all of them, and the differ- 
ences can be characterized on a small number of differ- 
ent axes. (This survey was started at the Alvey MMI 
Workshop on Window Management.‘) Most of the 
ideas seem to have originated at the Xerox Palo Alto 
Research Center, including windows in general 
(Smalltalk‘), pop-up menus,7 icons (Tajo8,9 and Star’.‘), 
and tiled windows (Cedar”,”). Of course every window 
manager has its own original aspects, but most of the 
important features of the user interfaces of window 
managers do not seem to vary markedly. 

With the advent of the X window manager,4 which is 
rapidly becoming a de facto standard, the study of the 
user interface component is becoming more critical. 
This is because X and many other modern window 
managers allow the user interface to be changed, while 
still maintaining the same application interface. User 
interface designers therefore are faced with not only a 
choice for the user interface of their application, but also 
for that of the window manager. It is therefore important 
to focus on the different choices in the user interface 
component of window managers. This article presents 
a taxonomy of the choices used in existing window man- 
ager user interfaces, along with some advantages and 
disadvantages of each choice. 

(At the time of this writing, Xerox, AT&T, and Sun had 
just announced a portable window-manager user inter- 
face called “Open Look,” which apparently will be 
implemented on multiple-window managers, including 
X ’ and NeWS.” Open Look, which is based partially on 
the user interface of the Xerox Star, is designed to match 
the ease of use of the Macintosh, and thereby make Unix 
systems more user friendly.) 

Definition of terms 
The previous section defined “window managers” 

and discussed the reason they are so popular. This sec- 
tion defines some related terms that are important for 
understanding how window managers work. 

A window manager can be logically divided into two 

layers, each of which has two parts. The base layer imple- 
ments the basic functionality of the window manager. 
The two parts of this layer handle the display of graphics 
in windows and access to the various input devices 
(usually a keyboard and a pointing device such as a 
mouse). The primary interface of this layer is to other 
programs, and it is called the window manager’s appli- 
cation or program interface. The base layer is not dis- 
cussed further in this article. The other layer of window 
managers is the user interface. This includes all aspects 
that are visible to the user. Sometimes the base layer is 
called a window system, reserving the name “window 
manager” for the user interface layer. Since this article 
deals only with the user interface layer, the term “win- 
dow manager” is used here. 

The two parts of the user interface layer are the presen- 
tation, which is composed of the pictures that the win- 
dow manager displays, and the operations, which are the 
commands the user can give to manipulate the windows 
and their contents. Figure 1 shows windows that demon- 
strate different aspects of the presentation, including 
patterns or pictures for the area where there are no win- 
dows, title lines and borders for windows, etc. Examples 
of the operations that may be provided for windows 
include moving them around on the screen and specify- 
ing their size. 

One very important aspect of the presentation of win- 
dows is whether they can overlap or not. Overlapping 
windows, sometimes called covered windows, are a fea- 
ture allowing a window to be partially or totally on top 
of another window, as shown in Figure 1. This is also 
sometimes called the desktop metaphor, since windows 
can cover each other like pieces of paper can cover each 
other on a desk. (There are usually other aspects to the 
desktop metaphor, however, such as presenting file oper- 
ations in a way that mimics office operations, as in the 
Star office workstation.’,’) The other alternative is 
called tiled windows, which means that windows are not 
allowed to cover each other. Figure 2 shows an example 
of tiled windows. The advantages and disadvantages of 
each are discussed below. Obviously, a window manager 
that supports covered windows can also allow them to 
be side by side, but not vice versa. Therefore, a window 
manager is classified as covered if it allows windows to 
overlap. 

Another important aspect of the presentation of win- 
dows is the use of icons. These are small pictures that 
represent windows. They are used because there would 
otherwise be too many windows to conveniently fit on 
the screen and manage easily. When a window is not in 
use, it can be removed and replaced with its icon, and 
later conveniently retrieved when needed. Figure 3 
shows examples of icons from some different window 
managers. The section on icons discusses the options 
available for icons in more detail. 

An important aspect of window managers is how the 
user changes which window is connected to the key- 

September 1988 67 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



Figure 2. A screen from the Cedarlo9” window manager. Windows are “tiled” into two columns. There is a 
row of icons along the bottom. Each window has a fixed menu of commands below the title line. 

board. Although there will typically be multiple win- 
dows, there is usually only one keyboard for each user. 
Therefore, only one window at a time can be attached 
to the keyboard. This window is termFd the listener, since 
it is listening to the user’s typing. Another term for this 
window is the input (or keyboard) focus. Older systems 
called the listener the “active window” or “current win- 
dow,” but these are poor terms, since in a multiproces- 
sing system, many windows can be actively outputting 
information at the same time. Window managers provide 
various ways to specify and show which window is the 
listener. 

Most window managers use some form of pointer, 
which is an input device that returns a 2D value used to 
identify locations on the screen. Pointing devices are 
typically used for specifying window size and position, 
for selecting characters in an editor, for drawing lines in 
a graphics program, and for transferring a picture (such 

as a map) into the computer by specifying points (this last 
use is called digitizing). Examples of pointing devices are 
light pens, electromagnetic tablets with pucks or pen- 
like styli, touch-sensitive surfaces (touch tablets or touch 
screens), trackballs, and mechanical or optical mice.’” 
Since the most popular pointing device for window 
managers is a mouse, the term mouse will often be used 
in this article to mean pointing device. 

Light pens and touch screens are used for pointing 
directly at the screen, but with the other types the user 
moves a device on the desk or on a special surface, and 
a small picture, called the tracking symbol or cursor, fol- 
lows the movement on the screen. In many window 
managers the picture for the cursor can be changed, but 
a common picture is an arrow pointing to the upper left. 

Pointing devices usually have one or more buttons. For 
example, there are typically one to three buttons on the 
top of a mouse. Some window managers allow the user 

68 IEEE Computer  Graphics  & Applications 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



14 

Sapphire 

Macintosh 

1-1 Cedar 
Star 

Figure 3. Examples of icons from different systems: Sapphire,I3 Ma~intosh ,~  X,4 Cedar," and Star.' Some of 
the X icons contain the actual text displayed in the window in a tiny (unreadable) font. 

to press two or three times quickly to specify additional 
commands. This is called multiclicking (for example, 
pressing twice quickly is double-clicking). Window 
managers may also support holding down keyboard keys 
(such as the shift key) while pressing a mouse button. 
This is often used to modify the button's meaning. 

The window manager versus add-ons 
To compare window managers, it is first necessary to 

establish the boundaries of discussion. A window man- 
ager provides the basic service of managing different 
windows on the screen, as defined above. In many sys- 
tems, however, other services are also provided, and 
these are often classified as part of the window manager. 
By providing these services in a central place, the system 
promotes consistency and makes applications easier. To 
compare the window managers of these different sys- 
tems, however, it is important to classify which aspects 

are being compared and which are considered add-on 
services. This section discusses some of these add-ons 
so that the rest of the article can concentrate on the win- 
dow manager portion itself. 

Some common add-ons are the following: 

1. a typescript package (handles user typing) 

2.  entire editors 

3. a graphics package for output (also called the imag- 

4. menus of various kinds 

5. forms (also called dialogue boxes) 

6. scrolling mechanisms 

7. general tool kits (which usually include menus, 

ing model 

forms, and scrolling mechanisms] 

September 1988 69 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



Table, Window managers discussed in this article. 

Nane Cleated by - - ~ ~  Comments References 
Smalltalk Xerox PARC Alto 
DLisp Xerox PARC 
Interm-D Xerox PARC 
Tajo Xerox SDD 
Star Xerox SDD 
Blit AT&T Bell Labs 
Display Manager Apollo 
?? Symbolics 
Sapphire Three Rivers 
PNX ICL 
s unw lndows Sun 
cedar Xerox PARC 
Window Manager Apple 
Window Manager Apple 
Andrew CMU ITC (Elm 
Whitechapel Whitechapel 
RTL/CRTL Siemens 
MSWindows Microsoft 

Altwmainframe 
Dorado 

Dandelion 
Dandelion 

B lit 
Apollo 

S ymbolics 
PERQ 
PERQ 

Sun 
Darado 
Lisa 

Macintosh 
IBM-RT, Sun 

MG-1 
PERQ 

IBM-PC 

C 
C 
C 
T 
C 
C 
C 
C 
C 
C 
T 
C 
C 
T 
C 
T 
T 

Viewpoint Xerox SDD 6085/1186 T or C 
X MIT Proiect Athena cmanv> C 

first use of icons, renamed "XDE" 
first product with windows 
1st documented impl.; terminal emulator 
originally had no mouse 
uses multi-clicking 
active icons 
feedback is full windows 

first tiled; used graphics package 

popularized windows & mouse 

no columns; used constraints 
current version supports coveted also 
swcessor to Xerox star 

40 
35 
8.9.38 
1,2,46 
36 
49 
48 
13 
41 
17 
10,11,20 
18 
3.19 
16 
23 
33 
28 
32 

first "portable" WM: emerainn standard 4.24.27 

8. user interface management systems or UIMSS" 
(which usually include a tool kit) 

Typescript package 
An example of a service that is often provided by win- 

dow managers is the handling of typing. This is often 
called a typescript package, and it usually supports some 
rudimentary line editing (backspace, delete line, etc.). 
The idea is to mimic the teletype interface to terminals 
provided by conventional time-sharing operating sys- 
tems. Most programming languages (for example C and 
Pascal) have as a function to read a line of text. When this 
function is executed, the user is typically allowed to edit 
the typed line before using carriage-return to confirm the 
entry. The typescript package handles this input also. In 
addition, it may provide more elaborate commands, and, 
in the extreme, be a full-fledged editor, as in the Andrew 
system."' In a window system, the typescript package 
may also provide the ability to copy text from one win- 
dow to another, as in SunWindows." An advanced form 
of this copying is the clipboard in the Lisa and Macin- 
t ~ s h , ~  which provides the ability to copy arbitrary text 
and graphics from one window to another. 

Editors 
In addition to the typescript package used to handle 

command typing, some window managers include an 
entire text editor, which can be used for preparing docu- 

ments and programs. This may or may not be the same 
package used for handling typing to programs. 

Graphics package 
Some window managers provide a sophisticated 

graphics package for application programs to help them 
produce output. Clearly, the window manager needs to 
output some graphics to draw the title lines, window 
borders, icons, backgrounds, etc. The primitives that the 
window manager provides for handling output is called 
the "imaging model" of the window manager. 

Some window managers, such as Sunwindows and X, 
provide a simple imaging model and expect that more 
sophisticated graphics packages will be built using the 
window manager. This allows more flexibility, since mul- 
tiple graphics packages can be used. For example, the 
CORE, GKS, and PHIGS graphics packages have all been 
implemented on top of Sunwindows. In addition, the 
graphics operations may be more efficient, since the 
window manager can export the primitives supported 
by the hardware. The interface to the window manager 
may be simpler, since there are fewer primitives. 

Other window managers are built on top of powerful 
graphics packages. For example, the Macintosh is on top 
of QuickDraw,Iq Cedar is on top of CedarGraphics," 
and NeWS," which was originally called SunDew," is 
on top of a version of Postscript." Adobe Systems and 
Next are creating another version of Postscript called 

70 IEEE Computer  Graphics & Applications 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



Display Postscript to serve as the imaging nicxlt:l for 
future witidow managers. The advantage of using an 
underlying graphics package is that the window man- 
ager can provide a more attractive presentation. For 
example, the Macintosh window manager displays d r o p  
shad ow s and roil n d e d c o r n e r s, 0 the r ad \rant ages 
include a more consistent interface to and between 
applications and t) et te r d ev i (:e i 11 d c p end e nce. 

User interface tool kits 
Another service often pro ided  bl, windo\v managers 

is a library of procedures to help applications create their 
user interfaces. For example, almost every window marl- 
ager provides a menu package. Whitechapel" also pro- 
vides scroll bars that can be displayed on the tvindows. 
The Macintosh comes with a complete "Toolbox,""' 
including menus, dialogue boxes. scroll bars, and text- 
editing. A full tool kit for X is also under development.24 
The advantage of a tool kit is that it significantly reduces 
the effort required to create higher quality user inter- 
faces, and it helps ensure consistency among the user 
interfaces of different application programs on the same 
machine. In addition, some window managers also pro- 
vide a tool to help organize and use the contents of thc 
tool kit. Examples of this are the Apple MacApp 
program'" and Apollo's Open Dialog."" These tools are 
often calleti user interface rnuno,oernt:nt sj,stems" anti 
are necessary because programrners often finti that tool 
kits are largc: and difficult to use. 

Window managers surveyed 
M en t i o ni iig every window manager is i n i p  o s s i b 1 e,  

since new ones appear a11 the time. and many are not 
documented in generally available publications. The 
selection here is not meant to be an indication of which 
window managers are best. The ones included are the 
ones that exemplify important variations. I n  addition, 
window managers are continually changing, so the 
descriptions for some window managers may no longer 
be accurate. The primary objective ofthis article is to 
illustrate the choices available in window manager user 
interfaces rather than to descrihe fully any particular 
VJ i rid ow man age r. 

Some Lvindow managers allow their user interfaces to 
be changed. For example, X allows significant changes. 
For this class of window manager, the article describes 
one of the available user interfaces, and some of the 
variability is mentioned where appropriate. For X. the 
"unrm" window manager." for the IHM-RT computer is 
described and will be called "XIuwm." 

Although this article discusses advantages and disad- 
vantages of various user interface choices, this is not 
meant as a criticism of any window manager. As with 
all user interface decisions, there are often external con- 
siderations that influence the choice. The descriptions 
are meant to illustrate concepts rather than evaluate win- 

do\v managers. 
The Table sholvs all the \vindo\v nianagcrs mentioned 

i n  this articlc. The entries arc approsirnatel~~ in chrono- 
1 og i c a1 U rti c r. 

User interface of application programs 
One interc:stitig consideration is the extent to ivhich 

the \vindo\v manager's user interface affects the user 
interface of application programs that run under it .  Even 
avindwv mariagcrs that try to minimize their uscr inter- 
face will at least need to allu\v the user to change the lis- 
tener arid the positions of \viIido\vs. and even this user 
interface \vi11 affect ho\v an application program can 
interact nit11 the user. Some tvindo\v managers attempt 
to minimize their restrictions of the application's user 
i t i  t er fa ~ t :  s o  they c a t i  a 11 o\v a p p I i ca t i o 11 s in axi ni 11 m flex- 
it) il i t y. 

Other tvindoiv managcrs atteiiipt to specify the user 
interface of applications to a large extent to ensure con- 
sistenq.. In any case. the choice of the user interface of 
the windo\v manager must affect the user interfaces of 
the application programs. E\wi such \vindo\v managers 
as X,  whose owti user interface can be changed. are not 
free of this problem. Different applications that run at 
the same time cannot all impose their choices on the 
same \vindo\v iiianager, since the \vindo\v manager user 
interface is global to all applications. Figure 4 sholvs a 
few saniplc Lvindow managers and hoiv much they 
i t i  f l  U e t i  ce the I I  se I' i n t e r faces of a p pl i c a t i on s. 

Presentation 
Now the taxonomy of the user interface part of win- 

dow managers \vi11 be presented. This section discusses 
the presentation aspects of this taxonomy, and a later sec- 
tion discusses the operations. Figure 5 shows the tax- 
onomy of the presentation aspects of \vindo\v managers. 
The follow i t i  g sect i (3 tis exp 1 ai n t 11 e va r i ou s options 
shown in this figurt:. 

Tiled versus overlapped 
The first major decision is \\,hether \$indotvs are 

alloLved to overlap or not. Some windo\v systems (includ- 
ing Cedar and the original versions of Microsoft 
Witido~vs2'] require that witidoivs be side by side and 
not overlap. As discussed earlier. this is called "tiling." 
The alternative is to allow windolvs to overlap. and this 
is provided b!, Smalltalk, ' X/uwm, atid man)' 
others. 

Implementation anti hurna~i factors issues guide the 
choice bet\veen tiling and overlapping. In tiling systems, 
the c;omputer is typically in charge of managing the win- 
dow placement and size, limiting the user's freedom. In 
covered window managers, the user must usually man- 
age the windows. Putting the mouse in an arbitrary win- 
doLv is also easier with tiling, since all of the windows 

September 1988 71 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



Figure 4. The amount that the user interface of some 
sample window managers affects the user interface 
of application programs. 

1 column Emacs 
2cohums Cedar 

r f i x e d  columns I... 

Figure 5. Taxonomy of the presentation aspects of the user interface of window managers. Solid lines are 
choices (exactly one of the options is  chosen). A window manager can include any or all of the options at the 
ends of the diagonal gray lines. Example systems are shown in a n  outline font. There will typically be many 
other systems that also share the same features. The options shown are discussed in the article. 

72 IEEE Computer  Graphics & Applications 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



are always visible. Often, the “best” style is a matter of 
personal taste, but one study discovered that, while users 
claimed to prefer covered window managers, they spent 
less time doing window management operations with 
tiled window managers.” The overall timing results for 
task completion were somewhat inconclusive, however. 

The computer’s screen size will also affect whether til- 
ing or covered is preferred. With small screens, such as 
on the standard Macintosh, there is not enough room to 
use the tiling style. For the window-manager imple- 
menter, graphical output primitives are more difficult to 
provide with covered systems, since the output must be 
clipped to differently shaped regions. On the other hand, 
with tiled systems, the implementer must provide some 
sort of automatic screen layout facilities. Some window 
managers, such as Viewpoint3‘ (which is the successor 
to Star), allow the user the choice of covered or tiled win- 
dows. Another possibility is for a window manager that 
uses covered windows to provide automatic layout. This 
is harder than with tiled windows, however, because it 
is less clear where windows should be placed. 

When windows are tiled, the next decision is whether 
the windows must be arranged in fixed columns or 
whether the windows can be in arbitrary places on the 
screen (see Figure 6). A good discussion of the various 
options for tiled window systems can be found in 
Cohen’s article.33 Originally, the Andrew window man- 
ager used a constraint system to allow windows to be 
nonoverlapping and anywhere on the screen. The sys- 
tem would adjust the sizes of windows based on the con- 
straints whenever a new window was created or an old 
window destroyed. Unfortunately, users did not like this 
for a number of reasons: It took too long for the windows 
to finish adjusting themselves after a change, windows 
all over the screen would change size when a new win- 
dow was added or removed, and the screen layout result- 
ing from one window changing was unpredictable. 
Therefore, Andrew now supports a much simpler 
approach instead, with a user-defined number of 
columns.‘’ 

The RTL/CRTL window manager from Siemens also 
uses constraints. ” The current version runs on top of 
X11, and it reportedly does not have the problems dis- 
cussed above for Andrew. 

I f  there are fixed columns, then there can be either a 
specified number or an arbitrary number. Probably the 
first use of the window concept was in such full-screen 
text editors as Emacs,j4 which allowed multiple files to 
be edited at the same time by dividing the terminal 
screen into horizontal sections. This idea has been 
extended in window managers that allow multiple 
columns. For example, Cedar provides for exactly two 
columns on a black-and-white display (see Figure 2) 
along with one additional column on the optional color 
display. 

I f  windows are allowed to overlap, then there are a 
number of secondary options. First is whether to allow 

A 
D 

B C  

E 
F 

I H 
G 

Figure 6. Tiled windows can be in arbitrary places 
(left) or in fixed columns (right). 

windows to extend partially off screen (so that only part 
of the window is visible on the screen]. Most covered 
window managers support this. Another option is 
whether to allow windows to be updated while they are 
covered. I t  is clearly more difficult to clip the output 
operations correctly so that covered windows can be 
updated, so such older window managers as Smalltalk 
and I n t e r 1 i ~ p - D ~ ~  require that windows come to the top 
before being written to. Most modern window managers, 
however, allow output to windows while they are 
covered. If output can occur in portions that are covered, 
the next question is whether the listener window is 
allowed to be covered. There is no additional implemen- 
tation difficulty in allowing this, but some window 
managers, such as the Macintosh, always bring the lis- 
tener window to the top, to help users keep track of 
where they are typing. Other window managers, such as 
Sapphire and X/uwm, allow the listener to be covered 
so that users can have maximum flexibility in arranging 
their working environment. 

Title lines and borders 
All window managers provide some “decoration” for 

the windows. This usually includes special “title lines” 
at the top and special borders around the entire window. 
The title line typically shows such global information as 
the current directory, the name of a file being edited, or 
the name of the program being run (see Figures 1 and 2). 
The Blit36 window manager is one of the few window 
managers that does not use title lines. In addition, the 
title lines and borders may contain other decorations and 
command buttons. 

Showing the listener 

An important presentation issue is how the listener is 
shown. Since there are multiple windows and only one 
listener, it is important that the user know which win- 
dow is the listener. One method for specifying the lis- 
tener is simply to move the mouse into a window. In this 

September 1988 7 3  

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



Figure 7. The listener on the Macintosh3 is shown by drawing lines in the title line and displaying the com- 
mand areas. The scroll bars and arrows on the right and bottom of the window move the display inside the 
window, the icon at the bottom right of the window is used to change the window’s size, the icon at  the top 
right is used to make the window full screen, and pressing in the square at  the top left closes the window. 

Figure 8 .  SapphireI3 displays the listener window by 
making its border thicker. The window marked WZ is 
the listener. The icons are in the window at the bot- 
tom, and they can display status information about 
the window and the process running in it. 

case the bvindow containing the mouse tracking symbol 
is clearly the listener. The window manager might use 
some combination of other ways to show the listener, 
including changing the title line decorat ions 
(Whitechapell ’1, changing the border decorations 
(Sapphire”), changing the title and border (X/u~.’m’’], 
changing the shape of the text input cursor or starting 
it blinking (Interlisp-D), removing the command areas 
(Macintosh), or even filling the window with a particu- 
lar pattern when it is riot the listener (dots are used in 
the Hl i t ) .  Figure 7 shows a combination of changing the 
title line and command areas, and Figure 8 shows an 
example of using the border only. 

I E E E  Computer Graphics & Applications 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



Icons 
A major issue of presentation in modern systems is 

whether the window manager supports icons or not. 
These were invented by David Smith.” and first used in 
a window manager in the Xerox Tajo environment“ 
(which was later renamed XDE”’]). In Tajo the icons 
were originally just the title lines of the windows. A simi- 
lar approach is used by the Andrew system, which leaves 
the title line where it was in the column, and simply 
hides the window contents. 

Pictorial icons were first used in the Xerox Star,’,’ 
where they give the user the illusion of operating in a 
physical environment. Each icon represents an object in 
an office environment [documents, folders, file cabinets, 
printers, etc.), so the user can learn how to operate these 
objects by analogy to the way operations are performed 
in the physical world. For example, to delete a file, the 
user moves the icon for the file to the icon that looks like 
a trash can (see Figure 3). Icons in the Star, as well as in 
the Apple Macintosh, therefore represent data objects 
and processes. 

Most other window systems use icons in a different 
way. They represent windows. In these systems, the icon 
is simply another representation for a window, without 
the additional semantics of being data objects that can 
be operated on. 

Most systems provide icons as an alternative represen- 
tation for windows, so that a window is either full size 
or “shrunk” to an icon. Some of these systems, such as 
the Macintosh and Star, leave a “shadow” of the icon to 
show where it came from, whereas other systems (Sun- 
Windows and X/uwm) do not. 

The Sapphire window manager uses icons in an 
entirely different way: The icon for a window is always 
fully visible, even if the window is on the screen. The 
icons in Sapphire are used to give commands to the win- 
dows and to show eight pieces of status information 
about the window and the process running in the win- 
dow.13 This includes percent-done progress indicators“’ 
to show how the job is doing and pictures to show when 
an error has occurred or when the process in the win- 
dow is waiting for input (see Figure 8). 

The Sapphire icons are an example of how the icons 
can dynamically change. Another example is the X/uwm 
window manager, where an icon can be a tiny version 
of the actual window, as shown in Figure 3. 

In most other window managers, however, the icons 
are essentially static. Often, there are situations where 
the icon changes a little, however. For example, in the 
Mocintosh, most icons are static, except that the trash 
can icon bulges when something is put into it. Similarly, 
on the Star, the mail icon changes to show when mail has 
arrived. 

Other issues with icons are whether the user can move 
them around, whether their shape and size are fixed, and 
whether the user can give commands to the window 
using the icons. In the extreme, if icons are just an alter- 

native representation for windows, the user should be 
able to type to the icon and have the text go to the appli- 
cation running in the window. This is allowed in some 
window managers, such as Sapphire, but others limit the 
commands available when the window is shown as an 
icon. 

Window shape 
A minor point is what window shapes are supported. 

Usually, only rectangular windows are provided, but the 
NeWS window manager does support arbitrarily shaped 
windows [see Figure 9). Most of the windows in the 
Macintosh are rectangular (Figure 7), but they are 
allowed to be arbitrary shapes. Obviously, a tiling win- 
dow manager must use shapes that can be tiled, such as 
rectangles or hexagons (all existing ones use rectangles]. 
Many window managers simulate arbitrary shapes for 
icons, even i f  the windows must be rectangular, 

Special areas 
Another presentation aspect of windowmanager user 

interfaces is whether any screen areas are reserved for 
special functions. For example, DLisp4” has a reserved 
area at the top and Interlisp-D has a reserved window for 
error messages and user prompts. Other examples are 
the Macintosh, which reserves the top line for a com- 
mand menu, and PNX,‘“ which has a special window- 
manager window for giving some window-manager 
commands. Other window managers have special areas 
for icons, which may be in the background, or in a spe- 
cial window (as in Sapphire). Icons may be in arbitrary 
places, as in X/uwm, on a regular grid, as in the Star, or 
in arbitrary places with a user-callable “neatening” onto 
a grid as in the Macintosh. Another issue is whether the 
icons can be covered by other windows [usually true i f  
there are overlapped windows, false if tiled windows). 

Other issues 
There are a number of other issues of presentation, 

such as whether color is supported, whether the user can 
manipulate the presentation (for example, changing the 
background pattern in the Macintosh), and to what 
extent application programs can change the presentation 
(for example, changing the title line’s appearance]. 

Operations 
The second major component of the user interface of 

window managers is the set of operations that the user 
can execute to control the windows. This component can 
be further subdivided into the functionality of the oper- 
ations provided, and the user interface of those opera- 
tions. Taxonomies for these aspects are shown in Figures 
10 and 11, respectively. 

Functionality 
The first issue, of course, is which operations are sup- 

ported. All window managers must supply some way for 

September 1988 75 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



Bosbx Gem 

January Pie Sales 

the user to change the listener. There usually are also 
commands to create new windoiz-s and delete old xvin- 
dows. A system ivith covered windows will also need a 
command to make the window become uncovered (top), 
and there is usually a command to make a window be 
covered by all other windows (bottom). The bottom com- 
mand is often used to remove windows that are hiding 
a fully covered window. 

Most window managers allow the user to move \\Tin- 
dows and change their size, but these operations may be 
restricted in a tiled window manager. For example, in 
Cedar, you can only move a window to the other column 
or change its size in the current column, and the width 
of all windows in a column must be adjusted together. 
Other tiled systems allow a window to be placed in the 
“seam” between any two other windows. With a covered 
window system, an issue is whether the windows can 
change size or move while they are partially covered (true 
in Sapphire, false in X/uwm). On the Macintosh it is pos- 

sible to move a covered window by holding down the 
command key lvhile pressing in the window’s title line. 

Another issuc is whether a window can be modified 
only from a particular corner [as in the grow operation 
for the hlacintosh, which works only from the lower 
right corner), from a set of control points (Sapphire 
allows windows to be moved and changed in size from 
points on each side and corner), or from anywhere in the 
window (as in X/uwm). 

For window managers that have icons, there are often 
operations to shrink the window down to the icon and 
to expand from the icon to normal size. There might also 
be operations to move the icon itself (no system I am 
aware of allows the user to change the icon’s size). 
Another operation that is often provided is the ability to 
make a window full screen or full size. The old size and 
position are remembered so a single operation can make 
the window go back. This command is available in Sap- 
phire and for some windows on the Macintosh. 

76 I E E E  Computer Graphics R- Applications 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



Figure 10. Taxonomy for the functionality of window manager operations. 

Some window managers provide additional opera- 
tions. For example, most window managers allow a 
change from black text on white to white on black; 
X/uwm allows the most covered window to be circulated 
to the top; and Sapphire and X/uwm have commands to 
refresh the contents of windows. 

For systems where the window manager itself is 
optional, such as Sunwindows and X/uwm, there is 
often a command to quit the entire window manager. 
Some window managers allow applications to insert 
their own commands into the normal window manager 
command mechanism (for example, into the Interlisp-D 
menus). There may also be an Undo command to reverse 
the previous window manager command. 

Another important question is whether the user can 
abort a command after it has started. For example, in the 
Macintosh, if you begin to move a window and change 
your mind, you can move the cursor into the command 
area and the move operation will be aborted. On the 

other hand, there is no way to stop the grow operation 
on the Macintosh. In Sapphire, any operation can be 
aborted by hitting the Delete key on the keyboard. 

Another issue is whether application programs can 
affect the functionality of the commands. For example, 
a program implementing a terminal emulator might 
want to restrict its window to be exactly 24 by 80 charac- 
ters big and therefore disable the window-size-change 
command. In a different situation an application may be 
designed for novices and therefore want to disable any 
"dangerous" window manager commands. Another 
example is how dialogue boxes refuse to allow the user 
to change the listener on the Macintosh. 

A related question is whether applications can execute 
the commands. For example, can applications move 
existing windows or change their size? Can an applica- 
tion change the listener? The latter functionality is use- 
ful to provide alarms for special asynchronous 
situations. For example, the PrintMonitor on the Macin- 

September 1988 77  

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



' "I, f"Ir special pefix key Sapphire \\,, commands from keyboard l@r'''" '(\;t"" special keysSunWindow8 
" keyboard change listener Sapphire 
P assign buuons to commands 

- - m m l e  interface? 

always the same 
r e m  to previous Macintosh 
customizable using profile files X 

+Inspecify initial d l g u r a t i  

Figure 11. Taxonomy for the user interface of window manager operations. 

tosh pops up a window and makes it the listener when 
there is a problem with the printer. 

The advantage of a large number of commands is that 
the user can perform operations in a variety of ways. The 
disadvantage, however, is that it may be more difficult for 
the user to know which command to use, and therefore 
make the window manager more difficult for novices. In 
addition, if  a command has lots of variants and options, 
it may take longer to invoke any single command, since 
the various options must be specified. As an example, 
allowing a window to be grown from any side or corner 
usually involves three steps: first giving the grow com- 
mand, second specifying the place to grow from, and 
finally specifying the new size. When there is less flexi- 
bility, as in the Macintosh, the second step is eliminated. 

Future window managers will probably need to pro- 
vide additional functionality in their user interfaces to 
help the user control the windows. Whereas icons and 
automatic layout for windows are good first steps, users 
still find that they frequently lose windows and have dif- 
ficulty reconstructing their working environment. This 
is especially important since studies have shown that 
people do not work on a particular task for more than 15 
minutes on average before they switch to a different task, 
presumably in a different window.42 Some research 
window managers provide groupings of windows, so 
that the user can set up a related group of tasks running 
in windows in a particular layout, and go directly from 
one group to another. Cedar contains a fixed overview 
of 16 screens, each of which has a set of windows, and 

78 IEEE Computer Graphics & Applications 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



the Kooms system" ' - I  provides arliitrary groupings of 
\v in d o~vs .  

User interface of operations 
'I'he next important issue xvith operations is h o ~ v  they 

can be specified by the user. hlany Ivindoiv managers 
provide multiple ways of giving the same command. For 
example, there may be menus that contain all commands 
for novices. as well as cicc~:lerntors-faster ways lor expert 
users to give the most frequent commands using the 
niou se ii n ti key ho ar d,  C 1 ear 1 y, the co 11 side ra t i o 11 s about 
Lvliat user interface to use for the window manager must 
tie influenced by general user interface principlcs, which 
are more fully described in other places. for ex;imple by 
~ o l e y  and van Darn.'' 

Number of mouse buttons 
One of t h (: most o hv iou s di f le re n (:t! s 1)e t \\re er1 w i 11 d o ~ v  

managers is how many buttons on I he mouse they are 
designed to use. The Macintosh mouse has onlj, one but- 
ton because it is intended to be \'cry easy to use for 
novices. With more buttons, thr: novice might forget 
Lvhich hutton performs Lvhich operation and bc nervous 
about pressing them. The designers of the Star system 
did extensive testing and decided two buttons \\'ere eas- 
iest to learn and most efficient.4" h.Iany other window 
in a 11 agers a re tl e sig 11 ed fo r t h rce but tons [ S U nlVi n d o ~ v s  
a n d  Sap phi re, for example). So me \vi nt ioiv I nanagers 
simulate a middle button on a t\vo-liutton Inoust: tiy hold- 
ing down both buttons at the same time. Naturally, the 
c:Listomizable window rnanagers, such as X and  NeWS, 
(:an support any number of huttons on the mouse. 
Changing the listener 

Of partic:ular interest is how the  ise er c1iangt:s the lis- 
t e 11 er. Some s y st e in s, in c lu d i I ig S unWi n d OM's a rid 
Smalltalk, change the listener to lvhatever \viIiCIo\v coil- 
tains the cursor. Other window Inanagers-iiicluding 
I 11 t e r 1 is p- D, Star, Sapphire, H 1 i t  , C ed a r, and h4 a c: i n t os h- 
require an explicit press to change the listener. Some 
\vindow managers, such as X and Nc:i*Z'S, allou the user 
to pick which technique is used. 

I f  an explicit press is required, then an issue is whether 
this press should be sent through to he iiscd liy the appli- 
cation program. If so, as in Cediir. changing thr: listener 
must always do something to the application (such as 
changing the insert point in an editor). I f  the button press 
is not sent through, as in Interlisp-D. then the user might 
be confused that the operation did riot happen. Some 
systems, such as Sapphire, let the application decide 
whether to interpret the first press, but this means that 
a p plica t i o 11 s may operate i 11 consist en t 1 y. 

The advantages of changing the listener on cursor 
movement are that this operation is easier and faster, the 
mouse cursor provides a nice form of feedback for which 
\zinclow is the listener. and the problem of whether to 
send the press through to applications is avoided. The 
advantages of using a press to change listeners are that 

the listener tloes riot change accidentally i f  the mouse is 
bumped, input devices like a stylus that do not retain 
their position can easily tie used, the position of thc 
mouse can still be used even when it is outside of the lis- 
tener wintloM: the mouse can be moved outside the iviii- 

dow so 110 part of the bvindow is hidden under the cursor, 
and if the input device is a tablet, it can be used in either 
absolute (digitizing) or relative (mouselike] tracking 
modes. ' ' 

Another issue is \\,hether the XvindoLv manager alloivs 
there to be no listener. In X/uwm, for example, lvhen the 
cursor is outside of all windows (that is, over the back- 
ground), keyboard typing just disappears. In Sapphire, 
keys typed \\Then there is no listener are saved and given 
to the next window that becomes the listener. On the 
other hand. the Macintosh \vi11 not alloxv no listener; i f  
you press over the background, nothing happens, and i f  
the listener Lvindoxv is deleted, then the next topmost 
\vindoIv is made the listener. This tends to be much more 
intuitive and keyboard typing is never lost. 

A question for future window managers will be ho\v 
t o Iia n d le addition a 1 i 11 put devices. (-1 u r re n tl y, \vi i i d  ow 
managers typically support only the keyboard and one 
poi 11 ti ng device. Research has demon st ra te d, h oweve r, 
that using multiple input devices, suc.h as touch tablets, 
knobs, and switches, along Lvith the pointing device (for 
example, one in each hand) can increase the user's effec- 
tiveness. '' In addition, speech recognition is slon.ly 
becorning practical. All of these input techniques will 
have to be switched among windows as the keyboard is 
iio~z, and the issue will he whether to switch all devices 
at the same time. to have different techniques for switch- 
ing each device separately, or to allow certain devices to 
he grabbed perrnanently by a particular Lvindolv. 
Other commands from a mouse 

There are various ways that window managers allow 
commands to be given using the mouse. Some systems, 
such as Andrew, reserve a special mouse button to give 
Ivindow manager commands. Other systems, such as 
X/uwm. rescrve a special shift key on the keyboard. For 
example, to give a wi~idow manager command on the 
IHh4 RT computer, you need to hold down the "Alt" key- 
board key Lvhile pressing the mouse buttons. Still other 
systems. such as Symbolics4' and Macintosh, use mul- 
tiple clicking. 

Pressing the mouse buttons while the cursor is in 
different areas typically has different meanings. Most 
window managers, for example, provide special com- 
mands when the mouse is pressed in the title lines of 
lvindows. Some window managers also allow the user 
to press in the borders of windows, which might be used 
for changing a window's size or position. The Macintosh 
window manager, among others, has special "buttons" 
in the window title line and border which are used for 
closing a window or changing its size (see Figure 7). On 
the other hand, some window managers allow the corn- 
iiiands to be given if the cursor is anywhere inside the 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



Figure 12. Various cursor pictures used in Sapphire13 
to show which operation is in progress. 

window. Sapphire and the Macintosh, for example, 
cause a window to become the listener when the cursor 
is pressed anywhere inside it. 

The special areas for giving commands are sometimes 
not visible in the window. For example, Tajo and Sap- 
phire divide the title line into three regions horizontally 
and assign different functions to each region. The divi- 
sions are not shown, but the user is assumed to be able 
to differentiate the middle from the left and right of the 
title line for any window that has a reasonable size. Other 
window managers only use visible areas. The trade-off 
is obviously using screen area for command labels so 
they will be easier to find and more obvious for novices, 
versus using the screen space to display other useful 
information. Cedar has a unique solution to this prob- 
lem: Some of the command buttons are hidden under- 
neath the title line, and the title line is replaced with the 
command menu whenever the cursor goes into the title 
line. 

Another issue when giving commands with the mouse 
is what kind of feedback the user sees. Most systems pro- 
vide hairlines the size of the window when a window is 
moved. The PNX window manager actually has the 
entire window follow the mouse in real time, and origi- 
nally Smalltalk showed only one corner. 

Often, there will be feedback in the cursor picture as 
to the operation being performed. For example, X/uwm 
shows a picture of the button that is down. Sapphire uses 
the cursor picture to show which operation may happen. 
When the button is pressed in a particular area, the cur- 
sor changes to show what will happen (see Figure 12). 
If  the button is released, the operation happens, but if the 
cursor is moved away before releasing, the operation is 
aborted. Different cursor pictures are also often used to 
show what mode the user interface is in. 

Menus 
Commands in window managers are usually given 

using menus. A menu is a list of options, and in a win- 
dow manager, the desired option is usually picked by 
pointing at it with the mouse. Menus were classified as 
an add-on earlier, since they are usually supplied to 
application programs as a service. On the other hand, 
most window managers also use menus as part of their 
own user interface, so it is necessary to discuss them 
here. This discussion is not meant to be comprehensive, 
however, since there are many different ways to present 
menus and the options listed here are only those that 
have been commonly used with window managers. 

Menus can be always visible (usually at a fixed place 
on the screen or a fixed place in each window), in which 
case they are called fixed menus. Alternatively they can 
appear when the user performs some action, and the11 
are called pop-up menus (see Figure 13). Pop-up menus 
are often used because they do not take up screen area 
when not in use, and they appear at the cursor so less 
hand movement is needed. On the other hand, they have 
the disadvantages that novices may not know hot%’ to 
make them appear, and they usually take longer to use 
since the user must first perform the action to make them 
appear, then search through the menu for the correct 
item, and then make the selection. 

Fixed menus also allow the user to mouse-ahead. 
Mouse-ahead is giving commands with the mouse 
before the system is ready to accept them. This is analo- 
gous to typeahead from the keyboard. Pop-up menus are 
hard to use with mouse-ahead because the menu is not 
displayed, so the user cannot see where the desired item 
is. Fixed menus are used by the Macintosh on the top line 
of the screen (see Figure 14b), in DLisp in  windows that 
can appear anywhere on the screen (see Figure 13b), and 
in Cedar as the menus in the title lines (see Figure 2). 
Fixed menus in a special place on the screen, as in the 
Macintosh, are probably appropriate only when the 
screen is small, so that the maximum hand movement 
to move the cursor to them is not too large. 

Many Luindow managers use pop-up menus to give 
window-manager commands. For example, in X/uwni 
when the Alt key and the left mouse button are held 
down, a menu pops up which contains the standard 
window-manager commands. The middle button with 
the Alt key pops up a different set of commands. Sap- 
phire provides a menu of commands when the right 
mouse button is pressed over the left or right title line 
areas. A distinction among pop-up menus is whether 
they appear on a down press and the selection is made 
on the release (X/uwm), or whether a second down press 
is needed to make the selection (Symbolics and Sap- 
phire). Some menu systems support both styles 
(RT L/C RTL ’ 3 ) .  

Another issue with menus is whether submenus are 
supported. A submenu is a menu that appears after a 

80 IEEE Computer Graphics & Applications 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



a 

Figure 13. A pop-up menu (a) from smalltalk, and 
fixed menus (b) in DLisp. 

particular item in a menu is selected. This will typically 
provide more options or parameters to that particular 
operation . 

There are various ways to provide submenus. 'The most 
obvious way is simply for them to pop up after the main 
selection has been made. Interlisp-U and Sunwindows 
have the submenus appear when the cursor is slid off a 
menu item to the right (see Figure 14a). Macintosh uses 
a similar idea, called pull-down menus, but here the main 
menu is horizontal and the submenus appear when the 
cursor is over any top-level item (see Figure 14b). Andrew 
has the menus stacked like pages of a book (see Figure 
14c), so the user can flip through them quickly. Many 
other options are possible. 

A final feature of menus in window managers is the 
handling of items that are currently illegal. For example, 
a particular application may prevent its window's size 
from being changed. The illegal item might be left out of 
the menu altogether, it might be included but shown in 
gray, as in X/uwm and the Macintosh (see Figure 14b), 
or it might be shown normally and just fail to operate, 
as in Sapphire. 

The advantage of showing the option in gray is that the 
illegal items are obvious, but the other items in the menu 
always appear in the same places so the user gets famil- 
iar with where items are placed. The advantage of show- 
ing only the legal options is that more items can be 
included if they all appear in independent sets. 

Commands from the keyboard 
Some window managers allow operations to be 

executed using the keyboard. This might be done by 
using a reserved shift key (for example, the command key 

S e p  t ern ber 1'3 8 8 

b 

on the Macintosh]; by using reserved keys for special 
functions (some function keys in Apollo," for example, 
and Sunwindows); or by reserving a prefix key which 
must be typed before window manager commands, as 
in Sapphire. 

The keyboard commands are usually considered 
accelerators which experts will use when pop-up menus 
are too slow. Sometimes the keyboard commands are 
provided for people who do not like or cannot use the 
mouse. EasyAccess on the Macintosh, for example. was 
designed to allow handicapped people to replace all 
mouse commands with keyboard actions. The Apollo 
window manager is one of the few that was designed 
with the keyboard as its primary input device; the early 
Apollos did not have mice.49 

Other issues with keyboard commands are whether 
type-ahead is supported, whether the keyboard can 
change the listener (false in the Macintosh, true in Sap- 
phire and Sunwindows), and whether the keyboard can 
make selections in the menus. 

Other user interface issues 
Some commands require arguments. For example, the 

user must specify a new size for a window when the 
change-size or create-window command is given. Some 

81 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



scrpt #- 

I 

HEW hlAl 

J Lydla.Ikflllpp 
Oral T L ~ s - V I J J ~  S.rua.1 

+, ~ u r g  silverman 
Ya Buul 

O J i m  Morns rosentbal 
~ B A I T Y  silverman 

J h c h r t d  Wallatein 

Jbl ichael  T LoBue 

QJSUtdrA BondLevel 1 and 2 items 

RDS Deal 

Twa mnouncemenu 

Kim C Recommendauon 

I st* 

I l l 1  I 

The domun of logic mgnmming Ian uager. consists. of the most pan. of  
proyrunmin languages gued on Horn fogic which provide modified forms of 
top-loam. ILD-refutation ezerution engines A program in bere  Ianguagcs 
consists o f  a set of def ini te  C I A U S C  a x i o m s  wi th  (perhaps implicit) control 
information for guiding the underlpng engine E~ecut ion IS initiated by the  
rrescntation of a conjunction of goals or quenes and terminates when the engine. 
ollounnp the rcscnbed control. dtscovers either a proof of the goals. or the 

impOSSiblh~9 O f  such a proof Concumnt logic progrunmmg (CLP) languages 
provide czecution engines capable of pursuing concumntlg proofs of each of the 
goals in  A con~unctivc SYsrem (so-called and-padlelism) And also different possible 

roof paths for each goal (or paralleliim) Eumples of ensting concurrent Horn 
ranguages are Concurrent Prolg. Pulog. ClHC. Delu.Pmlog and CP(l.1.a~ 

I n  this thesis I mpose to la9 a sound tbeoretical foundation for. and explore 
the paradigm of. !LP langua *s Specifically. I propose U) investigate the design. 
semantics. implemenration and -use of such languages 

The thesis i s  intended U make contributions w each of the following u e u  

.. progrm~mins lanquape design. via .. an underscanding of the design s p x e  for 

.. the design of  A paradigmatic CLP language (CP[I (.a..) providing 
Concurrent programming Iinguag9’s bued on annotated Horn loqic. 

C 

Figure 14. Submenus may appear when the user slides the cursor out of the right of the item marked with a n  
arrow (a) a s  in I n t e r l i ~ p - D , ~ ~  when the cursor is over a n  item (b) a s  in the M a c i n t o ~ h , ~  or they may be stacked 
like pages (c) a s  in  Andrew.16 The Enlarge command in  (b) is shown in gray because it i s  currently illegal. 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



window managers provide accelerators to allow special 
values of the parameters to be specified easily. For exam- 
ple, in X/uwm, when creating a window, a special but- 
ton combination will make the window a default size 
that depends on the application (for example, 
80-by-24-characters high in the default font for a termi- 
nal emulator). A different button combination allows the 
user to specify the size using the mouse. 

Another important issue is to what extent the user can 
change the user interface of the window manager. Win- 
dow systems such as X and NeWS were designed to allow 
the user total flexibility, so almost any aspect can be 
changed. In X/uwm, many of the changes can he made 
by editing specially formatted text files (for example, 
.uwmrc), hut other changes require writing programs. 
Other window managers allow customization to a lesser 
extent. For example, Cedar allows the menu items and 
their functions to be assigned by the user employing 
"TIP" tables," but the general window layout is 
fixed. A related issue is how much of the initial screen 
layout can he specified for when the system is powered 
on. Some systems always start the same way, others allow 
the user to define the initial configuration in profile files 
(X/uwm), and others return the screen to the last config- 
uration (Macintosh). 

Conclusions 
'This article has attempted to list some of the important 

common aspects of the user interfaces of window 
managers. The various features can he broken down into 
fairly simple taxonomies, which will be useful when 
studying and comparing current window managers or 
designing new ones. Clearly, there will always be new 
innovations that are not in these taxonomies, but they are 
expected to cover the important parts of new designs, 
and may even help future designers see where new tech- 
niques might he used. 

One obvious conclusion from looking at the taxono- 
mies is that there is not a great deal of difference among 
different window managers. I n  fact, when faced with a 
new window manager, a user could probably deduce 
how to operate it by pressing the various mouse buttons 
with various keyboard shift keys (Shift, Control, Meta, 
Hyper, Super, Alt, etc.) held down over the special areas 
(in the window, the title line, the border, on any special 
decorations which might be buttons, etc.]. This is also 
encouraging for efforts at standardizing window 
managers, since there is less variability that must be 
accommodated. U 

pated in some early discussions. A number of people at 
various companies also supplied useful information 
about their window managers. For help and support 
with this article, I would like to thank Bernita Myers, 
David Anderson, Doug Bunting, Richard Cohn, and 
Randy Pausch. 

Work on this article was started while the author was 
in the Dynamic Graphics Project, Computer Systems 
Research Institute, University of Toronto. Funding at 
Carnegie Mellon was provided by the Defense Advanced 
Research Projects Agency (DoD), ARPA order no. 4976 
under contract F33615-87-C-1499 and monitored by the 
Avionics Laboratory, Air Force Wright Aeronautical 
Laboratories, Aeronautical Systems Division (AFSC), 
Wright-Patterson AFB, OH 454334543, 

The views and conclusions contained in this docu- 
ment are those of the author and should not be inter- 
preted as representing the official policies, either 
expressed or implied, of the Defense Advanced Research 
Projects Agency of the US government. 

References 
1. D.C. Smith c t  al.. "Designing the Star User Interface." Byte, L'ol. 

7, No. 4, Apr. 1982, pp. 242-282. 

2. I1.C. Smith et al.. "The Star User Interface: A n  O\,ervie\v." Proc:. 
Nut ' l  Cornpiitor Coiif:, AFIPS Press. Arlington, Va., 1982. pp. 
515-528. 

3. W. Cregg, "The Apple Macintosh Computer." B),te, Vol. 9. No. 2 .  
Feb. 1984, lip. 30-54. 

1. K.W. Scheiflcr and  J .  Cettys. "The X Window System." AChl Trans. 
on Gruphics. Vol. 5, No. 2,  Apr. 1986, pp. 79-1011. 

5. F.R.A. Hopgood et al., eds.. hlethodologqofM.'iridori. Manngcmcnt 
(t'roc. Alvey L'Vorkshop), Springer-Verlag, Berlin, 1986. 250 pp. 

f i  G. Krasner, Sinalltcilk-80: Bits of Historj: Words ofAdt.icc, Xddisori- 
Wesley, Reading, Mass., 1983. 

7. 1,. Tesler. "The Srnalltalk Environment." Bj,tc, \'ol. 6. No. 8. "!ug. 
1981, pp. 90-147. 

8 .  W. 'reitelman, "Ten Years of Window Systems-A Ketrospective 
Vieiv," Methodology of WindoLv Management (Proc. Alvey Work- 
shop).  1985. Springer-Verlag, Berlin. 1986. pp. 35-46. 

9. D. Wallace, "'I'ajo Functional Specification, version 6.0." tech. 
report ,  Xerox. Oct.1980. 

I O .  LV. Teitelman. "A Tour Through CEDAR," IEEE SoftLvure, Vol.1, No. 
2 ,  Apr, 1984. pp. 44-73. 

11. D. Swinehart  et al., "A Structural View of the Cedar Prograrnming 
Environment," ACM Trans. Programming Languciges and Systems. 

12.  S u n  Microsystems, Inc. .  NeWS Preliminary Technical Otervirrv, 

13. B.A. Myers, "The User Interface for Sapphire." CCciA, 1.01. 4. No. 

Vol. 8.  No. 4, Oct.  1986. pp. 419-490. 

Mountain View, Calif., 1986. 

12. Dec. 1984, pp. 13-23. 

14. W.K. English, D.C. Engelbart ,  a n d  M.L. Berman.  "Display Selec- 
tion 'I'echniques for Text Manipulation," IEEE Trcins. Human Fuc- 
tors in Electronics, Vol. HFE-8, No. 1, Mar. 1967. 

Acknowledgments 
First, I want to thank the Alvey workshop" for span- 

soring the conference that inspired this article. Mark 
Weiser provided many helpful comments and edited an 
earlier version of this article. Warren Teitelman partici- 

IS. B.A. Myers. "Tools for Creating User Interfaces: An Introduction 
a n d  Survey." Tech. Report CMU-CS-88-107. Carnegie Mellon Uni- 
versity, Computer Science Dept. Also to appear  in IEEE Software, 
jan ,  1989, 

September 1988 83 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



16. J .H .  Morris et al.. "Andrew: A Distributed Personal Comput ing  
Environment," CACM, Vol. 29, No. 2 ,  Mar. 1986, pp. 184-201. 

17. Sun  Microsystems, Inc.  SunWindows Programmers' Guide. Moun- 
tain View Calif., 1984. 

18. G. Williams, "The Lisa Computer System." Byte, Vol. 8, No. 2,  Feb. 

19. Apple Computer.  Inside Macintosh, Addison-Wesley, Reading. 
Mass. ,  1985. 

20. J. Warnock a n d  D.K. Wyatt, "A Device-Independent Graphics Imag- 
ing Model for Use with Raster Devices" Computer Graphics, (Proc. 
SIGGRAPH), Vol. 16. No. 3, July 1982, pp. 313-319. 

2 1 J. Gosling, "SunDew-A Distributed a n d  Extensible Window Sys- 
tem," Methodology of Window Management,  Springer-Verlag, Ber- 
lin (Proc. Alvey Workshop, 1985J, pp. 47-57. [A slightly different 
version ofthths paper  with the s a m e  title also appeared in the Proc. 
1986 Winter Usenix Tech. Conf., Ian.  1986, pp. 98.103. 

22. Adobe Systems, Postscript Language Reference Manual,  Addison- 
Wesley, Reading, Mass.. 1985. 

23. D. Sweetman,  "A Modular  Window System for Unix," Methodol- 
ogy of Window Management (Proc.  Alvey Workshop. 1985), 
Springer-Verlag, Berlin,  1986, pp. 73-80. 

24. MIT a n d  DEC, X Tool kit Libroq-C 1,unguage Intorfoce; Tool kit 
Beta Version 0.1; X Protocol Version 11, Boston. 1987. 

25. K.1. Schmucker, "MacApp: An Application Framework," Byte, Vol. 
22, No. 8, Aug. 1986, pp.189-193. 

26. Apollo Computer,  "Open Dialog Interface Management  System 
Supports IBM, DEC, a n d  Sun," Product Announcement.  Chelms- 
ford,  Mass., 1987. 

27. M. Gancarz,  "Uwm: A User Interface for X Windows," Conf Proc. 
Summer  Tech. Conf., Usenix,  Denver. Ian.  1986. pp. 429-440. 

28. V. Puglia et al., "Operating in a New Environment," PC hlogazinc, 
Feb. 1986, pp. 109-132. 

29. A. Goldberg, Smalltalk-80: The Interactive Progrumming En\.iron- 
ment ,  Addison-Wesley, Reading, Mass., 1984. 

30. A. Goldberg a n d  D. Robson. Smalltalk-80 The Language clnd Its 
Implementation, Addison-Wesley. Reading. Mass.. 1983. 

31. S.A. Bly a n d  J.K. Rosenberg, "A Comparison of'liled a n d  Overlap- 
ping Windows," Proc. SIGCHI, Human Factors in Computing s>.~- 
terns, ACM. New York, 1986, pp. 101-106. 

32. Xerox Office Systems Division. VieivPoint L'sers blanual,  Palo Alto, 
Calif., 1985. 

33. E.S. Cohen, E.T. Smith.  a n d  L.A. Iverson, "Constraint-Based Tiled 
Windows," Proc. 1st Int 'l  Conf. on Computer Workstations, CS 
Press, Los Alamitos,  Calif., Nov. 1984, pp. 2-11, 

34. R.M. Stallman, "Emacs: T h e  Extensible. Customizable,  Self- 
Documenting Display Editor," Tech. Report 519. M I T  Artificial 
Intelligence Lab, Cambridge, Mass. ,  1979. 

35. W. Teitelman a n d  L. Masinter, "The Interlisp Programming Envi- 
ronment , "  Computer, Vol. 14. No. 4, Apr. 1981, pp. 25-33. 

36. R. Pike, "Graphics in  Overlapping Bitmap Layers," ACM Trans. 
Graphics, Vol. 2, No., 2,  Apr. 1983, pp. 135-160. Also appears in Com- 
puter Graphics (Proc.  SIGGRAPH), vol. 17, No. 3, July 1983, pp. 

37. D.C. Smith,  Pygmalion: A Computer Program to Model and  Stimu- 
late Creative Thought,  Birkhauser.  Basel, 1977. 

38. Xerox Office Systems Division, Xerox Derrelopment Environment: 
Concept and  Principles, Part #610E00130, Palo Alto, Calif., 1981. 

39. B.A. Myers, "The  Impor tance  of Percent-Done Progress Indica- 
tors for Computer-Human Interfaces," (Proc. SIGCH11. ACM. New 
York, 1985, pp. 11-17. 

40. W. Teitelman. "A Display Oriented Programmer's Assistant," Int'l 
I. Man-Machine Studies, Vol. 11,1979, pp. 157-187. Also Xerox PARC 
Tech. Report CSL-77-3, Palo Alto, Calif., Mar.  8, 1977. 

41. Int'l Computers  Ltd., ICL PERQ Guide to PNX, Int'l Computers.  
Ltd., UK Software a n d  Literature Supply Sector, Reading, RG3 
l N R ,  UK, 1983. 

1983, pp. 33-50. 

331-355. 

42. L. Bannon et al..  "Evaluating a n d  Analysis of Users '  Activitl 
Organization," Proc. SIGCHI, Human Factors in Computing Sys- 
tems, ACM. New York, 1983. pp. 54-57. 

43. S.K. Card a n d  A. Henderson ,  Jr.,  ''A Multiple \'irtual-LVorkspace 
Interface to Suppor t  User Task Switching," Proc. SIGCHI+GI. 
Humon Factors in  Computing Systems, Graphics Interfuce, AChl, 
N e w  York, 1987, j-rp. 53-59, 

44. D.A. Henderson, Jr., a n d  S.K. Card. "Rooms: The Use ofh lu l t ip le  
Virtual Ib'orkspace to Reduce Space Contention in a L1Sndoiz,-Rmsed 
Graphical User Interface," ACRI Trcins Graphics. Vol. 4.. No. 3. Julk 
1986, pp. 211-243. 

45. ],D. Foley a n d  A. van Dam, Fundamentals of1ntcractit.e Computer 
Graphics. Addison-Wesley, Reading Mass.. 1982. 

46. w.L. Betrley et al., "Human Factors Testing in the Design of Xerox's 
8010 'Star '  Office Workstation," Proc. SIGCFiI, Human Factors in 
Computing Systems, ACM, New York, Dec. 1983. pp.72-77. 

47. w, Buxton a n d  B. Myers. "A Study in TLvo-Handed Input , "  Proc. 
SIGCHI. f l w i a n  Factors in Computing Systems, AChl.  New York, 
Apr. 1986. pp.321-326. 

48. K .  Stallman. D. Weinreb. a n d  D. Moon, Lisp Machine  Inc. ,  Lisp 
Machine LYindoivs Sj.str:m hfanual ,  Culver City. Calif. 1983. 

49. Apollo Computer  Inc.. "M'indow Manager," Chelmsford,  hlass.. 
1981. 

Brad A.  Myers is a research computer  scientist  
at Carnegie Mellon University. From 1980 until 
1983 he  worked at PERQ Systems Corporation 
where  h e  designed a n d  implemented the  Sap- 
phi re  window manager  a n d  numerous  PERQ 
demonst ra t ions  for the SIGGRAPH equipment  
exhibit ion.  His research interests include user  
interface management  systems (UIMSs),  user 
interfaces, programming by example, visual pro- 
gramming,  interaction techniques,  window 

management,  programming environments,  debugging, a n d  graphics. 
Myers received a PhD in computer  science at the  University of 

Toronto, a n d  MS a n d  BSc degrees from the  Massachusetts Insti tute 
of Technology. While at MIT, he  was a research intern at Xerox PARC. 
He is a member  of SIGGRAPH. SIGCHI, ACM. a n d  the  Computer  
Society of the  IEEE.  

Myers' address is Computer Science Department. Carnegie Mellon 
University, Pit tsburgh. PA 15213-3890. 

84  IEEE Computer  Graphics & Applications 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 


